organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­amino-2,6-di­bromo-9,10-anthra­quinone

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

(Received 9 January 2012; accepted 1 February 2012; online 24 February 2012)

In the title compound, C14H8Br2N2O2, the mol­ecular structure features intra­molecular N—H⋯O [2.639 (2) Å and 130°] and N—H⋯Br [3.053 (2) Å and 114°] hydrogen bonding. Due to inversion symmetry, the asymmetric part of the unit cell consits of one half-mol­ecule. In the crystal, inversion dimers linked by pairs of N—H⋯O [2.955 (2) Å and 135°] hydrogen bonds occur. The structure also features C=O⋯π [3.228 (2) Å] and Br⋯Br [3.569 (1) Å] contacts.

Related literature

For background information on anthraquinones and their pharmacological potential, see: Thomson (1967[Thomson, R. H. (1967). In Naturally Occurring Quinones. London: Academic Press.]); Bohacova et al. (1998[Bohacova, Y., Docolomansky, P., Breier, A., Gemeiner, P. & Zihelhofer, A. (1998). J. Chromatogr. B, 715, 273-281.]). For the X-ray structure of anthraquinone at different temperatures, see: Fu & Brock (1998[Fu, Y. & Brock, C. P. (1998). Acta Cryst. B54, 308-315.]). For a description of the resonance assisted hydrogen bond (RAHB) model, see: Gilli et al. (1989[Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023-1028.]); Sanz et al. (2008[Sanz, P., Mó, O., Yánez, M. & Elguero, J. (2008). Chem. Eur. J. 14, 4225-4232.]). For structures with typical intramolecular N—H⋯Br, N—H⋯O and C=O⋯π contacts, see: Brammer et al. (2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]); Shimpi et al. (2007[Shimpi, M. R., Lekshmi, N. S. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958-1963.]); Marten et al. (2007[Marten, J., Seichter, W., Weber, E. & Böhme, U. (2007). J. Phys. Org. Chem. 20, 716-731.]). For the synthetic procedure, see: Scholl & Krieger (1904[Scholl, R. & Krieger, A. (1904). Ber. Dtsch Chem. Ges. 37, 4681-4692.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8Br2N2O2

  • Mr = 396.04

  • Triclinic, [P \overline 1]

  • a = 4.4177 (1) Å

  • b = 6.2240 (2) Å

  • c = 11.8410 (3) Å

  • α = 94.455 (2)°

  • β = 99.970 (2)°

  • γ = 100.859 (2)°

  • V = 312.87 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 6.48 mm−1

  • T = 153 K

  • 0.58 × 0.22 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.117, Tmax = 0.759

  • 7769 measured reflections

  • 2003 independent reflections

  • 1844 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.071

  • S = 0.96

  • 2003 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1 0.88 1.99 2.639 (2) 130
N1—H1A⋯Br1 0.88 2.59 3.053 (2) 114
N1—H1B⋯O1i 0.88 2.27 2.955 (2) 135
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Anthraquinones represent the most important group of natural quinones (Thomson, 1967). They also find extensive application in chemical research and industry including aspects of pharmacology (Bohacova et al., 1998). The title compound crystallizes in the triclinic space group P1 with one half of the molecule in the asymmetric unit of the unit cell, i.e. the molecule adopts inversion symmetry. The anthraquinone part shows an almost planar geometry except for the bromo atoms which are slightly twisted out of the plane (Cg(1)—C(1)—Br(1) 178.0 (2) °). Compared with the unsubstituted anthraquinone, the position of atoms shows distinct differences. The C—C bond lengths [C(6)—C(7) 1.421 (2) Å, C(1)—C(7) 1.420 (2) Å] are considerably elongated compared with 1.393 (2) Å, 1.381 (2) Å for anthraquinone. On the other hand, the angle of C(6)—C(7)—C(1) 116.5 (2) ° is significantly reduced compared with 120.39 (14) ° for anthraquinone (Fu & Brock, 1998). This can be explained by the so called 'resonance assisted hydrogen bond (RAHB) model', which is based on the assumption of a synergistic mutual reinforcement of intramolecular hydrogen bonding due to the conjugation of π electrons (Gilli et al., 1989). In our case, the amino group of the molecule seems to be involved in an intramolecular hydrogen bond of this type [N1—H1B···O1 2.639 (2) Å, 130 °]. However, this particular conception is also disputed (Sanz et al., 2008). The amino group is also involved in an intramolecular N—H···Br contact [N1—H1A···Br1 3.053 (2) Å, 114 °] (Brammer et al., 2001). In addition, intermolecular hydrogen bonds of the N—H···O type are found [N1—H1B···O1 2.955 (3) Å, 135 °]. In with way tapes are generated, which are further cross-linked by Br···Br-contacts [Br···Br 3.569 (1) Å, 155.8 (1) °] (Shimpi et al., 2007). The resulting two-dimensional networks are stacked via CO···π interactions [C(5)···Cg(2) 3.228 (2) Å, 97.28 (13) °] (Marten et al., 2007).

Related literature top

For background information on anthraquinones and their pharmacological potential, see: Thomson (1967); Bohacova et al. (1998). For the X-ray structure of anthraquinone at different temperatures, see: Fu & Brock (1998). For a description of the RAHB model, see: Gilli et al. (1989); Sanz et al. (2008). For structures with typical intramolecular N—H···Br, N—H···O and CO···π contacts, see: Brammer et al. (2001); Shimpi et al. (2007); Marten et al. (2007). For the synthetic procedure, see: Scholl & Krieger (1904).

Experimental top

The title compound was synthesized by bromination of 1,5-diaminoanthra-9,10-quinone (1.0 g, 4.20 mmol) with bromine in acetic acid. For the synthetic procedure, see: Scholl & Krieger (1904). Purification by column chromatography (silica gel, n-hexane:ethyl acetate/4:1) followed by crystallization from toluene yielded 1.1 g (68%) of the compound as red prismatic crystals.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aryl and N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N) for amino atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Intermolecular contacts are shown as dashed lines.
1,5-Diamino-2,6-dibromo-9,10-anthraquinone top
Crystal data top
C14H8Br2N2O2Z = 1
Mr = 396.04F(000) = 192
Triclinic, P1Dx = 2.102 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.4177 (1) ÅCell parameters from 5166 reflections
b = 6.2240 (2) Åθ = 3.2–38.8°
c = 11.8410 (3) ŵ = 6.48 mm1
α = 94.455 (2)°T = 153 K
β = 99.970 (2)°Irregular, red
γ = 100.859 (2)°0.58 × 0.22 × 0.05 mm
V = 312.87 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2003 independent reflections
Radiation source: fine-focus sealed tube1844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 31.1°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 66
Tmin = 0.117, Tmax = 0.759k = 99
7769 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.2515P]
where P = (Fo2 + 2Fc2)/3
2003 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C14H8Br2N2O2γ = 100.859 (2)°
Mr = 396.04V = 312.87 (2) Å3
Triclinic, P1Z = 1
a = 4.4177 (1) ÅMo Kα radiation
b = 6.2240 (2) ŵ = 6.48 mm1
c = 11.8410 (3) ÅT = 153 K
α = 94.455 (2)°0.58 × 0.22 × 0.05 mm
β = 99.970 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2003 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1844 reflections with I > 2σ(I)
Tmin = 0.117, Tmax = 0.759Rint = 0.029
7769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.96Δρmax = 0.86 e Å3
2003 reflectionsΔρmin = 0.63 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18844 (5)0.30597 (3)0.572710 (15)0.02812 (8)
O10.1853 (3)0.3189 (2)1.04118 (13)0.0228 (3)
N10.1114 (4)0.3920 (3)0.82251 (13)0.0197 (3)
H1A0.04390.45630.76220.024*
H1B0.07770.43510.89100.024*
C10.3215 (4)0.1566 (3)0.69978 (14)0.0184 (3)
C20.4697 (4)0.0157 (3)0.68165 (15)0.0205 (3)
H20.49720.06060.60620.025*
C30.5785 (4)0.1235 (3)0.77398 (15)0.0188 (3)
H30.68110.24210.76180.023*
C40.5371 (4)0.0574 (3)0.88430 (14)0.0152 (3)
C50.3340 (4)0.1755 (3)1.02023 (15)0.0159 (3)
C60.3806 (4)0.1154 (3)0.90319 (14)0.0145 (3)
C70.2662 (4)0.2273 (3)0.80995 (14)0.0158 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04356 (14)0.03062 (12)0.01527 (11)0.01733 (9)0.00600 (8)0.00918 (7)
O10.0304 (7)0.0252 (7)0.0177 (6)0.0166 (5)0.0062 (5)0.0020 (5)
N10.0264 (7)0.0191 (7)0.0164 (7)0.0110 (6)0.0032 (5)0.0048 (5)
C10.0223 (7)0.0205 (8)0.0132 (7)0.0063 (6)0.0027 (5)0.0042 (6)
C20.0257 (8)0.0246 (8)0.0123 (7)0.0074 (6)0.0045 (6)0.0019 (6)
C30.0249 (8)0.0185 (7)0.0152 (7)0.0090 (6)0.0050 (6)0.0011 (6)
C40.0161 (7)0.0162 (7)0.0138 (7)0.0044 (5)0.0030 (5)0.0012 (5)
C50.0167 (7)0.0154 (7)0.0156 (7)0.0041 (5)0.0027 (5)0.0016 (6)
C60.0161 (7)0.0150 (7)0.0127 (7)0.0038 (5)0.0026 (5)0.0011 (5)
C70.0173 (7)0.0154 (7)0.0150 (7)0.0038 (5)0.0027 (5)0.0019 (5)
Geometric parameters (Å, º) top
Br1—C11.8949 (18)C2—H20.9500
O1—C51.238 (2)C3—C41.392 (2)
N1—C71.348 (2)C3—H30.9500
N1—H1A0.8800C4—C61.407 (2)
N1—H1B0.8800C5—C61.467 (2)
C1—C21.379 (3)C5—C4i1.485 (2)
C1—C71.420 (2)C6—C71.421 (2)
C2—C31.389 (3)
C7—N1—H1A120.0C3—C4—C6120.66 (16)
C7—N1—H1B120.0C3—C4—C5i117.24 (15)
H1A—N1—H1B120.0C6—C4—C5i122.10 (15)
C2—C1—C7122.64 (16)O1—C5—C6121.83 (16)
C2—C1—Br1118.66 (13)O1—C5—C4i119.18 (16)
C7—C1—Br1118.69 (13)C6—C5—C4i118.98 (15)
C1—C2—C3119.84 (16)C4—C6—C7120.42 (15)
C1—C2—H2120.1C4—C6—C5118.89 (15)
C3—C2—H2120.1C7—C6—C5120.69 (15)
C2—C3—C4119.87 (16)N1—C7—C1120.38 (16)
C2—C3—H3120.1N1—C7—C6123.08 (15)
C4—C3—H3120.1C1—C7—C6116.54 (15)
Br1—Br1—C1—C20.00 (9)O1—C5—C6—C4176.53 (16)
Br1—Br1—C1—C70.00 (10)C4i—C5—C6—C42.1 (2)
C7—C1—C2—C31.7 (3)O1—C5—C6—C72.6 (2)
Br1—C1—C2—C3177.95 (14)C4i—C5—C6—C7178.77 (14)
C1—C2—C3—C40.1 (3)C2—C1—C7—N1177.84 (17)
C2—C3—C4—C61.1 (3)Br1—C1—C7—N12.5 (2)
C2—C3—C4—C5i178.47 (16)C2—C1—C7—C61.9 (2)
O1—O1—C5—C60.0 (5)Br1—C1—C7—C6177.76 (12)
O1—O1—C5—C4i0.0 (6)C4—C6—C7—N1179.15 (16)
C3—C4—C6—C70.9 (2)C5—C6—C7—N10.0 (2)
C5i—C4—C6—C7178.70 (15)C4—C6—C7—C10.6 (2)
C3—C4—C6—C5178.25 (15)C5—C6—C7—C1179.71 (15)
C5i—C4—C6—C52.2 (3)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.881.992.639 (2)130
N1—H1A···Br10.882.593.053 (2)114
N1—H1B···O1ii0.882.272.955 (2)135
Symmetry code: (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC14H8Br2N2O2
Mr396.04
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)4.4177 (1), 6.2240 (2), 11.8410 (3)
α, β, γ (°)94.455 (2), 99.970 (2), 100.859 (2)
V3)312.87 (2)
Z1
Radiation typeMo Kα
µ (mm1)6.48
Crystal size (mm)0.58 × 0.22 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.117, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
7769, 2003, 1844
Rint0.029
(sin θ/λ)max1)0.727
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 0.96
No. of reflections2003
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.63

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.881.992.639 (2)129.8
N1—H1A···Br10.882.593.053 (2)113.7
N1—H1B···O1i0.882.272.955 (2)134.9
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

This work was performed within the Cluster of Excellence `Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering (ADDE)', which is financially supported by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK).

References

First citationBohacova, Y., Docolomansky, P., Breier, A., Gemeiner, P. & Zihelhofer, A. (1998). J. Chromatogr. B, 715, 273–281.  CAS
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFu, Y. & Brock, C. P. (1998). Acta Cryst. B54, 308–315.  Web of Science CSD CrossRef CAS IUCr Journals
First citationGilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028.  CrossRef CAS Web of Science
First citationMarten, J., Seichter, W., Weber, E. & Böhme, U. (2007). J. Phys. Org. Chem. 20, 716–731.  Web of Science CSD CrossRef CAS
First citationSanz, P., Mó, O., Yánez, M. & Elguero, J. (2008). Chem. Eur. J. 14, 4225–4232.  Web of Science CrossRef PubMed CAS
First citationScholl, R. & Krieger, A. (1904). Ber. Dtsch Chem. Ges. 37, 4681–4692.  CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShimpi, M. R., Lekshmi, N. S. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958–1963.  Web of Science CSD CrossRef CAS
First citationThomson, R. H. (1967). In Naturally Occurring Quinones. London: Academic Press.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds