metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m283-m284

catena-Poly[[(iso­quinoline-κN)(tri­phenylphospane-κP)copper(I)]-μ-thio­cyanato-κ2N:S]

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, bResearch Center for Import-Export Chemicals Safety of the General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (AQSIQ), Beijing 100123, People's Republic of China, and cKey Laboratory of Terahertz Optoelectronics of the Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 24 January 2012; accepted 4 February 2012; online 10 February 2012)

In the title coordination compound, [Cu(NCS)(C9H7N)(C18H15P)]n, the CuI atom is tetra­hedrally coordinated by one N atom from an isoquinoline ligand, one P atom from a triphenyl­phospane ligand, and one N and one S atom from two thio­cyanate anions. The thio­cyanide anions bridge the CuI atoms into a chain along [100]. ππ inter­actions between the pyridine and benzene rings of the isoquinoline ligands connect the chains [centroid-to-centroid distance = 3.722 (3) Å].

Related literature

For background to the applications of copper(I) complexes, see: Dai et al. (2010[Dai, Y.-C., Jin, Q.-H., Cui, L.-N., Xu, L.-J. & Zhang, C.-L. (2010). Acta Cryst. E66, m1124-m1125.]); Jin et al. (2010[Jin, Q.-H., Hu, K.-Y., Song, L.-L., Wang, R., Zhang, C.-L., Zuo, X. & Lu, X.-M. (2010). Polyhedron, 29, 441-445.]); Lu et al. (1997[Lu, J., Crisci, G., Niu, T. Y. & Jacobson, A. J. (1997). Inorg. Chem. 36, 5140-5141.]); Song et al. (2010[Song, L.-L., Cui, L.-N., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m1237-m1238.]). For related structures, see: Jin et al. (1999[Jin, Q.-H., Wang, Y.-X. & Xin, X.-L. (1999). Acta Cryst. C55, 341-343.]); Li, Wu et al. (2011[Li, J.-B., Wu, M.-H., Wen, J., Jiang, Y.-H., Jin, Q.-H. & Gong, H.-L. (2011). Z. Kristallogr. New Cryst. Struct. 226, 109-111.]); Li, Xiao et al. (2011[Li, J.-B., Xiao, Y.-L., Wu, M.-H., Jiang, Y.-H., Jin, Q.-H. & Zhang, C.-L. (2011). Z. Kristallogr. New Cryst. Struct. 226, 97-98.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)(C9H7N)(C18H15P)]

  • Mr = 513.05

  • Monoclinic, P 21 /c

  • a = 12.9573 (13) Å

  • b = 10.5506 (11) Å

  • c = 18.9241 (18) Å

  • β = 108.961 (1)°

  • V = 2446.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 298 K

  • 0.32 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.727, Tmax = 0.824

  • 12067 measured reflections

  • 4313 independent reflections

  • 2656 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.05

  • 4313 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.087 (3)
Cu1—N2i 1.991 (4)
Cu1—P1 2.2282 (11)
Cu1—S1 2.3781 (12)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Many research efforts have been devoted to copper(I) complexes due to their interesting coordination chemistry and potential applications in photography, electrochemical processes, antimicrobial and antitumor activities (Dai et al., 2010; Jin et al., 2010; Lu et al., 1997; Song et al., 2010). Recently, we obtained some copper(I) complexes containing phosphine and isoquinoline (iq) ligands and coordinated anions (Li, Wu et al., 2011; Li, Xiao et al., 2011). Continuing these efforts, we report here the title compound, (I).

The compound was synthesized by the reaction of copper(I) salt with triphenylphospane (PPh3) and iq in a mixed solution of dichloromethane and methanol. The molar ratio of Cu(I):PPh3 (1:1) and the excess of iq are very important for the generation of this compound. The excess of iq facilitates its coordination to Cu(I) atom because the coordination ability of iq is weaker than that of PPh3 and SCN- anion.

The CuI atom is bonded to one N atom from an iq ligand, one P atom from a PPh3 ligand, one S and one N atom from two SCN- anions (Fig. 1). The SCN- anion behaves as a bridging ligand. The structure of the title compound is similar to that of [CuBr(PPh3)2(iq)] (II) (Li, Wu et al., 2011), [CuCl(PPh3)(iq)]2, (III) (Li, Xiao et al., 2011), and [CuI(PPh3)(quinoline)]2 (IV) (Jin et al., 1999). The bond length Cu1—P1 [2.2282 (11) Å] (Table 1) is shorter than the corresponding distances in (II) [2.2789 (14) Å] and (IV) [2.2466 (11) Å]. The Cu1—N1 bond length [2.087 (3) Å] is also shorter than the corresponding values in (II) [2.097 (3) Å] and (IV) [2.135 (4) Å]. The Cu1—P1 [2.1945 (8) Å] and Cu1—N1 [2.066 (2) Å] in (III) are shorter than the corresponding values in (I), (II) and (IV). The bond angle N1—Cu1—P1 [110.38 (9)°] in (I) is smaller than those in (III) [120.23 (7)°] and (IV) [117.20 (8)°] but larger than that in (II) [101.51 (12)°], while the bond angle P1—Cu1—S1 [113.85 (4)°] is smaller than those in (II) [115.88 (4)°], (III) [116.34 (3)°] and (IV) [114.70 (3)°]. The thiocyanide anions bridge the CuI atoms into a chain along [100] (Fig. 2). ππ interactions between the pyridine and benzene rings of the iq ligands connect the chains [centroid–centroid distance = 3.722 (3) Å].

Related literature top

For background to the applications of copper(I) complexes, see: Dai et al. (2010); Jin et al. (2010); Lu et al. (1997); Song et al. (2010). For related structures, see: Jin et al. (1999); Li, Wu et al. (2011); Li, Xiao et al. (2011).

Experimental top

The title complex was prepared by adding PPh3 (0.3 mmol, 0.079 g) into a mixture of CH2Cl2 (5 ml) and MeOH (5 ml) containing CuSCN (0.3 mmol, 0.036 g) and excess iq. The stirring continued for 3 h. After slow evaporation of the filtrate at ambient temperature for several days, yellow strip-shaped crystals were obtained. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex. Displacement ellipsoids are shown at the 30% probability level. H atoms are omitted for clarity. [Symmetry codes: (i) 1 - x, -1/2 + y, 1/2 - z; (ii) 1 - x, 1/2 + y, 1/2 - z.]
[Figure 2] Fig. 2. A view of the chain structure in the title compound.
catena-Poly[[(isoquinoline-κN)(triphenylphospane- κP)copper(I)]-µ-thiocyanato-κ2N:S] top
Crystal data top
[Cu(NCS)(C9H7N)(C18H15P)]F(000) = 1056
Mr = 513.05Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2854 reflections
a = 12.9573 (13) Åθ = 2.6–22.5°
b = 10.5506 (11) ŵ = 1.06 mm1
c = 18.9241 (18) ÅT = 298 K
β = 108.961 (1)°Prism, yellow
V = 2446.7 (4) Å30.32 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4313 independent reflections
Radiation source: fine-focus sealed tube2656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.727, Tmax = 0.824k = 1212
12067 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0387P)2 + 1.2684P]
where P = (Fo2 + 2Fc2)/3
4313 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Cu(NCS)(C9H7N)(C18H15P)]V = 2446.7 (4) Å3
Mr = 513.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9573 (13) ŵ = 1.06 mm1
b = 10.5506 (11) ÅT = 298 K
c = 18.9241 (18) Å0.32 × 0.21 × 0.19 mm
β = 108.961 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4313 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2656 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.824Rint = 0.042
12067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
4313 reflectionsΔρmin = 0.25 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.60682 (4)0.39666 (4)0.25965 (3)0.04929 (17)
P10.75772 (8)0.43807 (9)0.35473 (6)0.0449 (3)
S10.44293 (9)0.45262 (10)0.28281 (7)0.0572 (3)
N10.6132 (3)0.4852 (3)0.16249 (18)0.0523 (9)
N20.4224 (3)0.7158 (3)0.2701 (2)0.0638 (10)
C10.6628 (3)0.4305 (4)0.1208 (2)0.0575 (11)
H10.69420.35150.13570.069*
C20.5675 (3)0.6006 (4)0.1397 (2)0.0581 (11)
H20.53120.64080.16850.070*
C30.5719 (4)0.6601 (4)0.0774 (3)0.0629 (12)
H30.54060.73980.06500.076*
C40.6232 (3)0.6021 (4)0.0322 (2)0.0499 (10)
C50.6721 (3)0.4842 (4)0.0535 (2)0.0486 (10)
C60.7248 (4)0.4218 (5)0.0107 (3)0.0700 (13)
H60.75810.34400.02620.084*
C70.7275 (4)0.4745 (5)0.0540 (3)0.0770 (14)
H70.76270.43290.08300.092*
C80.6774 (4)0.5913 (5)0.0770 (3)0.0744 (14)
H80.67940.62570.12180.089*
C90.6265 (4)0.6557 (5)0.0369 (3)0.0653 (12)
H90.59390.73350.05350.078*
C100.8397 (3)0.5678 (3)0.3374 (2)0.0437 (9)
C110.7862 (3)0.6785 (4)0.3058 (2)0.0566 (11)
H110.71080.68400.29420.068*
C120.8432 (4)0.7799 (4)0.2916 (3)0.0689 (13)
H120.80660.85410.27160.083*
C130.9535 (4)0.7718 (4)0.3067 (3)0.0694 (13)
H130.99150.83980.29590.083*
C141.0081 (4)0.6638 (4)0.3376 (2)0.0641 (12)
H141.08330.65880.34860.077*
C150.9514 (3)0.5630 (4)0.3524 (2)0.0546 (11)
H150.98910.48970.37310.065*
C160.8556 (3)0.3077 (3)0.3805 (2)0.0475 (10)
C170.9200 (3)0.2820 (4)0.4534 (2)0.0564 (11)
H170.91390.33180.49240.068*
C180.9935 (4)0.1819 (4)0.4680 (3)0.0672 (13)
H181.03640.16470.51700.081*
C191.0033 (4)0.1087 (4)0.4113 (3)0.0755 (15)
H191.05340.04250.42160.091*
C200.9398 (4)0.1320 (4)0.3393 (3)0.0807 (15)
H200.94620.08140.30070.097*
C210.8663 (4)0.2305 (4)0.3241 (3)0.0645 (12)
H210.82300.24560.27500.077*
C220.7412 (3)0.4807 (4)0.4436 (2)0.0457 (10)
C230.8026 (3)0.5724 (4)0.4911 (2)0.0563 (11)
H230.85440.61790.47720.068*
C240.7881 (4)0.5973 (4)0.5587 (2)0.0674 (13)
H240.83010.65920.59000.081*
C250.7125 (4)0.5319 (5)0.5801 (3)0.0747 (14)
H250.70300.54910.62580.090*
C260.6510 (4)0.4414 (5)0.5342 (3)0.0824 (15)
H260.60010.39570.54890.099*
C270.6640 (4)0.4169 (4)0.4657 (3)0.0682 (13)
H270.62000.35650.43420.082*
C280.4320 (3)0.6079 (4)0.2756 (2)0.0466 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0578 (3)0.0447 (3)0.0480 (3)0.0041 (2)0.0207 (2)0.0004 (2)
P10.0494 (6)0.0434 (6)0.0444 (6)0.0001 (5)0.0187 (5)0.0021 (5)
S10.0612 (7)0.0445 (6)0.0755 (8)0.0004 (5)0.0353 (6)0.0060 (5)
N10.051 (2)0.061 (2)0.048 (2)0.0058 (17)0.0210 (18)0.0031 (17)
N20.076 (3)0.050 (2)0.073 (3)0.0087 (19)0.035 (2)0.0070 (19)
C10.057 (3)0.058 (3)0.057 (3)0.003 (2)0.019 (2)0.002 (2)
C20.061 (3)0.060 (3)0.062 (3)0.003 (2)0.033 (2)0.002 (2)
C30.071 (3)0.055 (3)0.072 (3)0.007 (2)0.035 (3)0.006 (2)
C40.042 (2)0.057 (3)0.050 (3)0.008 (2)0.016 (2)0.007 (2)
C50.043 (2)0.054 (3)0.051 (3)0.0049 (19)0.018 (2)0.007 (2)
C60.069 (3)0.077 (3)0.070 (3)0.009 (2)0.031 (3)0.004 (3)
C70.089 (4)0.094 (4)0.058 (3)0.005 (3)0.037 (3)0.004 (3)
C80.081 (3)0.101 (4)0.047 (3)0.014 (3)0.027 (3)0.003 (3)
C90.066 (3)0.075 (3)0.056 (3)0.009 (2)0.021 (3)0.009 (2)
C100.053 (2)0.043 (2)0.038 (2)0.0006 (18)0.020 (2)0.0005 (17)
C110.054 (3)0.053 (3)0.061 (3)0.000 (2)0.016 (2)0.003 (2)
C120.084 (4)0.047 (3)0.081 (4)0.006 (2)0.034 (3)0.014 (2)
C130.087 (4)0.053 (3)0.080 (4)0.014 (3)0.043 (3)0.005 (2)
C140.061 (3)0.066 (3)0.075 (3)0.007 (2)0.035 (3)0.005 (3)
C150.059 (3)0.053 (3)0.060 (3)0.004 (2)0.031 (2)0.010 (2)
C160.056 (3)0.041 (2)0.050 (3)0.0028 (19)0.024 (2)0.0048 (19)
C170.061 (3)0.051 (3)0.057 (3)0.003 (2)0.019 (2)0.005 (2)
C180.066 (3)0.058 (3)0.072 (3)0.004 (2)0.013 (3)0.023 (3)
C190.076 (3)0.053 (3)0.105 (5)0.019 (2)0.039 (3)0.023 (3)
C200.108 (4)0.063 (3)0.082 (4)0.027 (3)0.046 (3)0.013 (3)
C210.089 (3)0.055 (3)0.055 (3)0.017 (2)0.030 (3)0.012 (2)
C220.046 (2)0.050 (2)0.043 (2)0.0034 (19)0.017 (2)0.0042 (19)
C230.058 (3)0.061 (3)0.055 (3)0.001 (2)0.025 (2)0.002 (2)
C240.068 (3)0.081 (3)0.054 (3)0.006 (3)0.021 (3)0.014 (2)
C250.069 (3)0.111 (4)0.054 (3)0.016 (3)0.033 (3)0.000 (3)
C260.070 (3)0.127 (5)0.062 (3)0.021 (3)0.037 (3)0.002 (3)
C270.064 (3)0.091 (4)0.054 (3)0.020 (3)0.025 (2)0.005 (2)
C280.049 (2)0.052 (3)0.042 (2)0.002 (2)0.0204 (19)0.002 (2)
Geometric parameters (Å, º) top
Cu1—N12.087 (3)C11—H110.9300
Cu1—N2i1.991 (4)C12—C131.366 (6)
Cu1—P12.2282 (11)C12—H120.9300
Cu1—S12.3781 (12)C13—C141.369 (6)
P1—C221.820 (4)C13—H130.9300
P1—C161.826 (4)C14—C151.372 (5)
P1—C101.826 (4)C14—H140.9300
S1—C281.647 (4)C15—H150.9300
N1—C11.303 (5)C16—C211.385 (5)
N1—C21.362 (5)C16—C171.387 (5)
N2—C281.146 (4)C17—C181.389 (6)
C1—C51.435 (6)C17—H170.9300
C1—H10.9300C18—C191.361 (6)
C2—C31.352 (6)C18—H180.9300
C2—H20.9300C19—C201.366 (6)
C3—C41.385 (5)C19—H190.9300
C3—H30.9300C20—C211.376 (6)
C4—C51.395 (5)C20—H200.9300
C4—C91.438 (6)C21—H210.9300
C5—C61.384 (6)C22—C271.378 (5)
C6—C71.355 (6)C22—C231.383 (5)
C6—H60.9300C23—C241.378 (6)
C7—C81.394 (6)C23—H230.9300
C7—H70.9300C24—C251.361 (6)
C8—C91.340 (6)C24—H240.9300
C8—H80.9300C25—C261.361 (6)
C9—H90.9300C25—H250.9300
C10—C151.382 (5)C26—C271.385 (6)
C10—C111.390 (5)C26—H260.9300
C11—C121.376 (6)C27—H270.9300
N2i—Cu1—N1103.75 (14)C13—C12—C11120.2 (4)
N2i—Cu1—P1116.93 (11)C13—C12—H12119.9
N1—Cu1—P1110.38 (9)C11—C12—H12119.9
N2i—Cu1—S1101.00 (11)C12—C13—C14120.1 (4)
N1—Cu1—S1110.14 (10)C12—C13—H13120.0
P1—Cu1—S1113.85 (4)C14—C13—H13120.0
C22—P1—C16102.65 (18)C13—C14—C15119.8 (4)
C22—P1—C10103.35 (17)C13—C14—H14120.1
C16—P1—C10102.60 (17)C15—C14—H14120.1
C22—P1—Cu1117.32 (13)C14—C15—C10121.6 (4)
C16—P1—Cu1114.77 (13)C14—C15—H15119.2
C10—P1—Cu1114.27 (13)C10—C15—H15119.2
C28—S1—Cu1106.87 (14)C21—C16—C17118.2 (4)
C1—N1—C2116.9 (4)C21—C16—P1118.2 (3)
C1—N1—Cu1120.3 (3)C17—C16—P1123.7 (3)
C2—N1—Cu1122.8 (3)C16—C17—C18120.0 (4)
N1—C1—C5124.3 (4)C16—C17—H17120.0
N1—C1—H1117.8C18—C17—H17120.0
C5—C1—H1117.8C19—C18—C17120.5 (4)
C3—C2—N1123.6 (4)C19—C18—H18119.7
C3—C2—H2118.2C17—C18—H18119.7
N1—C2—H2118.2C18—C19—C20120.3 (4)
C2—C3—C4119.9 (4)C18—C19—H19119.8
C2—C3—H3120.0C20—C19—H19119.8
C4—C3—H3120.0C19—C20—C21119.7 (5)
C3—C4—C5118.6 (4)C19—C20—H20120.1
C3—C4—C9123.4 (4)C21—C20—H20120.1
C5—C4—C9117.9 (4)C20—C21—C16121.3 (4)
C6—C5—C4121.3 (4)C20—C21—H21119.3
C6—C5—C1122.2 (4)C16—C21—H21119.3
C4—C5—C1116.5 (4)C27—C22—C23117.8 (4)
C7—C6—C5119.7 (5)C27—C22—P1118.3 (3)
C7—C6—H6120.1C23—C22—P1123.9 (3)
C5—C6—H6120.1C24—C23—C22120.9 (4)
C6—C7—C8119.9 (5)C24—C23—H23119.6
C6—C7—H7120.1C22—C23—H23119.6
C8—C7—H7120.1C25—C24—C23120.5 (5)
C9—C8—C7122.4 (5)C25—C24—H24119.8
C9—C8—H8118.8C23—C24—H24119.8
C7—C8—H8118.8C26—C25—C24119.7 (5)
C8—C9—C4118.7 (4)C26—C25—H25120.2
C8—C9—H9120.6C24—C25—H25120.2
C4—C9—H9120.6C25—C26—C27120.3 (5)
C15—C10—C11117.5 (4)C25—C26—H26119.9
C15—C10—P1124.6 (3)C27—C26—H26119.9
C11—C10—P1117.9 (3)C22—C27—C26120.9 (4)
C12—C11—C10120.8 (4)C22—C27—H27119.6
C12—C11—H11119.6C26—C27—H27119.6
C10—C11—H11119.6N2—C28—S1178.8 (4)
N2i—Cu1—P1—C22106.25 (18)Cu1—P1—C10—C15132.9 (3)
N1—Cu1—P1—C22135.50 (18)C22—P1—C10—C1182.6 (3)
S1—Cu1—P1—C2211.04 (15)C16—P1—C10—C11170.9 (3)
N2i—Cu1—P1—C1614.40 (19)Cu1—P1—C10—C1146.0 (3)
N1—Cu1—P1—C16103.84 (18)C15—C10—C11—C121.2 (6)
S1—Cu1—P1—C16131.69 (14)P1—C10—C11—C12179.8 (3)
N2i—Cu1—P1—C10132.54 (18)C10—C11—C12—C131.7 (7)
N1—Cu1—P1—C1014.30 (17)C11—C12—C13—C141.5 (7)
S1—Cu1—P1—C10110.16 (14)C12—C13—C14—C151.0 (7)
N2i—Cu1—S1—C28158.11 (19)C13—C14—C15—C100.6 (7)
N1—Cu1—S1—C2848.89 (18)C11—C10—C15—C140.7 (6)
P1—Cu1—S1—C2875.70 (15)P1—C10—C15—C14179.6 (3)
N2i—Cu1—N1—C141.4 (3)C22—P1—C16—C21163.7 (3)
P1—Cu1—N1—C184.6 (3)C10—P1—C16—C2189.3 (3)
S1—Cu1—N1—C1148.8 (3)Cu1—P1—C16—C2135.3 (4)
N2i—Cu1—N1—C2138.9 (3)C22—P1—C16—C1716.5 (4)
P1—Cu1—N1—C295.0 (3)C10—P1—C16—C1790.5 (4)
S1—Cu1—N1—C231.5 (3)Cu1—P1—C16—C17145.0 (3)
C2—N1—C1—C50.2 (6)C21—C16—C17—C180.7 (6)
Cu1—N1—C1—C5179.5 (3)P1—C16—C17—C18179.1 (3)
C1—N1—C2—C30.5 (6)C16—C17—C18—C190.2 (6)
Cu1—N1—C2—C3179.1 (3)C17—C18—C19—C200.8 (7)
N1—C2—C3—C41.4 (7)C18—C19—C20—C210.5 (8)
C2—C3—C4—C51.9 (6)C19—C20—C21—C160.4 (7)
C2—C3—C4—C9176.6 (4)C17—C16—C21—C200.9 (6)
C3—C4—C5—C6179.9 (4)P1—C16—C21—C20178.8 (4)
C9—C4—C5—C61.6 (6)C16—P1—C22—C2787.1 (3)
C3—C4—C5—C11.5 (5)C10—P1—C22—C27166.4 (3)
C9—C4—C5—C1177.0 (3)Cu1—P1—C22—C2739.7 (4)
N1—C1—C5—C6179.3 (4)C16—P1—C22—C2392.0 (3)
N1—C1—C5—C40.7 (6)C10—P1—C22—C2314.5 (4)
C4—C5—C6—C71.2 (7)Cu1—P1—C22—C23141.2 (3)
C1—C5—C6—C7177.4 (4)C27—C22—C23—C241.1 (6)
C5—C6—C7—C80.0 (7)P1—C22—C23—C24178.0 (3)
C6—C7—C8—C90.6 (8)C22—C23—C24—C250.1 (7)
C7—C8—C9—C40.2 (7)C23—C24—C25—C260.0 (7)
C3—C4—C9—C8179.4 (4)C24—C25—C26—C270.9 (8)
C5—C4—C9—C81.0 (6)C23—C22—C27—C262.0 (6)
C22—P1—C10—C1598.4 (4)P1—C22—C27—C26177.2 (4)
C16—P1—C10—C158.1 (4)C25—C26—C27—C221.9 (8)
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(NCS)(C9H7N)(C18H15P)]
Mr513.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.9573 (13), 10.5506 (11), 18.9241 (18)
β (°) 108.961 (1)
V3)2446.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.32 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.727, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
12067, 4313, 2656
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.05
No. of reflections4313
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.25

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N12.087 (3)Cu1—P12.2282 (11)
Cu1—N2i1.991 (4)Cu1—S12.3781 (12)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21171119), the CAIQ Basic Research Program (No. 2010JK022), the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901, and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality. It was also supported by the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, Y.-C., Jin, Q.-H., Cui, L.-N., Xu, L.-J. & Zhang, C.-L. (2010). Acta Cryst. E66, m1124–m1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Q.-H., Hu, K.-Y., Song, L.-L., Wang, R., Zhang, C.-L., Zuo, X. & Lu, X.-M. (2010). Polyhedron, 29, 441–445.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q.-H., Wang, Y.-X. & Xin, X.-L. (1999). Acta Cryst. C55, 341–343.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, J.-B., Wu, M.-H., Wen, J., Jiang, Y.-H., Jin, Q.-H. & Gong, H.-L. (2011). Z. Kristallogr. New Cryst. Struct. 226, 109–111.  CAS Google Scholar
First citationLi, J.-B., Xiao, Y.-L., Wu, M.-H., Jiang, Y.-H., Jin, Q.-H. & Zhang, C.-L. (2011). Z. Kristallogr. New Cryst. Struct. 226, 97–98.  CAS Google Scholar
First citationLu, J., Crisci, G., Niu, T. Y. & Jacobson, A. J. (1997). Inorg. Chem. 36, 5140–5141.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L.-L., Cui, L.-N., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m1237–m1238.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m283-m284
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds