metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m321-m322

(2,2′-Bi­pyridine-κ2N,N′)bis­­(4-chloro­benzoato-κO)zinc

aCollege of Materials Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China, and bState Key Laboratory Base of Novel Functional Materials and Preparation, Science Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zbs_jy@163.com

(Received 10 February 2012; accepted 16 February 2012; online 24 February 2012)

In the title compound, [Zn(C7H4ClO2)2(C10H8N2)], the ZnII atom is coordinated by two O atoms from two 4-chloro­benzoate ligands and two N atoms from a chelating 2,2′-bipyridine (bpy) mol­ecule in a distorted N2O2 tetra­hedral geometry. The ZnII atom is located on a twofold rotation axis, which also passes through the mid-point of the central C—C bond of the bpy ligand. In the crystal, weak C—H⋯O hydrogen bonds and ππ stacking inter­actions between the pyridine rings of the bpy ligands [centroid–centroid distance = 3.642 (3) Å] link the complex mol­ecules into a two-dimensional supra­molecular structure parallel to (100). An intra­molecular C—H⋯O hydrogen bond is also observed.

Related literature

For zinc(II) complexes with substituted benzoate ligands, see: Aghabozorg et al. (2005[Aghabozorg, H., Nakhjavan, B., Zabihi, F., Ramezanipour, F. & Aghabozorg, H. R. (2005). Acta Cryst. E61, m2664-m2666.]); Chen et al. (2006[Chen, H., Xu, X.-Y., Gao, J., Yang, X.-J., Lu, L.-D. & Wang, X. (2006). Huaxue Shiji (Chem. React.), 28, 478-480.]); Hökelek et al. (2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m458-m459.]); Lemoine et al. (2004[Lemoine, P., Bendada, K. & Viossat, B. (2004). Acta Cryst. C60, m489-m491.]); Liu et al. (1998[Liu, C.-M., You, X.-Z. & Chen, W. (1998). J. Coord. Chem. 46, 233-243.]); Wei et al. (2002[Wei, D.-Y., Zheng, Y.-Q. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 2005-2012.], 2004[Wei, Y., Yuan, C. & Yang, P. (2004). Acta Cryst. E60, m1686-m1688.]); Xu et al. (2004[Xu, H., Liang, Y., Su, Z., Zhao, Y., Shao, K., Zhang, H. & Yue, S. (2004). Acta Cryst. E60, m142-m144.]); Ye & Zhang (2010[Ye, S.-F. & Zhang, B.-S. (2010). Acta Cryst. E66, m474.]); Zhang et al. (2009[Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m880.], 2010[Zhang, B.-S., Ye, S.-F., Li, Y.-X. & Xu, W. (2010). Acta Cryst. E66, m1357-m1358.]); Zhou et al. (2005[Zhou, Y.-F., Lin, W.-J., Huang, Y.-G. & Hong, M.-C. (2005). Acta Cryst. E61, m177-m179.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4ClO2)2(C10H8N2)]

  • Mr = 532.68

  • Monoclinic, P 2/c

  • a = 11.453 (2) Å

  • b = 8.4896 (17) Å

  • c = 12.337 (3) Å

  • β = 107.12 (3)°

  • V = 1146.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 290 K

  • 0.32 × 0.25 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.675, Tmax = 0.787

  • 8641 measured reflections

  • 2012 independent reflections

  • 1560 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.17

  • 2012 reflections

  • 150 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.55 3.172 (6) 125
C3—H3⋯O2ii 0.93 2.52 3.278 (5) 139
C11—H11⋯O1iii 0.93 2.57 3.330 (5) 139
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, which may find applications in biological systems. The structure–function–coordination relationships of arylcarboxylates in ZnII complexes of benzoic acid derivatives may alos be changed depending on the nature and positions of the substituted groups on the benzene ring. Zinc(II) complexes with substituted benzoic acid ligands have been reported (Aghabozorg et al., 2005; Chen et al., 2006; Hökelek et al., 2008; Lemoine et al., 2004; Liu et al., 1998; Wei et al., 2002, 2004; Xu et al., 2004; Ye & Zhang, 2010; Zhang et al., 2009, 2010). In this paper, we report the synthesis and structure of the title complex.

In the title compound, the ZnII atom is coordinated by two O atoms and two N atoms from two 4-chlorobenzoate ligands and one 2,2'-bipyridine (bpy) molecule in a distorted ZnN2O2 tetrahedral geometry. The O1 atom of the 4-chlorobenzoate ligand has a weak interaction with the ZnII atom [Zn1···O1 = 2.602 (3) Å]. A similar distance has been observed [Zn1···O2 = 2.653 (7)Å] (Zhou et al., 2005). The ZnII atom is located on a twofold rotation axis, which also passes through the mid-point of the C5—C5i bond [symmetry code: (i) -x, y, -z+1/2] of the bpy ligand. The bpy ligand exhibits nearly perfect coplanarity (r.m.s. deviation = 0.049 Å). In the crystal, weak C—H···O hydrogen bonds (Table 1) and ππ stacking interactions [centroid–centroid distance = 3.642 (3) Å] between adjacent bpy ligands link the complex molecules into a two-dimensional supramolecular structure parallel to (100).

Related literature top

For zinc(II) complexes with substituted benzoic acid ligands, see: Aghabozorg et al. (2005); Chen et al. (2006); Hökelek et al. (2008); Lemoine et al. (2004); Liu et al. (1998); Wei et al. (2002, 2004); Xu et al. (2004); Ye & Zhang (2010); Zhang et al. (2009, 2010); Zhou et al. (2005).

Experimental top

ZnCl2 (0.0687 g, 0.504 mmol) was dissolved in appropriate amount of water and then 1M Na2CO3 solution was added. ZnCO3 was obtained by filtration, which was then washed with distilled water for 5 times. The freshly prepared ZnCO3, 2,2'-bipyridine (0.0388 g, 0.273 mmol) and 4-chlorobenzoic acid (0.0396 g, 0.255 mmol), CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 2 h. The resulting cream suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 433 K for 97 h. After the autoclave was cooled to room temperature within 43 h, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature and slow evaporation for 6 weeks afforded colorless block single crystals.

Refinement top

H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, y, -z+1/2.]
[Figure 2] Fig. 2. A view of the crystal packing, showing ππ interactions (dashed double arrows), with a centroid–centroid distance of 3.642 (3) Å, and C—H···O hydrogen bonds (dashed lines).
(2,2'-Bipyridine-κ2N,N')bis(4-chlorobenzoato- κO)zinc(II) top
Crystal data top
[Zn(C7H4ClO2)2(C10H8N2)]F(000) = 540
Mr = 532.68Dx = 1.543 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 6683 reflections
a = 11.453 (2) Åθ = 3.0–25.0°
b = 8.4896 (17) ŵ = 1.34 mm1
c = 12.337 (3) ÅT = 290 K
β = 107.12 (3)°Block, colorless
V = 1146.4 (5) Å30.32 × 0.25 × 0.18 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2012 independent reflections
Radiation source: rotation anode1560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.675, Tmax = 0.787k = 910
8641 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.051P)2 + 0.432P]
where P = (Fo2 + 2Fc2)/3
2012 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.53 e Å3
48 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Zn(C7H4ClO2)2(C10H8N2)]V = 1146.4 (5) Å3
Mr = 532.68Z = 2
Monoclinic, P2/cMo Kα radiation
a = 11.453 (2) ŵ = 1.34 mm1
b = 8.4896 (17) ÅT = 290 K
c = 12.337 (3) Å0.32 × 0.25 × 0.18 mm
β = 107.12 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2012 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1560 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.787Rint = 0.058
8641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04148 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.17Δρmax = 0.53 e Å3
2012 reflectionsΔρmin = 0.36 e Å3
150 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.78102 (6)0.25000.0564 (2)
Cl20.59680 (10)1.35611 (14)0.61254 (11)0.0912 (4)
O10.1788 (3)0.9459 (3)0.2186 (2)0.0738 (7)
O20.1206 (2)0.8948 (3)0.3696 (2)0.0650 (7)
C10.1402 (4)0.6021 (6)0.3867 (4)0.0889 (13)
H10.16360.70130.40480.107*
C20.1780 (5)0.4710 (8)0.4330 (5)0.122 (2)
H20.22690.48140.48080.146*
C30.1427 (7)0.3267 (9)0.4076 (6)0.144 (3)
H30.16570.23690.43940.172*
C40.0731 (6)0.3138 (6)0.3351 (5)0.121 (2)
H40.04930.21500.31680.145*
C50.0377 (4)0.4489 (4)0.2888 (3)0.0827 (13)
N10.0713 (3)0.5916 (3)0.3171 (3)0.0686 (8)
C60.2915 (3)1.0622 (4)0.3941 (3)0.0512 (8)
C70.3756 (4)1.1328 (5)0.3489 (3)0.0679 (10)
H70.36911.11840.27260.082*
C80.4688 (4)1.2242 (5)0.4152 (4)0.0741 (11)
H80.52461.27200.38420.089*
C90.4779 (3)1.2436 (4)0.5275 (4)0.0629 (10)
C100.3952 (4)1.1763 (5)0.5739 (3)0.0690 (10)
H100.40171.19150.65010.083*
C110.3019 (3)1.0853 (4)0.5063 (3)0.0614 (9)
H110.24551.03910.53750.074*
C120.1909 (3)0.9613 (4)0.3207 (3)0.0553 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0659 (4)0.0427 (3)0.0618 (4)0.0000.0206 (3)0.000
Cl20.0755 (7)0.0805 (7)0.1037 (9)0.0151 (6)0.0048 (6)0.0030 (6)
O10.097 (2)0.0728 (16)0.0544 (16)0.0092 (15)0.0258 (14)0.0083 (13)
O20.0722 (16)0.0637 (15)0.0639 (16)0.0123 (13)0.0275 (13)0.0042 (12)
C10.080 (3)0.105 (3)0.081 (3)0.019 (2)0.021 (2)0.025 (2)
C20.104 (4)0.151 (4)0.097 (4)0.054 (4)0.009 (3)0.050 (4)
C30.165 (6)0.116 (4)0.110 (5)0.073 (4)0.021 (4)0.058 (4)
C40.161 (5)0.059 (3)0.103 (4)0.040 (3)0.023 (3)0.024 (3)
C50.104 (3)0.0480 (18)0.069 (3)0.013 (2)0.018 (2)0.0074 (17)
N10.073 (2)0.0545 (17)0.070 (2)0.0075 (15)0.0080 (16)0.0108 (14)
C60.0590 (19)0.0428 (16)0.055 (2)0.0036 (15)0.0216 (15)0.0031 (14)
C70.077 (3)0.072 (2)0.064 (2)0.006 (2)0.035 (2)0.0049 (19)
C80.070 (3)0.075 (3)0.086 (3)0.012 (2)0.038 (2)0.002 (2)
C90.061 (2)0.0511 (19)0.074 (3)0.0037 (17)0.0154 (19)0.0019 (17)
C100.079 (3)0.072 (2)0.054 (2)0.007 (2)0.0172 (19)0.0008 (18)
C110.068 (2)0.064 (2)0.056 (2)0.0094 (18)0.0234 (17)0.0027 (17)
C120.065 (2)0.0435 (17)0.058 (2)0.0065 (16)0.0180 (17)0.0001 (15)
Geometric parameters (Å, º) top
Zn1—O21.954 (2)C4—H40.9300
Zn1—N12.082 (3)C5—N11.347 (5)
Zn1—O12.602 (3)C5—C5i1.466 (10)
Cl2—C91.740 (4)C6—C111.368 (5)
O1—C121.233 (4)C6—C71.384 (5)
O2—C121.272 (4)C6—C121.506 (5)
C1—N11.329 (6)C7—C81.377 (6)
C1—C21.377 (6)C7—H70.9300
C1—H10.9300C8—C91.368 (6)
C2—C31.356 (10)C8—H80.9300
C2—H20.9300C9—C101.368 (5)
C3—C41.366 (11)C10—C111.382 (5)
C3—H30.9300C10—H100.9300
C4—C51.394 (6)C11—H110.9300
O2—Zn1—O2i120.76 (15)C2—C3—C4119.6 (5)
O2—Zn1—N1110.75 (11)C2—C3—H3120.2
O2i—Zn1—N1114.15 (11)C4—C3—H3120.2
O2—Zn1—N1i114.15 (11)C3—C4—C5119.9 (6)
O2i—Zn1—N1i110.75 (11)C3—C4—H4120.1
N1—Zn1—N1i78.9 (2)C5—C4—H4120.1
O2—Zn1—C1228.13 (10)N1—C5—C4119.6 (5)
O2i—Zn1—C12107.47 (11)N1—C5—C5i115.9 (2)
N1—Zn1—C12135.29 (12)C4—C5—C5i124.5 (4)
N1i—Zn1—C12101.44 (12)C1—N1—C5119.8 (4)
O2—Zn1—C12i107.47 (11)C1—N1—Zn1125.5 (3)
O2i—Zn1—C12i28.13 (10)C5—N1—Zn1114.6 (3)
N1—Zn1—C12i101.44 (12)C11—C6—C7118.8 (3)
N1i—Zn1—C12i135.29 (12)C11—C6—C12120.9 (3)
C12—Zn1—C12i107.90 (14)C7—C6—C12120.3 (3)
O2—Zn1—O155.55 (9)C8—C7—C6120.9 (4)
O2i—Zn1—O191.94 (10)C8—C7—H7119.6
N1—Zn1—O1153.21 (11)C6—C7—H7119.6
N1i—Zn1—O186.47 (11)C9—C8—C7119.0 (4)
C12—Zn1—O127.42 (9)C9—C8—H8120.5
C12i—Zn1—O1104.74 (10)C7—C8—H8120.5
O2—Zn1—O1i91.94 (10)C10—C9—C8121.2 (4)
O2i—Zn1—O1i55.55 (9)C10—C9—Cl2119.5 (3)
N1—Zn1—O1i86.47 (11)C8—C9—Cl2119.3 (3)
N1i—Zn1—O1i153.21 (11)C9—C10—C11119.3 (4)
C12—Zn1—O1i104.74 (10)C9—C10—H10120.4
C12i—Zn1—O1i27.42 (9)C11—C10—H10120.4
O1—Zn1—O1i114.90 (12)C6—C11—C10120.8 (4)
C12—O1—Zn176.2 (2)C6—C11—H11119.6
C12—O2—Zn1105.5 (2)C10—C11—H11119.6
N1—C1—C2122.1 (5)O1—C12—O2122.8 (3)
N1—C1—H1118.9O1—C12—C6120.7 (3)
C2—C1—H1118.9O2—C12—C6116.5 (3)
C3—C2—C1118.9 (6)O1—C12—Zn176.4 (2)
C3—C2—H2120.5O2—C12—Zn146.41 (16)
C1—C2—H2120.5C6—C12—Zn1162.9 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.553.172 (6)125
C3—H3···O2ii0.932.523.278 (5)139
C11—H11···O1iii0.932.573.330 (5)139
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1; (iii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C7H4ClO2)2(C10H8N2)]
Mr532.68
Crystal system, space groupMonoclinic, P2/c
Temperature (K)290
a, b, c (Å)11.453 (2), 8.4896 (17), 12.337 (3)
β (°) 107.12 (3)
V3)1146.4 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.32 × 0.25 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.675, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
8641, 2012, 1560
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.17
No. of reflections2012
No. of parameters150
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.36

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.9302.5503.172 (6)125
C3—H3···O2ii0.9302.5203.278 (5)139
C11—H11···O1iii0.9302.5703.330 (5)139
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1; (iii) x, y+2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the Education Office of Zhejiang Province (grant No. 20051316).

References

First citationAghabozorg, H., Nakhjavan, B., Zabihi, F., Ramezanipour, F. & Aghabozorg, H. R. (2005). Acta Cryst. E61, m2664–m2666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, H., Xu, X.-Y., Gao, J., Yang, X.-J., Lu, L.-D. & Wang, X. (2006). Huaxue Shiji (Chem. React.), 28, 478–480.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m458–m459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLemoine, P., Bendada, K. & Viossat, B. (2004). Acta Cryst. C60, m489–m491.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, C.-M., You, X.-Z. & Chen, W. (1998). J. Coord. Chem. 46, 233–243.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y., Yuan, C. & Yang, P. (2004). Acta Cryst. E60, m1686–m1688.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWei, D.-Y., Zheng, Y.-Q. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 2005–2012.  CrossRef CAS Google Scholar
First citationXu, H., Liang, Y., Su, Z., Zhao, Y., Shao, K., Zhang, H. & Yue, S. (2004). Acta Cryst. E60, m142–m144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, S.-F. & Zhang, B.-S. (2010). Acta Cryst. E66, m474.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B.-S., Ye, S.-F., Li, Y.-X. & Xu, W. (2010). Acta Cryst. E66, m1357–m1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y.-F., Lin, W.-J., Huang, Y.-G. & Hong, M.-C. (2005). Acta Cryst. E61, m177–m179.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m321-m322
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds