metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m237-m238

catena-Poly[[(1,10-phenanthroline-κ2N,N′)lead(II)]-di-μ-nitrato-κ3O,O′:O′′;κ3O:O′,O′′-[(1,10-phenanthroline-κ2N,N′)lead(II)]-bis­­(μ-2,2,2-tri­chloro­acetato-κ2O:O′)]

aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and dDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, PO Box 5166616471, Tabriz, Iran
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 January 2012; accepted 27 January 2012; online 4 February 2012)

In the title PbII complex, [Pb2(C2Cl3O2)2(NO3)2(C12H8N2)2]n, the 1,10-phenanthroline ligand is chelating, the nitrate anion chelates one PbII ion and simultaneously bridges a neighbouring PbII ion via the third O atom, and the trichloro­acetate anion is bidentate, bridging two PbII ions. The coordination geometry is based on a penta­gonal–bipramidal geometry defined by an N2O5 donor set with no obvious stereochemical role for the lead-bound lone pair of electrons. The coordination polymer has a zigzag topology along [010] and comprises alternating eight-membered {PbONO}2 and {PbOCO}2 rings.

Related literature

On the stereochemical activity of lone pairs of electrons in PbII structures, see: Davidovich et al. (2009[Davidovich, R. L., Stavila, V., Marinin, D. V., Voit, E. I. & Whitmire, K. H. (2009). Coord. Chem. Rev. 253, 1316-1352.]). For recent structural studies of mixed-ligand PbII compounds, see: Shahverdizadeh et al. (2008[Shahverdizadeh, G. H., Soudi, A. A., Morsali, A. & Retailleau, P. (2008). Inorg. Chim. Acta, 361, 1875-1884.], 2011a[Shahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011a). Acta Cryst. E67, m1727-m1728.],b[Shahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011b). Acta Cryst. E67, m1729-m1730.]). For specialized crystallization techniques, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C2Cl3O2)2(NO3)2(C12H8N2)2]

  • Mr = 1223.54

  • Triclinic, [P \overline 1]

  • a = 8.8852 (3) Å

  • b = 9.7465 (3) Å

  • c = 11.1570 (3) Å

  • α = 109.427 (3)°

  • β = 99.019 (3)°

  • γ = 106.199 (3)°

  • V = 841.13 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 10.54 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.227, Tmax = 0.419

  • 12671 measured reflections

  • 3899 independent reflections

  • 3740 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.038

  • S = 0.99

  • 3899 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected bond lengths (Å)

Pb—O1 2.410 (2)
Pb—O2i 2.821 (2)
Pb—O3 2.591 (2)
Pb—O4 2.844 (2)
Pb—O5ii 2.807 (2)
Pb—N1 2.576 (2)
Pb—N2 2.515 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The coordination chemistry of PbII with N– and O-donor ligands has been investigated in the past decade and frequently discussed in regard of the stereochemical activity of the lone pair of electrons (Davidovich et al., 2009). In connection with recent structural studies (Shahverdizadeh et al., 2008, 2011a, 2011b), herein we report the cyrstal and molecular structure of the mixed ligand PbII complex containing nitrate, trichloroacetate and 1,10-phenanthroline, (I).

A view of the asymmetic unit is shown in Fig. 1. This comprises a PbII atom, a chelating 1,10-phenanthroline molecule, a nitrate anion and a trichloroacetate anion. The nitrate anion chelates one PbII atom and at the same time bridges a second PbII atom via the third O atom. The trichloroacetate anion is bidentate, bridging two PbII atoms. Both bridges are non-symmetric, Table 1. The resulting coordination geometry, Fig. 2, is based on a distorted pentagonal bipyramid with no obvious role for the lead-bound lone pair of electrons.

The resulting polymeric chain along [010] has a zigzag topology with the backbone being defined by alternating eight-membered {PbONO}2 and {PbOCO}2 rings, Fig. 3.

Related literature top

On the stereochemical activity of lone pairs of electrons in PbII structures, see: Davidovich et al. (2009). For recent structural studies of mixed-ligand PbII compounds, see: Shahverdizadeh et al. (2008, 2011a,b). For specialized crystallization techniques, see: Harrowfield et al. (1996).

Experimental top

1,10-Phenanthroline (1 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and a mixture of lead(II) nitrate (1 mmol) and trichloroacetic acid (1 mmol) in the other. Methanol was then added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After two weeks, crystals had deposited in the arm held at ambient temperature. They were filtered off, washed with acetone and ether, and air-dried. Yield: 65%. M.pt. = 491 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the distorted pentagonal bipyramidal coordination geometry for the lead atom in (I).
[Figure 3] Fig. 3. A view of the zigzag polymeric chain along [010] in (I).
catena-Poly[[(1,10-phenanthroline-κ2N,N')lead(II)]- di-µ-nitrato-κ3O,O':O''; κ3O:O',O''-[(1,10-phenanthroline- κ2N,N')lead(II)]-bis(µ-2,2,2-trichloroacetato- κ2O:O')] top
Crystal data top
[Pb2(C2Cl3O2)2(NO3)2(C12H8N2)2]Z = 1
Mr = 1223.54F(000) = 572
Triclinic, P1Dx = 2.415 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8852 (3) ÅCell parameters from 9962 reflections
b = 9.7465 (3) Åθ = 2.4–27.5°
c = 11.1570 (3) ŵ = 10.54 mm1
α = 109.427 (3)°T = 100 K
β = 99.019 (3)°Prism, colourless
γ = 106.199 (3)°0.20 × 0.15 × 0.10 mm
V = 841.13 (4) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3899 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3740 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1212
Tmin = 0.227, Tmax = 0.419l = 1414
12671 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0188P)2]
where P = (Fo2 + 2Fc2)/3
3899 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
[Pb2(C2Cl3O2)2(NO3)2(C12H8N2)2]γ = 106.199 (3)°
Mr = 1223.54V = 841.13 (4) Å3
Triclinic, P1Z = 1
a = 8.8852 (3) ÅMo Kα radiation
b = 9.7465 (3) ŵ = 10.54 mm1
c = 11.1570 (3) ÅT = 100 K
α = 109.427 (3)°0.20 × 0.15 × 0.10 mm
β = 99.019 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3899 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3740 reflections with I > 2σ(I)
Tmin = 0.227, Tmax = 0.419Rint = 0.029
12671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.038H-atom parameters constrained
S = 0.99Δρmax = 0.84 e Å3
3899 reflectionsΔρmin = 0.97 e Å3
235 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.526354 (11)0.321866 (10)0.619700 (8)0.00914 (4)
Cl11.10668 (9)0.71315 (9)0.63924 (7)0.02148 (16)
Cl20.92529 (9)0.85568 (8)0.80608 (7)0.01891 (15)
Cl30.89253 (10)0.85230 (9)0.54481 (7)0.02467 (17)
O10.7927 (2)0.5079 (2)0.66123 (18)0.0146 (4)
O20.6722 (3)0.5436 (2)0.4883 (2)0.0231 (5)
O30.6734 (2)0.1262 (2)0.54516 (18)0.0148 (4)
O40.5454 (2)0.1386 (2)0.36793 (18)0.0157 (4)
O50.6385 (3)0.0491 (2)0.35098 (19)0.0167 (4)
N10.5609 (3)0.5650 (3)0.8223 (2)0.0112 (5)
N20.6794 (3)0.3366 (3)0.8360 (2)0.0115 (5)
N30.6188 (3)0.0712 (3)0.4200 (2)0.0115 (5)
C10.5074 (3)0.6760 (3)0.8136 (3)0.0131 (6)
H10.43900.65860.73140.016*
C20.5473 (4)0.8182 (3)0.9205 (3)0.0163 (6)
H20.50910.89640.90980.020*
C30.6421 (4)0.8433 (3)1.0406 (3)0.0152 (6)
H30.66730.93781.11470.018*
C40.7023 (3)0.7275 (3)1.0538 (3)0.0115 (5)
C50.6586 (3)0.5890 (3)0.9403 (3)0.0111 (5)
C60.7343 (3)0.2258 (3)0.8442 (3)0.0120 (5)
H60.70360.13260.76760.014*
C70.8356 (4)0.2399 (3)0.9606 (3)0.0154 (6)
H70.87310.15800.96190.018*
C80.8803 (3)0.3727 (3)1.0725 (3)0.0150 (6)
H80.95080.38491.15170.018*
C90.8205 (3)0.4908 (3)1.0688 (3)0.0113 (5)
C100.7198 (3)0.4687 (3)0.9475 (2)0.0098 (5)
C110.8037 (4)0.7453 (3)1.1749 (3)0.0151 (6)
H110.83180.83821.25120.018*
C120.8606 (3)0.6330 (3)1.1830 (3)0.0147 (6)
H120.92770.64781.26480.018*
C130.7796 (3)0.5824 (3)0.5894 (3)0.0123 (6)
C140.9201 (3)0.7446 (3)0.6404 (3)0.0142 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.01030 (6)0.00697 (6)0.00857 (6)0.00233 (4)0.00028 (4)0.00284 (4)
Cl10.0130 (3)0.0269 (4)0.0277 (4)0.0043 (3)0.0084 (3)0.0157 (3)
Cl20.0239 (4)0.0124 (3)0.0149 (3)0.0045 (3)0.0009 (3)0.0024 (3)
Cl30.0247 (4)0.0209 (4)0.0244 (4)0.0022 (3)0.0044 (3)0.0178 (3)
O10.0157 (10)0.0124 (10)0.0149 (10)0.0008 (8)0.0043 (8)0.0080 (8)
O20.0218 (12)0.0128 (10)0.0234 (11)0.0013 (9)0.0097 (10)0.0048 (9)
O30.0179 (11)0.0173 (10)0.0092 (9)0.0073 (9)0.0027 (8)0.0047 (8)
O40.0187 (11)0.0162 (10)0.0154 (10)0.0073 (9)0.0038 (9)0.0096 (8)
O50.0240 (11)0.0096 (10)0.0192 (10)0.0078 (9)0.0125 (9)0.0043 (8)
N10.0115 (11)0.0115 (11)0.0106 (11)0.0035 (9)0.0022 (9)0.0051 (9)
N20.0137 (12)0.0088 (11)0.0123 (11)0.0039 (9)0.0031 (10)0.0046 (9)
N30.0120 (12)0.0096 (11)0.0135 (12)0.0014 (9)0.0063 (10)0.0061 (9)
C10.0163 (14)0.0149 (14)0.0111 (13)0.0092 (12)0.0054 (11)0.0053 (11)
C20.0230 (16)0.0137 (14)0.0165 (14)0.0109 (12)0.0077 (13)0.0065 (11)
C30.0193 (15)0.0109 (13)0.0146 (14)0.0046 (12)0.0073 (12)0.0033 (11)
C40.0130 (14)0.0123 (13)0.0107 (13)0.0041 (11)0.0055 (11)0.0055 (10)
C50.0105 (13)0.0116 (13)0.0122 (13)0.0013 (11)0.0053 (11)0.0069 (10)
C60.0144 (14)0.0098 (13)0.0111 (13)0.0039 (11)0.0027 (11)0.0040 (10)
C70.0193 (15)0.0144 (14)0.0171 (14)0.0081 (12)0.0051 (12)0.0101 (11)
C80.0170 (15)0.0187 (15)0.0131 (14)0.0077 (12)0.0035 (12)0.0100 (11)
C90.0107 (13)0.0125 (13)0.0095 (13)0.0025 (11)0.0017 (11)0.0047 (10)
C100.0096 (13)0.0101 (13)0.0101 (12)0.0026 (10)0.0041 (11)0.0046 (10)
C110.0187 (15)0.0121 (14)0.0107 (13)0.0036 (12)0.0042 (12)0.0015 (11)
C120.0125 (14)0.0172 (14)0.0095 (13)0.0028 (11)0.0003 (11)0.0028 (11)
C130.0119 (14)0.0110 (13)0.0143 (14)0.0045 (11)0.0061 (12)0.0038 (11)
C140.0124 (14)0.0161 (14)0.0145 (14)0.0033 (11)0.0018 (11)0.0091 (11)
Geometric parameters (Å, º) top
Pb—O12.410 (2)C1—H10.9500
Pb—O2i2.821 (2)C2—C31.371 (4)
Pb—O32.591 (2)C2—H20.9500
Pb—O42.844 (2)C3—C41.415 (4)
Pb—O5ii2.807 (2)C3—H30.9500
Pb—N12.576 (2)C4—C51.412 (4)
Pb—N22.515 (2)C4—C111.429 (4)
Cl1—C141.770 (3)C5—C101.442 (4)
Cl2—C141.790 (3)C6—C71.401 (4)
Cl3—C141.762 (3)C6—H60.9500
O1—C131.260 (3)C7—C81.369 (4)
O2—C131.226 (3)C7—H70.9500
O3—N31.272 (3)C8—C91.405 (4)
O4—N31.252 (3)C8—H80.9500
O5—N31.247 (3)C9—C101.413 (4)
N1—C11.322 (3)C9—C121.442 (4)
N1—C51.366 (3)C11—C121.350 (4)
N2—C61.326 (3)C11—H110.9500
N2—C101.368 (3)C12—H120.9500
C1—C21.401 (4)C13—C141.568 (4)
O1—Pb—N277.20 (7)C2—C3—C4119.6 (2)
O1—Pb—N173.51 (7)C2—C3—H3120.2
N2—Pb—N165.43 (7)C4—C3—H3120.2
O1—Pb—O382.13 (6)C5—C4—C3117.2 (2)
N2—Pb—O377.41 (6)C5—C4—C11119.6 (2)
N1—Pb—O3138.96 (6)C3—C4—C11123.2 (2)
O1—Pb—O5ii143.59 (6)N1—C5—C4122.1 (2)
N2—Pb—O5ii72.82 (7)N1—C5—C10118.4 (2)
N1—Pb—O5ii110.82 (6)C4—C5—C10119.5 (2)
O3—Pb—O5ii71.66 (6)N2—C6—C7123.0 (2)
O1—Pb—O2i100.42 (6)N2—C6—H6118.5
N2—Pb—O2i142.33 (6)C7—C6—H6118.5
N1—Pb—O2i77.74 (6)C8—C7—C6119.4 (3)
O3—Pb—O2i140.08 (6)C8—C7—H7120.3
O5ii—Pb—O2i115.93 (6)C6—C7—H7120.3
O1—Pb—O490.38 (6)C7—C8—C9119.2 (2)
N2—Pb—O4124.31 (6)C7—C8—H8120.4
N1—Pb—O4159.41 (7)C9—C8—H8120.4
O3—Pb—O446.99 (5)C8—C9—C10118.1 (2)
O5ii—Pb—O489.76 (5)C8—C9—C12122.3 (2)
O2i—Pb—O493.09 (6)C10—C9—C12119.6 (2)
C13—O1—Pb107.77 (17)N2—C10—C9121.8 (2)
N3—O3—Pb101.84 (14)N2—C10—C5118.8 (2)
N3—O4—Pb90.19 (14)C9—C10—C5119.3 (2)
C1—N1—C5118.9 (2)C12—C11—C4121.5 (2)
C1—N1—Pb123.02 (17)C12—C11—H11119.3
C5—N1—Pb117.39 (16)C4—C11—H11119.3
C6—N2—C10118.3 (2)C11—C12—C9120.6 (3)
C6—N2—Pb122.22 (17)C11—C12—H12119.7
C10—N2—Pb119.21 (16)C9—C12—H12119.7
O5—N3—O4121.0 (2)O2—C13—O1128.1 (3)
O5—N3—O3119.6 (2)O2—C13—C14118.2 (2)
O4—N3—O3119.4 (2)O1—C13—C14113.8 (2)
N1—C1—C2122.7 (2)C13—C14—Cl3113.04 (19)
N1—C1—H1118.6C13—C14—Cl1108.31 (18)
C2—C1—H1118.6Cl3—C14—Cl1109.62 (15)
C3—C2—C1119.3 (3)C13—C14—Cl2108.31 (19)
C3—C2—H2120.4Cl3—C14—Cl2107.89 (15)
C1—C2—H2120.4Cl1—C14—Cl2109.62 (14)
N2—Pb—O1—C13162.22 (17)C5—N1—C1—C20.3 (4)
N1—Pb—O1—C1394.40 (17)Pb—N1—C1—C2170.2 (2)
O3—Pb—O1—C13118.98 (17)N1—C1—C2—C31.8 (5)
O5ii—Pb—O1—C13162.70 (14)C1—C2—C3—C42.0 (4)
O2i—Pb—O1—C1320.64 (17)C2—C3—C4—C50.8 (4)
O4—Pb—O1—C1372.57 (17)C2—C3—C4—C11179.0 (3)
O1—Pb—O3—N3105.10 (16)C1—N1—C5—C41.0 (4)
N2—Pb—O3—N3176.34 (16)Pb—N1—C5—C4172.0 (2)
N1—Pb—O3—N3158.57 (14)C1—N1—C5—C10178.3 (2)
O5ii—Pb—O3—N3100.50 (16)Pb—N1—C5—C107.3 (3)
O2i—Pb—O3—N38.3 (2)C3—C4—C5—N10.7 (4)
O4—Pb—O3—N37.15 (13)C11—C4—C5—N1179.4 (3)
O1—Pb—O4—N385.95 (15)C3—C4—C5—C10178.5 (2)
N2—Pb—O4—N311.24 (17)C11—C4—C5—C101.3 (4)
N1—Pb—O4—N3123.84 (19)C10—N2—C6—C72.0 (4)
O3—Pb—O4—N37.11 (13)Pb—N2—C6—C7172.4 (2)
O5ii—Pb—O4—N357.64 (15)N2—C6—C7—C80.6 (4)
O2i—Pb—O4—N3173.59 (15)C6—C7—C8—C91.3 (4)
O1—Pb—N1—C194.8 (2)C7—C8—C9—C101.8 (4)
N2—Pb—N1—C1177.9 (2)C7—C8—C9—C12179.2 (3)
O3—Pb—N1—C1150.9 (2)C6—N2—C10—C91.5 (4)
O5ii—Pb—N1—C1123.5 (2)Pb—N2—C10—C9173.1 (2)
O2i—Pb—N1—C110.2 (2)C6—N2—C10—C5179.0 (2)
O4—Pb—N1—C154.9 (3)Pb—N2—C10—C56.4 (3)
O1—Pb—N1—C575.88 (19)C8—C9—C10—N20.4 (4)
N2—Pb—N1—C57.30 (18)C12—C9—C10—N2179.4 (2)
O3—Pb—N1—C519.8 (2)C8—C9—C10—C5179.1 (2)
O5ii—Pb—N1—C565.9 (2)C12—C9—C10—C50.1 (4)
O2i—Pb—N1—C5179.2 (2)N1—C5—C10—N20.7 (4)
O4—Pb—N1—C5115.7 (2)C4—C5—C10—N2178.6 (2)
O1—Pb—N2—C6103.8 (2)N1—C5—C10—C9179.7 (2)
N1—Pb—N2—C6178.6 (2)C4—C5—C10—C91.0 (4)
O3—Pb—N2—C619.2 (2)C5—C4—C11—C120.7 (4)
O5ii—Pb—N2—C655.2 (2)C3—C4—C11—C12179.1 (3)
O2i—Pb—N2—C6165.63 (18)C4—C11—C12—C90.1 (4)
O4—Pb—N2—C622.3 (2)C8—C9—C12—C11178.5 (3)
O1—Pb—N2—C1070.51 (19)C10—C9—C12—C110.4 (4)
N1—Pb—N2—C107.01 (18)Pb—O1—C13—O221.3 (3)
O3—Pb—N2—C10155.2 (2)Pb—O1—C13—C14158.09 (17)
O5ii—Pb—N2—C10130.4 (2)O2—C13—C14—Cl33.3 (3)
O2i—Pb—N2—C1020.0 (3)O1—C13—C14—Cl3176.12 (19)
O4—Pb—N2—C10152.07 (17)O2—C13—C14—Cl1118.3 (2)
Pb—O4—N3—O5167.5 (2)O1—C13—C14—Cl162.2 (3)
Pb—O4—N3—O312.2 (2)O2—C13—C14—Cl2122.8 (2)
Pb—O3—N3—O5165.96 (19)O1—C13—C14—Cl256.6 (3)
Pb—O3—N3—O413.7 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Pb2(C2Cl3O2)2(NO3)2(C12H8N2)2]
Mr1223.54
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.8852 (3), 9.7465 (3), 11.1570 (3)
α, β, γ (°)109.427 (3), 99.019 (3), 106.199 (3)
V3)841.13 (4)
Z1
Radiation typeMo Kα
µ (mm1)10.54
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.227, 0.419
No. of measured, independent and
observed [I > 2σ(I)] reflections
12671, 3899, 3740
Rint0.029
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.038, 0.99
No. of reflections3899
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.97

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pb—O12.410 (2)Pb—O5ii2.807 (2)
Pb—O2i2.821 (2)Pb—N12.576 (2)
Pb—O32.591 (2)Pb—N22.515 (2)
Pb—O42.844 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: shahverdizadeh@iaut.ac.ir.

Acknowledgements

We gratefully acknowledge support of this study by Tabriz Azad University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDavidovich, R. L., Stavila, V., Marinin, D. V., Voit, E. I. & Whitmire, K. H. (2009). Coord. Chem. Rev. 253, 1316–1352.  Web of Science CrossRef CAS Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationShahverdizadeh, G. H., Soudi, A. A., Morsali, A. & Retailleau, P. (2008). Inorg. Chim. Acta, 361, 1875–1884.  Web of Science CSD CrossRef CAS Google Scholar
First citationShahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011a). Acta Cryst. E67, m1727–m1728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011b). Acta Cryst. E67, m1729–m1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m237-m238
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds