metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(N,N,N′,N′-Tetra­methyl­ethylenedi­amine-κN)bis­­(2,4,6-tri­methyl­phenolato-κO)germanium(II)

aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kiev, Ukraine, and bInstitute of Organic Chemistry, National Academy of Sciences of Ukraine, Chervonatkatska Street 60, 02660 Kiev, Ukraine
*Correspondence e-mail: bruschem@gmail.com

(Received 20 January 2012; accepted 5 February 2012; online 17 February 2012)

In the title compound, [Ge(C9H11O)2(C6H16N2)], the GeII atom is coordinated in a distorted trigonal–pyramidal geometry by two O atoms belonging to two 2,4,6-trimethyl­phenolate ligands and one N atom of a tetra­methyl­ethylenediamine ligand. Comparing the structure with published data of similar compounds shows that the Ge—O bonds are covalent and the Ge—N bond is coordinated.

Related literature

For the synthesis and chemistry of aryl­oxygermylene–amine complexes, see: Bonnefille et al. (2006[Bonnefille, E., Maziéres, S., Hawi, N. E., Gornitzka, H. & Couret, C. (2006). J. Organomet. Chem. 691, 5619-5625.]). For related compounds, see: Huang et al. (2009[Huang, M., Lermontova, E. Kh., Zaitsev, K. V., Churakov, A. V., Oprunenko, Y. F., Howard, J. A. K., Karlov, S. S. & Zaitseva, G. S. (2009). J. Organomet. Chem. 694, 3828-3832.]); Leung et al. (2007[Leung, W.-P., Kan, K.-W., So, C.-W. & Mak, T. C. W. (2007). Appl. Organomet. Chem. 21, 814-819.]); Seigi & Hoffman (1996[Seigi, S. & Hoffman, D. M. (1996). Inorg. Chem. 35, 6164-6169.]); Weinert et al. (2003[Weinert, C. S., Fenwick, A. E., Fenwick, P. E. & Rothwell, I. P. (2003). Dalton Trans. pp. 532-539.]); Wetherby et al. (2008[Wetherby, A. E. Jr, Goeller, L. R., DiPasquale, A. G., Rheingold, A. L. & Weinert, C. S. (2008). Inorg. Chem. 47, 2162-2170.]); Zemlyansky et al. (2003[Zemlyansky, N. N., Borisova, I. V., Khrustalev, V. N., Antipin, M. Yu., Ustynyuk, Y. A., Nechaev, M. S. & Lunin, V. V. (2003). Organometallics, 22, 5441-5446.]).

[Scheme 1]

Experimental

Crystal data
  • [Ge(C9H11O)2(C6H16N2)]

  • Mr = 459.15

  • Triclinic, [P \overline 1]

  • a = 10.9026 (3) Å

  • b = 11.5495 (3) Å

  • c = 12.4890 (3) Å

  • α = 92.552 (1)°

  • β = 113.853 (1)°

  • γ = 117.838 (1)°

  • V = 1217.73 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 173 K

  • 0.50 × 0.35 × 0.29 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.567, Tmax = 0.708

  • 18801 measured reflections

  • 5132 independent reflections

  • 4480 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.02

  • 5132 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Ge1—O1 1.8760 (13)
Ge1—O2 1.8674 (13)
Ge1—N1 2.1261 (16)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Three coordinated germanium compounds are rare enough, because this state is not typical. Bulky substituents have been used for stabilization of this state. Previously well-studied similar crystal structures, where germanium is surrounded by two oxygen atoms and one nitrogen atom, contain Ge(II) as a central atom. These compounds possess similar values of bonds lengths, bond angles, and also similar structures (Huang et al., 2009; Leung et al., 2007; Seigi & Hoffman, 1996; Wetherby et al., 2008; Zemlyansky et al., 2003). A dimeric crystal structure of this type, [Ge(2,4,6-Me3C6H2O)2]2, without use of a tertiary amine as a stabilizer was synthesized (Weinert et al., 2003). Such compounds as (MesO)2Ge(NR3) [NR3 = Et2NH, (C6H11)2NH, Et3N, dabco, tmeda] (MesO = 2,4,6-trimethylphenolate; dabco = 1,4-diazabicyclo[2.2.2]octane; tmeda = N,N,N',N'-tetramethylethane-1,2-diamine] were also synthesized, but as a wax material and the authors argue that these substances can not be obtained in crystalline form (Bonnefille et al., 2006). Studying the literature we have noticed that the length of a covalent bond Ge—O is in an interval 1.760–1.910 Å, the length of a coordinate bond Ge—O is in an interval 2.226–2.403 Å, the length of a covalent bond Ge—N lies in an interval 1.890–1.956 Å, and the length of a coordinate bond Ge—N lies in an interval 2.022–2.286 Å.

Related literature top

For the synthesis and chemistry of aryloxygermylene–amine complexes, see: Bonnefille et al. (2006). For related compounds, see: Huang et al. (2009); Leung et al. (2007); Seigi & Hoffman (1996); Weinert et al. (2003); Wetherby et al. (2008); Zemlyansky et al. (2003).

Experimental top

To a stirred solution of dichlorogermylene-dioxane (2.32 g, 9.98 mmol) in 30 ml of toluene was added 2,4,6-trimethylphenol (2.72 g, 19.96 mmol) in 20 ml of toluene and tetramethylethylenediamine (6.1 ml, 39.92 mmol). The mixture was stirred for 16 h at 200°C. Precipitate of the quaternary amine formed during the reaction was filtrated from this solution. The filtered solution was evaporated to a wax material. Obtained waxy material (0.8 g) was dissolved in 5 ml of diethylether and left at -25°C. Within three days transparent crystals dropped out of the solution and were filtrated off (yield: 0.72 g, 90%). Analysis, calculated for C24H38GeN2O2: C 62.79, H 8.28, N 6.10%; found: C 62.71, H 8.24, N 6.06%.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (CH), 0.99 (CH2) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
(N,N,N',N'-Tetramethylethylenediamine- κN)bis(2,4,6-trimethylphenolato-κO)germanium(II) top
Crystal data top
[Ge(C9H11O)2(C6H16N2)]Z = 2
Mr = 459.15F(000) = 488
Triclinic, P1Dx = 1.252 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9026 (3) ÅCell parameters from 9278 reflections
b = 11.5495 (3) Åθ = 2.2–26.6°
c = 12.4890 (3) ŵ = 1.28 mm1
α = 92.552 (1)°T = 173 K
β = 113.853 (1)°Block, colourless
γ = 117.838 (1)°0.50 × 0.35 × 0.29 mm
V = 1217.73 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
5132 independent reflections
Radiation source: fine-focus sealed tube4480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 9 pixels mm-1θmax = 26.8°, θmin = 1.9°
ϕ and ω scans with κ offseth = 1313
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1414
Tmin = 0.567, Tmax = 0.708l = 1515
18801 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.3979P]
where P = (Fo2 + 2Fc2)/3
5132 reflections(Δ/σ)max = 0.004
262 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ge(C9H11O)2(C6H16N2)]γ = 117.838 (1)°
Mr = 459.15V = 1217.73 (5) Å3
Triclinic, P1Z = 2
a = 10.9026 (3) ÅMo Kα radiation
b = 11.5495 (3) ŵ = 1.28 mm1
c = 12.4890 (3) ÅT = 173 K
α = 92.552 (1)°0.50 × 0.35 × 0.29 mm
β = 113.853 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5132 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
4480 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.708Rint = 0.032
18801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.02Δρmax = 0.38 e Å3
5132 reflectionsΔρmin = 0.30 e Å3
262 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.99264 (2)0.176944 (19)0.058635 (17)0.02421 (8)
O10.83353 (16)0.07223 (14)0.09872 (12)0.0296 (3)
O21.01794 (16)0.34530 (13)0.10758 (12)0.0278 (3)
N10.83055 (19)0.16252 (16)0.11701 (14)0.0263 (3)
N20.4689 (2)0.02892 (19)0.32794 (16)0.0361 (4)
C10.8348 (2)0.02668 (19)0.15472 (18)0.0267 (4)
C20.9506 (2)0.0077 (2)0.27524 (18)0.0275 (4)
C30.9438 (3)0.0959 (2)0.3307 (2)0.0321 (4)
H31.02200.07220.41270.039*
C40.8262 (3)0.2324 (2)0.2697 (2)0.0363 (5)
C50.7122 (3)0.2634 (2)0.1524 (2)0.0377 (5)
H50.63030.35640.10980.045*
C60.7121 (2)0.1637 (2)0.09329 (19)0.0329 (4)
C71.0795 (3)0.1543 (2)0.3472 (2)0.0388 (5)
H7A1.03200.20640.35410.047*
H7B1.14140.19400.30510.047*
H7C1.14880.15800.42900.047*
C80.8247 (4)0.3426 (3)0.3322 (3)0.0530 (7)
H8C0.73470.43250.27580.064*
H8B0.81500.32620.40530.064*
H8A0.92340.34030.35590.064*
C90.5795 (3)0.2027 (3)0.0325 (2)0.0535 (7)
H9A0.62260.17550.08870.064*
H9B0.52460.15620.03030.064*
H9C0.50490.30190.06060.064*
C101.1231 (2)0.42748 (17)0.22520 (17)0.0243 (4)
C111.0634 (2)0.44853 (18)0.29946 (18)0.0265 (4)
C121.1684 (3)0.52993 (19)0.41937 (19)0.0322 (4)
H121.12840.54530.46980.039*
C131.3313 (3)0.5899 (2)0.46805 (19)0.0335 (5)
C141.3866 (2)0.5700 (2)0.3916 (2)0.0349 (5)
H141.49740.61120.42330.042*
C151.2861 (2)0.49171 (19)0.26980 (18)0.0292 (4)
C160.8876 (2)0.3819 (2)0.2466 (2)0.0370 (5)
H16A0.83650.28230.21990.044*
H16B0.84740.41350.17640.044*
H16C0.86400.40620.30890.044*
C171.4443 (3)0.6754 (3)0.6003 (2)0.0502 (6)
H17A1.41930.61940.65390.060*
H17B1.43340.75340.61490.060*
H17C1.55310.70880.61790.060*
C181.3512 (3)0.4816 (2)0.1866 (2)0.0432 (5)
H18A1.31720.51930.11960.052*
H18B1.31180.38540.15310.052*
H18C1.46700.53340.23300.052*
C190.6950 (2)0.1647 (2)0.11538 (18)0.0329 (4)
H19A0.73880.24840.05230.039*
H19B0.63900.08550.08940.039*
C200.5744 (3)0.1608 (2)0.2342 (2)0.0449 (6)
H20A0.50920.18760.21610.054*
H20B0.63150.23000.26780.054*
C210.9229 (3)0.2794 (2)0.1534 (2)0.0417 (5)
H21A1.00800.27290.15620.050*
H21B0.96850.36530.09370.050*
H21C0.85310.27740.23430.050*
C220.7796 (3)0.0334 (2)0.19849 (18)0.0346 (5)
H22A0.72970.04340.16900.042*
H22B0.87200.03870.19850.042*
H22C0.70360.01980.28180.042*
C230.3876 (4)0.0448 (4)0.4447 (3)0.1074 (16)
H23C0.31780.04420.50690.129*
H23B0.46520.10810.46710.129*
H23A0.32450.08140.43950.129*
C240.3532 (3)0.0687 (3)0.2991 (3)0.0546 (7)
H24C0.28470.15570.36390.066*
H24B0.28890.03410.29270.066*
H24A0.40700.08280.22110.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.02419 (12)0.02539 (11)0.02330 (11)0.01458 (9)0.00996 (9)0.00678 (8)
O10.0305 (7)0.0311 (7)0.0319 (7)0.0181 (6)0.0163 (6)0.0151 (6)
O20.0294 (7)0.0243 (6)0.0247 (7)0.0144 (6)0.0091 (6)0.0040 (5)
N10.0302 (9)0.0277 (8)0.0231 (8)0.0178 (7)0.0119 (7)0.0068 (6)
N20.0301 (9)0.0457 (10)0.0261 (9)0.0187 (8)0.0097 (8)0.0113 (8)
C10.0299 (10)0.0290 (10)0.0315 (10)0.0181 (8)0.0199 (9)0.0126 (8)
C20.0300 (10)0.0289 (10)0.0310 (10)0.0180 (8)0.0178 (9)0.0111 (8)
C30.0375 (11)0.0380 (11)0.0349 (11)0.0257 (10)0.0217 (10)0.0169 (9)
C40.0493 (13)0.0330 (11)0.0500 (13)0.0273 (10)0.0360 (12)0.0225 (10)
C50.0444 (13)0.0257 (10)0.0463 (13)0.0144 (9)0.0296 (11)0.0100 (9)
C60.0334 (11)0.0312 (10)0.0342 (11)0.0142 (9)0.0199 (9)0.0086 (9)
C70.0419 (12)0.0315 (11)0.0329 (11)0.0183 (10)0.0109 (10)0.0110 (9)
C80.0727 (18)0.0409 (13)0.0668 (17)0.0355 (13)0.0435 (15)0.0311 (13)
C90.0435 (14)0.0415 (13)0.0410 (14)0.0059 (11)0.0116 (12)0.0086 (11)
C100.0285 (10)0.0181 (8)0.0244 (9)0.0117 (8)0.0117 (8)0.0068 (7)
C110.0320 (10)0.0199 (9)0.0311 (10)0.0148 (8)0.0165 (9)0.0102 (7)
C120.0446 (12)0.0246 (9)0.0314 (11)0.0184 (9)0.0215 (10)0.0090 (8)
C130.0387 (12)0.0227 (9)0.0278 (10)0.0128 (9)0.0107 (9)0.0061 (8)
C140.0272 (10)0.0272 (10)0.0382 (12)0.0105 (9)0.0106 (9)0.0072 (9)
C150.0284 (10)0.0228 (9)0.0332 (11)0.0114 (8)0.0148 (9)0.0077 (8)
C160.0331 (11)0.0348 (11)0.0446 (13)0.0171 (9)0.0216 (10)0.0073 (9)
C170.0535 (15)0.0405 (13)0.0327 (12)0.0163 (12)0.0116 (11)0.0026 (10)
C180.0324 (12)0.0428 (13)0.0477 (14)0.0118 (10)0.0241 (11)0.0054 (10)
C190.0312 (11)0.0368 (11)0.0298 (11)0.0238 (9)0.0079 (9)0.0017 (8)
C200.0374 (12)0.0371 (12)0.0489 (14)0.0239 (11)0.0063 (11)0.0132 (10)
C210.0507 (14)0.0427 (13)0.0325 (11)0.0236 (11)0.0212 (11)0.0196 (10)
C220.0416 (12)0.0387 (11)0.0250 (10)0.0268 (10)0.0113 (9)0.0015 (8)
C230.067 (2)0.103 (3)0.0475 (19)0.004 (2)0.0124 (16)0.0391 (19)
C240.0393 (14)0.0576 (16)0.0522 (16)0.0156 (12)0.0221 (12)0.0133 (13)
Geometric parameters (Å, º) top
Ge1—O11.8760 (13)C11—C161.502 (3)
Ge1—O21.8674 (13)C12—C131.394 (3)
Ge1—N12.1261 (16)C12—H120.9500
O1—C11.368 (2)C13—C141.379 (3)
O2—C101.368 (2)C13—C171.515 (3)
N1—C211.483 (3)C14—C151.392 (3)
N1—C221.484 (2)C14—H140.9500
N1—C191.498 (2)C15—C181.504 (3)
N2—C241.438 (3)C16—H16A0.9800
N2—C231.441 (3)C16—H16B0.9800
N2—C201.459 (3)C16—H16C0.9800
C1—C21.399 (3)C17—H17A0.9800
C1—C61.403 (3)C17—H17B0.9800
C2—C31.396 (3)C17—H17C0.9800
C2—C71.507 (3)C18—H18A0.9800
C3—C41.388 (3)C18—H18B0.9800
C3—H30.9500C18—H18C0.9800
C4—C51.372 (3)C19—C201.514 (3)
C4—C81.520 (3)C19—H19A0.9900
C5—C61.395 (3)C19—H19B0.9900
C5—H50.9500C20—H20A0.9900
C6—C91.501 (3)C20—H20B0.9900
C7—H7A0.9800C21—H21A0.9800
C7—H7B0.9800C21—H21B0.9800
C7—H7C0.9800C21—H21C0.9800
C8—H8C0.9800C22—H22A0.9800
C8—H8B0.9800C22—H22B0.9800
C8—H8A0.9800C22—H22C0.9800
C9—H9A0.9800C23—H23C0.9800
C9—H9B0.9800C23—H23B0.9800
C9—H9C0.9800C23—H23A0.9800
C10—C151.396 (3)C24—H24C0.9800
C10—C111.400 (3)C24—H24B0.9800
C11—C121.386 (3)C24—H24A0.9800
O2—Ge1—O197.06 (6)C12—C13—C17121.1 (2)
O2—Ge1—N184.95 (6)C13—C14—C15122.4 (2)
O1—Ge1—N193.73 (6)C13—C14—H14118.8
C1—O1—Ge1121.49 (11)C15—C14—H14118.8
C10—O2—Ge1120.51 (11)C14—C15—C10118.36 (18)
C21—N1—C22108.99 (16)C14—C15—C18120.90 (19)
C21—N1—C19111.75 (17)C10—C15—C18120.68 (18)
C22—N1—C19112.80 (15)C11—C16—H16A109.5
C21—N1—Ge1106.26 (13)C11—C16—H16B109.5
C22—N1—Ge1104.98 (12)H16A—C16—H16B109.5
C19—N1—Ge1111.64 (12)C11—C16—H16C109.5
C24—N2—C23108.7 (2)H16A—C16—H16C109.5
C24—N2—C20111.8 (2)H16B—C16—H16C109.5
C23—N2—C20110.3 (2)C13—C17—H17A109.5
O1—C1—C2120.98 (17)C13—C17—H17B109.5
O1—C1—C6119.40 (18)H17A—C17—H17B109.5
C2—C1—C6119.48 (18)C13—C17—H17C109.5
C3—C2—C1119.14 (18)H17A—C17—H17C109.5
C3—C2—C7119.50 (19)H17B—C17—H17C109.5
C1—C2—C7121.35 (17)C15—C18—H18A109.5
C4—C3—C2122.0 (2)C15—C18—H18B109.5
C4—C3—H3119.0H18A—C18—H18B109.5
C2—C3—H3119.0C15—C18—H18C109.5
C5—C4—C3117.77 (19)H18A—C18—H18C109.5
C5—C4—C8121.7 (2)H18B—C18—H18C109.5
C3—C4—C8120.5 (2)N1—C19—C20116.77 (18)
C4—C5—C6122.5 (2)N1—C19—H19A108.1
C4—C5—H5118.7C20—C19—H19A108.1
C6—C5—H5118.7N1—C19—H19B108.1
C5—C6—C1119.0 (2)C20—C19—H19B108.1
C5—C6—C9120.2 (2)H19A—C19—H19B107.3
C1—C6—C9120.79 (19)N2—C20—C19115.27 (18)
C2—C7—H7A109.5N2—C20—H20A108.5
C2—C7—H7B109.5C19—C20—H20A108.5
H7A—C7—H7B109.5N2—C20—H20B108.5
C2—C7—H7C109.5C19—C20—H20B108.5
H7A—C7—H7C109.5H20A—C20—H20B107.5
H7B—C7—H7C109.5N1—C21—H21A109.5
C4—C8—H8C109.5N1—C21—H21B109.5
C4—C8—H8B109.5H21A—C21—H21B109.5
H8C—C8—H8B109.5N1—C21—H21C109.5
C4—C8—H8A109.5H21A—C21—H21C109.5
H8C—C8—H8A109.5H21B—C21—H21C109.5
H8B—C8—H8A109.5N1—C22—H22A109.5
C6—C9—H9A109.5N1—C22—H22B109.5
C6—C9—H9B109.5H22A—C22—H22B109.5
H9A—C9—H9B109.5N1—C22—H22C109.5
C6—C9—H9C109.5H22A—C22—H22C109.5
H9A—C9—H9C109.5H22B—C22—H22C109.5
H9B—C9—H9C109.5N2—C23—H23C109.5
O2—C10—C15121.18 (17)N2—C23—H23B109.5
O2—C10—C11118.29 (17)H23C—C23—H23B109.5
C15—C10—C11120.52 (17)N2—C23—H23A109.5
C12—C11—C10118.91 (18)H23C—C23—H23A109.5
C12—C11—C16122.22 (18)H23B—C23—H23A109.5
C10—C11—C16118.88 (17)N2—C24—H24C109.5
C11—C12—C13121.75 (19)N2—C24—H24B109.5
C11—C12—H12119.1H24C—C24—H24B109.5
C13—C12—H12119.1N2—C24—H24A109.5
C14—C13—C12117.89 (19)H24C—C24—H24A109.5
C14—C13—C17121.0 (2)H24B—C24—H24A109.5
O2—Ge1—O1—C1137.81 (14)O1—C1—C6—C90.3 (3)
N1—Ge1—O1—C1136.83 (14)C2—C1—C6—C9175.4 (2)
O1—Ge1—O2—C1089.17 (13)Ge1—O2—C10—C1568.9 (2)
N1—Ge1—O2—C10177.69 (14)Ge1—O2—C10—C11112.58 (16)
O2—Ge1—N1—C2161.23 (13)O2—C10—C11—C12179.06 (16)
O1—Ge1—N1—C21158.00 (13)C15—C10—C11—C122.4 (3)
O2—Ge1—N1—C22176.63 (13)O2—C10—C11—C160.8 (3)
O1—Ge1—N1—C2286.60 (13)C15—C10—C11—C16177.69 (18)
O2—Ge1—N1—C1960.84 (13)C10—C11—C12—C130.7 (3)
O1—Ge1—N1—C1935.93 (13)C16—C11—C12—C13179.16 (19)
Ge1—O1—C1—C268.1 (2)C11—C12—C13—C142.3 (3)
Ge1—O1—C1—C6116.27 (17)C11—C12—C13—C17178.28 (19)
O1—C1—C2—C3177.34 (16)C12—C13—C14—C150.8 (3)
C6—C1—C2—C31.7 (3)C17—C13—C14—C15179.8 (2)
O1—C1—C2—C71.0 (3)C13—C14—C15—C102.3 (3)
C6—C1—C2—C7176.58 (19)C13—C14—C15—C18175.0 (2)
C1—C2—C3—C40.5 (3)O2—C10—C15—C14177.68 (17)
C7—C2—C3—C4178.86 (19)C11—C10—C15—C143.9 (3)
C2—C3—C4—C51.7 (3)O2—C10—C15—C185.0 (3)
C2—C3—C4—C8178.71 (19)C11—C10—C15—C18173.42 (19)
C3—C4—C5—C60.7 (3)C21—N1—C19—C2058.8 (2)
C8—C4—C5—C6179.7 (2)C22—N1—C19—C2064.5 (2)
C4—C5—C6—C11.4 (3)Ge1—N1—C19—C20177.61 (14)
C4—C5—C6—C9176.7 (2)C24—N2—C20—C1973.2 (3)
O1—C1—C6—C5178.36 (17)C23—N2—C20—C19165.8 (3)
C2—C1—C6—C52.7 (3)N1—C19—C20—N273.3 (3)

Experimental details

Crystal data
Chemical formula[Ge(C9H11O)2(C6H16N2)]
Mr459.15
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.9026 (3), 11.5495 (3), 12.4890 (3)
α, β, γ (°)92.552 (1), 113.853 (1), 117.838 (1)
V3)1217.73 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.50 × 0.35 × 0.29
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.567, 0.708
No. of measured, independent and
observed [I > 2σ(I)] reflections
18801, 5132, 4480
Rint0.032
(sin θ/λ)max1)0.635
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.02
No. of reflections5132
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Ge1—O11.8760 (13)Ge1—N12.1261 (16)
Ge1—O21.8674 (13)
 

Acknowledgements

The financial support of the Ministry of Education and Science, Youth and Sport of Ukraine, is gratefully acknowledged.

References

First citationBonnefille, E., Maziéres, S., Hawi, N. E., Gornitzka, H. & Couret, C. (2006). J. Organomet. Chem. 691, 5619–5625.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, M., Lermontova, E. Kh., Zaitsev, K. V., Churakov, A. V., Oprunenko, Y. F., Howard, J. A. K., Karlov, S. S. & Zaitseva, G. S. (2009). J. Organomet. Chem. 694, 3828–3832.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeung, W.-P., Kan, K.-W., So, C.-W. & Mak, T. C. W. (2007). Appl. Organomet. Chem. 21, 814–819.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSeigi, S. & Hoffman, D. M. (1996). Inorg. Chem. 35, 6164–6169.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeinert, C. S., Fenwick, A. E., Fenwick, P. E. & Rothwell, I. P. (2003). Dalton Trans. pp. 532–539.  Web of Science CSD CrossRef Google Scholar
First citationWetherby, A. E. Jr, Goeller, L. R., DiPasquale, A. G., Rheingold, A. L. & Weinert, C. S. (2008). Inorg. Chem. 47, 2162–2170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZemlyansky, N. N., Borisova, I. V., Khrustalev, V. N., Antipin, M. Yu., Ustynyuk, Y. A., Nechaev, M. S. & Lunin, V. V. (2003). Organometallics, 22, 5441–5446.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds