organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o875-o876

4-(4-Meth­­oxy­phen­yl)naphtho­[2,3-b]thio­phene

aDepartment of Chemistry, Madras Christian College (Autonomous), Chennai 600 059, Tamil Nadu, India, and bDepartment of Chemistry, Sri Sairam Engineering College, Chennai 600 044, Tamil Nadu, India
*Correspondence e-mail: vasu_sbm@yahoo.com, rjkmcc@yahoo.com

(Received 16 January 2012; accepted 8 February 2012; online 29 February 2012)

In the title compound, C19H14OS, the naphtho­thio­phene moiety is almost planar except for the S atom of the five-membered ring, which is situated 0.047 (6) Å out of the C4 plane (with an r.m.s. deviation of fitted atoms = 0.0009 Å). The dihedral angle between the naphtho­thio­phene plane and the attached meth­oxy­phenyl ring is 67.6 (2)°. In the crystal, a C—H⋯π inter­action is observed between a meth­oxy­phenyl C—H group and the outer benzene ring of the naphtho­thio­phene moiety. The five-membered ring of the naphtho­thio­phene moiety is disordered, with the S and opposite non-fused C atom approximately exchanging positions, with a site-occupancy factors of 0.808 (3) and 0.187 (3).

Related literature

For related thio­phene structures, see: Labat & Halfpenny (2005[Labat, G. & Halfpenny, J. (2005). Acta Cryst. E61, o2813-o2814.]); Thenmozhi et al. (2008[Thenmozhi, S., SubbiahPandi, A., Ranjith, S., Clement, J. A. & Mohana­Krishnan, A. K. (2008). Acta Cryst. E64, o2432.]). For related heterocyclic compounds, see: Jones et al. (1984[Jones, C. D., Jevnikar, M. G., Pike, A. J., Peters, M. K., Black, L. J., Thompson, A. R., Falcone, J. F. & Clemens, J. A. (1984). J. Med. Chem. 27, 1057-1066.]); Palani et al. (2006[Palani, K., Amaladass, P., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2006). Acta Cryst. E62, o49-o51.]). For biological activity of naphtho­thio­phenes, see: Zuse et al. (2007[Zuse, A., Schmidt, P., Baasner, S., Böhm, K. J., Müller, K., Gerlach, M., Günther, E. G., Unger, E. & Prinz, H. (2007). J. Med. Chem. 50, 6059-6066.], 2006[Zuse, A., Schmidt, P., Baasner, S., Böhm, K. J., Müller, K., Gerlach, M., Günther, E. G., Unger, E. & Prinz, H. (2006). J. Med. Chem. 49, 7816-7825.]); Dallemagne et al. (2003[Dallemagne, P., Khanh, L. P., Alsaïdi, A., Varlet, I., Collot, V., Paillet, M., Bureau, R. & Rault, S. (2003). Bioorg. Med. Chem. 11, 1161-1167.]); Misra & Amin (1990[Misra, B. & Amin, S. (1990). Chem. Res. Toxicol. 3(2), 93-97.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14OS

  • Mr = 290.36

  • Monoclinic, P 21 /n

  • a = 9.2961 (5) Å

  • b = 15.9931 (7) Å

  • c = 10.0896 (6) Å

  • β = 104.580 (3)°

  • V = 1451.75 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2. and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.961

  • 15008 measured reflections

  • 2553 independent reflections

  • 2223 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.150

  • S = 1.11

  • 2553 reflections

  • 196 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the of C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cgi 0.93 2.82 3.621 (3) 145
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2. and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2. and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Biological evaluation of benzo/naphtho thiophene heterocycles has shown them to act as potential antibiological agents. Naphtho[2,3-b]thiophene derivatives were found to exhibit antiproliferative activity related to inhibition of tubulin polymerization (Zuse et al. 2007, 2006). Five-membered heterocycles fused to cyclopenta[c]thiophene are investigated as new antitumor agents (Dallemagne et al. 2003). Benzo[b]naphtho[2,1-d]thiophene derivatives are found as potentially important metabolites (Misra & Amin, 1990).

Fig. 1 shows the ORTEP representation of the molecular structure of the title compound with atoms at the 40% probability level. The five membered ring of the naphtho-thiophene moiety is disordered with sulfur (S1) and carbon (C2) approximately exchanging positions. The two portions of the moiety were assigned variable occupancy factors during refinement with sum of their occupancies restrained as 1 resulting in a refined s.o.f. ratio of 81% and 19%. In the naphtho thiophene moiety, S1 of the five membered ring in the major component is observed 0.047 (6) Å out of the (C1–C4) plane (0.058 (7) Å for the minor component). The latter atoms show a r.m.s. deviation of 0.0009 Å or 0.009 Å for the major and minor component, respectively. The dihedral angle between the mean plane of the naphtho-thiophene moiety and the methoxy-phenyl ring is 67.6 (2)°. Fig. 2 shows the packing of molecules in the unit cell. There is a C—H···π interaction between H17 (symmcode: 1.5 - x, -0.5 + y, 1.5 - z) and the phenyl ring (C5–C10). The distance between the H atom and centroid of the phenyl ring is 2.822 Å. Except for this C—H···π interaction, the packing is featureless.

Related literature top

For related thiophene structures, see: Labat & Halfpenny (2005); Thenmozhi et al. (2008). For general background, see: Jones et al. (1984); Palani et al. (2006). For biological activity of naphthothiophenes, see: Zuse et al. (2007, 2006); Dallemagne et al. (2003); Misra & Amin (1990).

Experimental top

To a solution of (2-(acetoxy(4-methoxyphenyl)methyl)phenyl) (thiophen-2-yl)methylacetate (0.5 g, 1.12 mmol) in anhydrous dichloromethane (20 ml), BF3 × Et2O (40 mg) was added. The reaction mixture was then stirred at room temperature for 4 h under N2 atmosphere. Removal of the solvent followed by column chromatography (n-hexane/ethylacetate 98:2) led to the isolation of the product 4-(4-methoxyphenyl)naphtho[2,3-b]thiophene (yield: 56%). The product was recrystallized from chloroform and was obtained as a colourless crystals.

Refinement top

As S1 and C2 are disordered, refinement is carried out with a second component for the thiophene ring with atoms C2', C1', S1' located near S1, C1 and C2, respectively. Disordered pairs of the same sites were restrained to have same thermal parameter. The distance C3—S1' was restrained to be 1.70 Å. Similarily, distances C1—C2' and C2'—C12 were restrained to be around 1.4 Å and 1.52 Å during the refinement. The two components were assigned variable occupancy factors during refinement with the sum of their occupancies restrained as 1 resulting in a refined s.o.f. ratio of 81% and 19%. H atoms were constrained as riding atoms with d(C—H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic CH groups and 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound with thermal ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Molecular packing diagram. C—H···π interactions are shown as dotted lines.
4-(4-Methoxyphenyl)naphtho[2,3-b]thiophene top
Crystal data top
C19H14OSF(000) = 608
Mr = 290.36Dx = 1.328 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4322 reflections
a = 9.2961 (5) Åθ = 2.7–24.5°
b = 15.9931 (7) ŵ = 0.22 mm1
c = 10.0896 (6) ÅT = 293 K
β = 104.580 (3)°Block, pale yellow
V = 1451.75 (13) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2553 independent reflections
Radiation source: fine-focus sealed tube2223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.912, Tmax = 0.961k = 1919
15008 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0618P)2 + 1.0365P]
where P = (Fo2 + 2Fc2)/3
2553 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.33 e Å3
4 restraintsΔρmin = 0.35 e Å3
Crystal data top
C19H14OSV = 1451.75 (13) Å3
Mr = 290.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2961 (5) ŵ = 0.22 mm1
b = 15.9931 (7) ÅT = 293 K
c = 10.0896 (6) Å0.30 × 0.20 × 0.20 mm
β = 104.580 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2553 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2223 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.961Rint = 0.024
15008 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0544 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.11Δρmax = 0.33 e Å3
2553 reflectionsΔρmin = 0.35 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5082 (5)0.0475 (3)0.6960 (6)0.0644 (14)0.808 (3)
H10.44320.08940.70790.077*0.808 (3)
C20.6679 (6)0.0682 (3)0.6871 (5)0.0614 (3)0.808 (3)
H20.71620.11960.69430.074*0.808 (3)
S10.45408 (12)0.05754 (8)0.68296 (10)0.0614 (3)0.808 (3)
C1'0.461 (3)0.0280 (15)0.677 (3)0.0644 (14)0.187 (3)
H1'0.37660.05500.68980.077*0.187 (3)
C2'0.4755 (15)0.0563 (14)0.646 (3)0.0614 (3)0.187 (3)
H2'0.39390.09170.61990.074*0.187 (3)
S1'0.6213 (5)0.0676 (3)0.6865 (5)0.0614 (3)0.187 (3)
C30.7222 (3)0.01533 (15)0.6642 (3)0.0490 (6)
C40.8635 (3)0.02564 (16)0.6515 (3)0.0515 (6)
H40.92580.02040.65640.062*
C50.9148 (3)0.10577 (17)0.6308 (2)0.0461 (6)
C61.0633 (3)0.1195 (2)0.6226 (3)0.0605 (8)
H61.12680.07410.62790.073*
C71.1118 (3)0.1930 (2)0.6081 (3)0.0631 (8)
H71.21060.19970.60590.076*
C81.0209 (3)0.2633 (2)0.5954 (3)0.0630 (8)
H81.06030.31530.58330.076*
C90.8833 (3)0.25843 (16)0.6001 (2)0.0452 (6)
H90.82520.30640.59100.054*
C100.8187 (3)0.17623 (15)0.6198 (2)0.0407 (5)
C110.6717 (3)0.16559 (15)0.6331 (2)0.0409 (5)
C120.6285 (3)0.08554 (15)0.6572 (2)0.0437 (6)
C130.5697 (2)0.23754 (15)0.6292 (2)0.0409 (5)
C140.5147 (3)0.28478 (16)0.5126 (3)0.0484 (6)
H140.54160.27120.43250.058*
C150.4202 (3)0.35206 (17)0.5124 (3)0.0490 (6)
H150.38420.38300.43280.059*
C160.3800 (3)0.37276 (15)0.6307 (2)0.0426 (6)
C170.4321 (3)0.32557 (16)0.7474 (3)0.0461 (6)
H170.40380.33870.82690.055*
C180.5258 (3)0.25921 (16)0.7463 (2)0.0457 (6)
H180.56060.22810.82590.055*
C190.2441 (4)0.4937 (2)0.5322 (3)0.0717 (9)
H19A0.33030.51600.50860.107*
H19B0.18780.53850.55760.107*
H19C0.18380.46450.45480.107*
O10.2893 (2)0.43755 (11)0.64381 (19)0.0548 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (4)0.077 (3)0.056 (3)0.031 (2)0.010 (3)0.005 (2)
C20.0525 (6)0.0696 (6)0.0625 (7)0.0089 (4)0.0150 (4)0.0068 (5)
S10.0525 (6)0.0696 (6)0.0625 (7)0.0089 (4)0.0150 (4)0.0068 (5)
C1'0.057 (4)0.077 (3)0.056 (3)0.031 (2)0.010 (3)0.005 (2)
C2'0.0525 (6)0.0696 (6)0.0625 (7)0.0089 (4)0.0150 (4)0.0068 (5)
S1'0.0525 (6)0.0696 (6)0.0625 (7)0.0089 (4)0.0150 (4)0.0068 (5)
C30.0631 (16)0.0428 (14)0.0391 (13)0.0014 (12)0.0091 (11)0.0000 (10)
C40.0606 (16)0.0466 (14)0.0472 (14)0.0126 (12)0.0137 (12)0.0023 (12)
C50.0438 (13)0.0570 (15)0.0371 (13)0.0057 (11)0.0094 (10)0.0017 (11)
C60.0478 (15)0.080 (2)0.0544 (17)0.0155 (15)0.0140 (12)0.0006 (15)
C70.0409 (14)0.084 (2)0.0650 (18)0.0075 (14)0.0153 (13)0.0171 (16)
C80.074 (2)0.0624 (18)0.0568 (17)0.0210 (15)0.0235 (15)0.0096 (14)
C90.0533 (15)0.0466 (14)0.0373 (12)0.0071 (11)0.0145 (11)0.0074 (10)
C100.0422 (12)0.0470 (13)0.0331 (11)0.0018 (10)0.0096 (9)0.0044 (10)
C110.0443 (13)0.0436 (13)0.0341 (12)0.0007 (10)0.0085 (10)0.0003 (10)
C120.0447 (13)0.0463 (14)0.0378 (12)0.0039 (11)0.0062 (10)0.0018 (10)
C130.0390 (12)0.0432 (13)0.0406 (13)0.0014 (10)0.0101 (10)0.0012 (10)
C140.0562 (15)0.0538 (15)0.0377 (13)0.0060 (12)0.0165 (11)0.0018 (11)
C150.0533 (14)0.0518 (15)0.0405 (13)0.0071 (12)0.0091 (11)0.0084 (11)
C160.0380 (12)0.0423 (13)0.0470 (14)0.0008 (10)0.0100 (10)0.0010 (11)
C170.0497 (14)0.0503 (14)0.0408 (13)0.0018 (11)0.0162 (11)0.0008 (11)
C180.0496 (14)0.0489 (14)0.0383 (13)0.0030 (11)0.0105 (11)0.0062 (11)
C190.081 (2)0.0627 (19)0.073 (2)0.0271 (16)0.0225 (17)0.0152 (16)
O10.0584 (11)0.0520 (11)0.0562 (11)0.0144 (9)0.0185 (9)0.0041 (9)
Geometric parameters (Å, º) top
C1—C21.545 (6)C8—C91.294 (4)
C1—S11.749 (5)C8—H80.9300
C1—H10.9300C9—C101.479 (3)
C2—C31.468 (5)C9—H90.9300
C2—H20.9300C10—C111.417 (3)
S1—C121.764 (3)C11—C121.381 (3)
C1'—C2'1.399 (10)C11—C131.486 (3)
C1'—S1'1.60 (3)C13—C141.384 (3)
C1'—H1'0.9300C13—C181.387 (3)
C2'—C121.474 (10)C14—C151.389 (4)
C2'—H2'0.9300C14—H140.9300
S1'—C31.673 (5)C15—C161.378 (4)
C3—C41.362 (4)C15—H150.9300
C3—C121.412 (4)C16—O11.363 (3)
C4—C51.401 (4)C16—C171.379 (3)
C4—H40.9300C17—C181.375 (3)
C5—C61.420 (4)C17—H170.9300
C5—C101.425 (3)C18—H180.9300
C6—C71.281 (4)C19—O11.419 (3)
C6—H60.9300C19—H19A0.9600
C7—C81.392 (4)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C2—C1—S1117.7 (4)C11—C10—C5119.9 (2)
C2—C1—H1121.2C11—C10—C9123.6 (2)
S1—C1—H1121.2C5—C10—C9116.4 (2)
C3—C2—C1100.8 (4)C12—C11—C10117.3 (2)
C3—C2—H2129.6C12—C11—C13120.7 (2)
C1—C2—H2129.6C10—C11—C13122.0 (2)
C1—S1—C1289.8 (2)C11—C12—C3122.9 (2)
C2'—C1'—S1'105 (2)C11—C12—C2'126.8 (10)
C2'—C1'—H1'127.7C3—C12—C2'108.8 (10)
S1'—C1'—H1'127.7C11—C12—S1125.5 (2)
C1'—C2'—C12115.9 (19)C3—C12—S1111.67 (19)
C1'—C2'—H2'122.1C2'—C12—S113.0 (10)
C12—C2'—H2'122.1C14—C13—C18117.6 (2)
C1'—S1'—C3103.0 (9)C14—C13—C11122.8 (2)
C4—C3—C12119.8 (2)C18—C13—C11119.6 (2)
C4—C3—C2120.3 (3)C13—C14—C15121.5 (2)
C12—C3—C2120.0 (3)C13—C14—H14119.2
C4—C3—S1'134.1 (3)C15—C14—H14119.2
C12—C3—S1'106.1 (3)C16—C15—C14119.6 (2)
C2—C3—S1'13.9 (3)C16—C15—H15120.2
C3—C4—C5119.8 (2)C14—C15—H15120.2
C3—C4—H4120.1O1—C16—C15125.2 (2)
C5—C4—H4120.1O1—C16—C17115.2 (2)
C4—C5—C6121.5 (3)C15—C16—C17119.6 (2)
C4—C5—C10120.3 (2)C18—C17—C16120.2 (2)
C6—C5—C10118.2 (3)C18—C17—H17119.9
C7—C6—C5121.6 (3)C16—C17—H17119.9
C7—C6—H6119.2C17—C18—C13121.5 (2)
C5—C6—H6119.2C17—C18—H18119.3
C6—C7—C8121.9 (3)C13—C18—H18119.3
C6—C7—H7119.1O1—C19—H19A109.5
C8—C7—H7119.1O1—C19—H19B109.5
C9—C8—C7122.1 (3)H19A—C19—H19B109.5
C9—C8—H8119.0O1—C19—H19C109.5
C7—C8—H8119.0H19A—C19—H19C109.5
C8—C9—C10119.8 (2)H19B—C19—H19C109.5
C8—C9—H9120.1C16—O1—C19118.1 (2)
C10—C9—H9120.1
S1—C1—C2—C31.9 (5)C10—C11—C12—S1177.76 (18)
C2—C1—S1—C122.4 (4)C13—C11—C12—S11.0 (3)
S1'—C1'—C2'—C1211 (3)C4—C3—C12—C112.2 (4)
C2'—C1'—S1'—C34 (2)C2—C3—C12—C11178.7 (3)
C1—C2—C3—C4179.4 (3)S1'—C3—C12—C11177.1 (3)
C1—C2—C3—C120.2 (4)C4—C3—C12—C2'168.8 (11)
C1—C2—C3—S1'5.9 (12)C2—C3—C12—C2'12.0 (11)
C1'—S1'—C3—C4174.8 (13)S1'—C3—C12—C2'10.5 (11)
C1'—S1'—C3—C124.3 (13)C4—C3—C12—S1177.7 (2)
C1'—S1'—C3—C2179 (2)C2—C3—C12—S11.4 (3)
C12—C3—C4—C50.3 (4)S1'—C3—C12—S13.0 (3)
C2—C3—C4—C5179.4 (3)C1'—C2'—C12—C11179.4 (19)
S1'—C3—C4—C5178.8 (3)C1'—C2'—C12—C315 (3)
C3—C4—C5—C6177.4 (2)C1'—C2'—C12—S190 (5)
C3—C4—C5—C101.5 (4)C1—S1—C12—C11178.0 (3)
C4—C5—C6—C7177.8 (3)C1—S1—C12—C32.1 (3)
C10—C5—C6—C71.2 (4)C1—S1—C12—C2'78 (4)
C5—C6—C7—C81.9 (5)C12—C11—C13—C14116.0 (3)
C6—C7—C8—C91.2 (5)C10—C11—C13—C1467.3 (3)
C7—C8—C9—C100.2 (4)C12—C11—C13—C1863.7 (3)
C4—C5—C10—C111.5 (3)C10—C11—C13—C18112.9 (3)
C6—C5—C10—C11177.4 (2)C18—C13—C14—C150.7 (4)
C4—C5—C10—C9179.2 (2)C11—C13—C14—C15179.6 (2)
C6—C5—C10—C90.2 (3)C13—C14—C15—C160.1 (4)
C8—C9—C10—C11176.7 (2)C14—C15—C16—O1179.5 (2)
C8—C9—C10—C50.9 (3)C14—C15—C16—C171.1 (4)
C5—C10—C11—C120.3 (3)O1—C16—C17—C18179.3 (2)
C9—C10—C11—C12177.2 (2)C15—C16—C17—C181.2 (4)
C5—C10—C11—C13177.0 (2)C16—C17—C18—C130.4 (4)
C9—C10—C11—C130.5 (3)C14—C13—C18—C170.5 (4)
C10—C11—C12—C32.1 (3)C11—C13—C18—C17179.7 (2)
C13—C11—C12—C3178.9 (2)C15—C16—O1—C196.8 (4)
C10—C11—C12—C2'166.3 (12)C17—C16—O1—C19173.7 (3)
C13—C11—C12—C2'17.0 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···Cgi0.932.823.621 (3)145
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H14OS
Mr290.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.2961 (5), 15.9931 (7), 10.0896 (6)
β (°) 104.580 (3)
V3)1451.75 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.912, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
15008, 2553, 2223
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.150, 1.11
No. of reflections2553
No. of parameters196
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.35

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···Cgi0.932.8223.621 (3)145
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the SAIF, IIT, Madras, Chennai, for the X-ray data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2. and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDallemagne, P., Khanh, L. P., Alsaïdi, A., Varlet, I., Collot, V., Paillet, M., Bureau, R. & Rault, S. (2003). Bioorg. Med. Chem. 11, 1161–1167.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJones, C. D., Jevnikar, M. G., Pike, A. J., Peters, M. K., Black, L. J., Thompson, A. R., Falcone, J. F. & Clemens, J. A. (1984). J. Med. Chem. 27, 1057–1066.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLabat, G. & Halfpenny, J. (2005). Acta Cryst. E61, o2813–o2814.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMisra, B. & Amin, S. (1990). Chem. Res. Toxicol. 3(2), 93–97.  CrossRef Web of Science Google Scholar
First citationPalani, K., Amaladass, P., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2006). Acta Cryst. E62, o49–o51.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThenmozhi, S., SubbiahPandi, A., Ranjith, S., Clement, J. A. & Mohana­Krishnan, A. K. (2008). Acta Cryst. E64, o2432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZuse, A., Schmidt, P., Baasner, S., Böhm, K. J., Müller, K., Gerlach, M., Günther, E. G., Unger, E. & Prinz, H. (2006). J. Med. Chem. 49, 7816–7825.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZuse, A., Schmidt, P., Baasner, S., Böhm, K. J., Müller, K., Gerlach, M., Günther, E. G., Unger, E. & Prinz, H. (2007). J. Med. Chem. 50, 6059–6066.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o875-o876
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds