metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1H-benzimidazole-κN3)bis­­[2-(naphthalen-1-yl)acetato-κ2O,O′]manganese(II) monohydrate

aCollege of Environment Science and Spatial Infomatics, China University of Mining & Technology, Xuzhou, Jiangsu 221008, People's Republic of China, bDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and cJiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China
*Correspondence e-mail: zhangzmlyg@126.com

(Received 10 February 2012; accepted 19 February 2012; online 24 February 2012)

In the title compound, [Mn(C12H9O2)2(C7H6N2)2]·H2O, the MnII ion is located on a twofold rotation axis and six-coordinated, displaying a distorted MnN2O4 octa­hedral geometry. The crystal packing is stabilized by N—H⋯O hydrogen bonds, which give rise to a one-dimensional structure along [001], and ππ inter­actions between the imidazole rings and between the benzene rings of the 2-(naphthalen-1-yl)acetate ligands [centroid–centroid distances = 3.761 (3) and 3.728 (4) Å]. The contribution of the electron density associated with the disordered water molecules was not considerd in the final structure model.

Related literature

For related structures with 2-(naphthalen-1-yl)acetate ligands, see: Duan et al. (2007[Duan, J.-G., Liu, J.-W. & Wu, S. (2007). Acta Cryst. E63, m692-m694.]); Ji et al. (2011[Ji, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.]); Tang et al. (2006[Tang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891-1894.]); Yang et al. (2008[Yang, Y.-Q., Li, C.-H., Li, W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 27, 404-408.]); Yin et al. (2011[Yin, F.-J., Han, L.-J., Yang, S.-P. & Xu, X. Y. (2011). Acta Cryst. E67, m1772.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C12H9O2)2(C7H6N2)2]·H2O

  • Mr = 679.62

  • Monoclinic, C 2/c

  • a = 11.654 (7) Å

  • b = 20.013 (12) Å

  • c = 14.329 (12) Å

  • β = 106.148 (7)°

  • V = 3210 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.955

  • 12089 measured reflections

  • 2830 independent reflections

  • 1819 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.090

  • S = 1.00

  • 2830 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 1.99 2.791 (4) 154
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years many interests have been focused on 2-(naphthalen-1-yl)acetate ligand in coordination chemistry due to its ability to form metal complexes (Duan et al., 2007; Ji et al., 2011; Tang et al., 2006; Yang et al., 2008; Yin et al., 2011). The crystal structure of the title compound was determined as part of an ongoing study of the properties of manganese complexes containing benzimidazole ligands.

In the title mononuclear complex (Fig. 1), the MnII ion is located on a twofold rotation axis and six-coordinated by two N-donor atoms from two benzimidazoles and four O-donor atoms from two 2-(naphthalen-1-yl)acetate anions, displaying a distorted MnN2O4 octahedral geometry, with Mn—O bond lengths of 2.181 (2) and 2.339 (2) Å and a Mn—N bond length of 2.153 (2) Å. The solvent water molecules could not be modeled as discrete atomic sites. The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds (Table 1), which give rise to a one-dimensional structure (Fig. 2). ππ ineractions between the imidazole rings and between the benzene rings of the 2-(naphthalen-1-yl)acetate ligands [centroid–centroid distances = 3.761 (3) and 3.728 (4) Å] are observed. An analogue cadmium(II) complex has been reported previously (Duan et al., 2007).

Related literature top

For related structures with 2-(naphthalen-1-yl)acetate ligands, see: Duan et al. (2007); Ji et al. (2011); Tang et al. (2006); Yang et al. (2008); Yin et al. (2011).

Experimental top

The title compound was synthesized by the reaction of Mn(NO3)2.4H2O (75 mg, 0.3 mmol), 1-naphthylacetic acid (93 mg, 0.5 mmol), benzimidazole (35.4 mg, 0.3 mmol) and NaOH (20 mg, 0.5 mmol) in 16 ml of water/ethanol (v/v 2:1) under solvothermal conditions. The mixture was homogenized and transferred into a sealed Teflon-lined solvothermal bomb (volume: 25 ml) and heated to 160°C for three days. After cooling, colorless crystals of the title compound were obtained, which were washed with distilled water and absolute ethanol (yield: 46.3% based on Mn).

Refinement top

H atoms were placed in calculated positions and refined as riding atoms, with N—H = 0.86, C—H = 0.93 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C, N). The structure contains one disordered solvent water molecules, which could not be modeled as discrete atomic sites. We employed the SQUEEZE subroutine in PLATON (Spek, 2009) to remove the water molecules.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) -x, y, 3/2-z.]
[Figure 2] Fig. 2. Part of the one-dimensional structure of the title compound, formed by N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding are omitted for clarity.
Bis(1H-benzimidazole-κN3)bis[2-(naphthalen-1-yl)acetato- κ2O,O']manganese(II) monohydrate top
Crystal data top
[Mn(C12H9O2)2(C7H6N2)2]·H2OF(000) = 1372
Mr = 679.62Dx = 1.369 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1147 reflections
a = 11.654 (7) Åθ = 2.3–18.0°
b = 20.013 (12) ŵ = 0.46 mm1
c = 14.329 (12) ÅT = 298 K
β = 106.148 (7)°Block, colorless
V = 3210 (4) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2830 independent reflections
Radiation source: fine-focus sealed tube1819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.955, Tmax = 0.955k = 2323
12089 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
2830 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Mn(C12H9O2)2(C7H6N2)2]·H2OV = 3210 (4) Å3
Mr = 679.62Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.654 (7) ŵ = 0.46 mm1
b = 20.013 (12) ÅT = 298 K
c = 14.329 (12) Å0.10 × 0.10 × 0.10 mm
β = 106.148 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2830 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1819 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.955Rint = 0.068
12089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
2830 reflectionsΔρmin = 0.19 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.02104 (3)0.75000.0408 (2)
O10.18427 (16)0.04197 (10)0.83166 (13)0.0572 (5)
O20.11161 (15)0.10711 (9)0.70743 (12)0.0494 (5)
N10.01727 (19)0.04724 (10)0.63856 (15)0.0417 (6)
N20.0295 (2)0.09629 (11)0.49442 (15)0.0504 (6)
H20.07110.10800.43730.060*
C10.1968 (2)0.08917 (15)0.7784 (2)0.0432 (7)
C20.3144 (2)0.12562 (14)0.80207 (19)0.0523 (8)
H2A0.31780.15570.85590.063*
H2B0.37800.09310.82400.063*
C30.3389 (2)0.16536 (14)0.72073 (19)0.0436 (7)
C40.3436 (2)0.23303 (15)0.7247 (2)0.0584 (8)
H40.33030.25490.77800.070*
C50.3681 (3)0.27052 (16)0.6501 (3)0.0698 (10)
H50.37160.31690.65490.084*
C60.3868 (3)0.24044 (18)0.5716 (3)0.0679 (9)
H60.40230.26610.52240.082*
C70.3829 (2)0.17035 (16)0.5635 (2)0.0511 (7)
C80.3589 (2)0.13228 (14)0.63879 (19)0.0412 (7)
C90.3563 (2)0.06224 (15)0.6286 (2)0.0532 (8)
H90.34270.03590.67790.064*
C100.3731 (2)0.03232 (17)0.5483 (3)0.0661 (9)
H100.37010.01400.54310.079*
C110.3948 (3)0.0703 (2)0.4742 (3)0.0746 (11)
H110.40610.04940.41950.090*
C120.3995 (3)0.1376 (2)0.4811 (2)0.0671 (9)
H120.41390.16260.43080.081*
C130.0650 (2)0.05600 (13)0.5549 (2)0.0460 (7)
H130.14000.03610.53990.055*
C140.0854 (3)0.11580 (13)0.5397 (2)0.0449 (7)
C150.1141 (2)0.08492 (12)0.63008 (19)0.0409 (7)
C160.2253 (3)0.09474 (14)0.6959 (2)0.0536 (8)
H160.24540.07490.75700.064*
C170.3040 (3)0.13490 (16)0.6668 (3)0.0680 (9)
H170.37950.14210.70900.082*
C180.2742 (3)0.16529 (16)0.5757 (3)0.0733 (10)
H180.33020.19220.55860.088*
C190.1649 (3)0.15643 (14)0.5110 (2)0.0618 (9)
H190.14480.17690.45040.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0346 (3)0.0473 (4)0.0410 (4)0.0000.0109 (3)0.000
O10.0497 (13)0.0629 (14)0.0558 (13)0.0104 (10)0.0093 (10)0.0105 (11)
O20.0330 (11)0.0661 (14)0.0464 (11)0.0017 (9)0.0065 (9)0.0026 (10)
N10.0402 (14)0.0450 (14)0.0393 (13)0.0013 (11)0.0101 (11)0.0001 (11)
N20.0587 (17)0.0528 (16)0.0371 (13)0.0058 (13)0.0092 (12)0.0024 (12)
C10.0345 (17)0.056 (2)0.0409 (17)0.0010 (14)0.0136 (14)0.0100 (15)
C20.0361 (16)0.074 (2)0.0443 (17)0.0125 (15)0.0076 (13)0.0035 (15)
C30.0327 (16)0.0474 (19)0.0503 (17)0.0071 (13)0.0106 (13)0.0003 (15)
C40.0475 (19)0.055 (2)0.069 (2)0.0020 (16)0.0099 (16)0.0101 (18)
C50.063 (2)0.043 (2)0.094 (3)0.0040 (17)0.007 (2)0.007 (2)
C60.055 (2)0.072 (3)0.073 (2)0.0055 (18)0.0113 (18)0.021 (2)
C70.0359 (17)0.059 (2)0.0562 (19)0.0024 (15)0.0081 (14)0.0076 (17)
C80.0298 (15)0.0433 (18)0.0484 (17)0.0018 (13)0.0075 (13)0.0033 (14)
C90.0405 (18)0.052 (2)0.066 (2)0.0010 (15)0.0128 (15)0.0006 (16)
C100.0413 (19)0.065 (2)0.085 (3)0.0085 (17)0.0065 (18)0.022 (2)
C110.045 (2)0.111 (3)0.066 (2)0.017 (2)0.0111 (18)0.018 (2)
C120.044 (2)0.104 (3)0.052 (2)0.0104 (19)0.0117 (16)0.009 (2)
C130.0428 (18)0.0490 (18)0.0462 (18)0.0002 (14)0.0124 (15)0.0027 (14)
C140.0521 (19)0.0386 (17)0.0484 (18)0.0001 (14)0.0216 (15)0.0021 (14)
C150.0464 (18)0.0352 (16)0.0436 (16)0.0002 (13)0.0166 (14)0.0024 (13)
C160.050 (2)0.0483 (19)0.0581 (19)0.0027 (15)0.0084 (16)0.0032 (15)
C170.049 (2)0.059 (2)0.094 (3)0.0127 (17)0.0150 (19)0.006 (2)
C180.071 (3)0.054 (2)0.107 (3)0.0116 (19)0.047 (2)0.003 (2)
C190.081 (3)0.049 (2)0.066 (2)0.0016 (18)0.038 (2)0.0037 (16)
Geometric parameters (Å, º) top
Mn1—N12.153 (2)C7—C121.411 (4)
Mn1—O12.181 (2)C7—C81.411 (4)
Mn1—O22.339 (2)C8—C91.409 (4)
O1—C11.248 (3)C9—C101.359 (4)
O2—C11.260 (3)C9—H90.9300
N1—C131.322 (3)C10—C111.385 (4)
N1—C151.391 (3)C10—H100.9300
N2—C131.331 (3)C11—C121.350 (4)
N2—C141.372 (3)C11—H110.9300
N2—H20.8600C12—H120.9300
C1—C21.505 (4)C13—H130.9300
C2—C31.503 (4)C14—C191.378 (4)
C2—H2A0.9700C14—C151.390 (3)
C2—H2B0.9700C15—C161.389 (4)
C3—C41.356 (4)C16—C171.369 (4)
C3—C81.423 (4)C16—H160.9300
C4—C51.398 (4)C17—C181.394 (4)
C4—H40.9300C17—H170.9300
C5—C61.346 (4)C18—C191.362 (4)
C5—H50.9300C18—H180.9300
C6—C71.407 (4)C19—H190.9300
C6—H60.9300
N1i—Mn1—N1101.22 (12)C8—C3—C2120.3 (2)
N1i—Mn1—O190.30 (8)C3—C4—C5121.2 (3)
N1—Mn1—O1103.80 (8)C3—C4—H4119.4
N1i—Mn1—O1i103.80 (8)C5—C4—H4119.4
N1—Mn1—O1i90.30 (8)C6—C5—C4120.9 (3)
O1—Mn1—O1i157.86 (11)C6—C5—H5119.6
N1i—Mn1—O2146.52 (7)C4—C5—H5119.6
N1—Mn1—O295.77 (8)C5—C6—C7120.4 (3)
O1—Mn1—O257.50 (7)C5—C6—H6119.8
O1i—Mn1—O2104.75 (8)C7—C6—H6119.8
N1i—Mn1—O2i95.77 (8)C6—C7—C12121.6 (3)
N1—Mn1—O2i146.52 (7)C6—C7—C8118.9 (3)
O1—Mn1—O2i104.75 (8)C12—C7—C8119.4 (3)
O1i—Mn1—O2i57.50 (7)C9—C8—C7117.5 (3)
O2—Mn1—O2i85.16 (10)C9—C8—C3123.0 (3)
N1i—Mn1—C1i100.87 (8)C7—C8—C3119.5 (3)
N1—Mn1—C1i118.47 (9)C10—C9—C8121.5 (3)
O1—Mn1—C1i132.61 (10)C10—C9—H9119.3
O1i—Mn1—C1i28.56 (7)C8—C9—H9119.3
O2—Mn1—C1i95.93 (9)C9—C10—C11120.5 (3)
O2i—Mn1—C1i28.94 (7)C9—C10—H10119.7
N1i—Mn1—C1118.47 (9)C11—C10—H10119.7
N1—Mn1—C1100.86 (8)C12—C11—C10120.2 (3)
O1—Mn1—C128.56 (7)C12—C11—H11119.9
O1i—Mn1—C1132.61 (10)C10—C11—H11119.9
O2—Mn1—C128.94 (7)C11—C12—C7120.8 (3)
O2i—Mn1—C195.93 (9)C11—C12—H12119.6
C1i—Mn1—C1116.79 (13)C7—C12—H12119.6
C1—O1—Mn194.76 (16)N1—C13—N2113.1 (3)
C1—O2—Mn187.15 (17)N1—C13—H13123.4
C13—N1—C15104.5 (2)N2—C13—H13123.4
C13—N1—Mn1124.24 (19)N2—C14—C19132.5 (3)
C15—N1—Mn1130.88 (17)N2—C14—C15105.3 (2)
C13—N2—C14107.7 (2)C19—C14—C15122.1 (3)
C13—N2—H2126.2C16—C15—C14120.5 (3)
C14—N2—H2126.2C16—C15—N1130.1 (3)
O1—C1—O2120.6 (2)C14—C15—N1109.4 (2)
O1—C1—C2118.9 (2)C17—C16—C15117.0 (3)
O2—C1—C2120.5 (3)C17—C16—H16121.5
O1—C1—Mn156.68 (13)C15—C16—H16121.5
O2—C1—Mn163.91 (14)C16—C17—C18121.9 (3)
C2—C1—Mn1175.6 (2)C16—C17—H17119.0
C3—C2—C1116.1 (2)C18—C17—H17119.0
C3—C2—H2A108.3C19—C18—C17121.5 (3)
C1—C2—H2A108.3C19—C18—H18119.3
C3—C2—H2B108.3C17—C18—H18119.3
C1—C2—H2B108.3C18—C19—C14117.0 (3)
H2A—C2—H2B107.4C18—C19—H19121.5
C4—C3—C8119.0 (3)C14—C19—H19121.5
C4—C3—C2120.7 (3)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2ii0.861.992.791 (4)154
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C12H9O2)2(C7H6N2)2]·H2O
Mr679.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)11.654 (7), 20.013 (12), 14.329 (12)
β (°) 106.148 (7)
V3)3210 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
12089, 2830, 1819
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.090, 1.00
No. of reflections2830
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.861.992.791 (4)154
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank China University of Mining & Technology, Xuzhou, and Huaihai Institute of Technology for support of this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, J.-G., Liu, J.-W. & Wu, S. (2007). Acta Cryst. E63, m692–m694.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJi, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891–1894.  CAS Google Scholar
First citationYang, Y.-Q., Li, C.-H., Li, W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 27, 404–408.  CAS Google Scholar
First citationYin, F.-J., Han, L.-J., Yang, S.-P. & Xu, X. Y. (2011). Acta Cryst. E67, m1772.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds