metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m308-m309

{μ-5-[1,3-Bis(2,4,6-tri­methyl­phen­yl)-3H-imidazolium-2-yl]-2-(2-oxoethenyl-1κC1)furan-3-yl-2κC3}-μ-hydrido-bis­(tetra­carbonyl­rhenium) tetra­hydro­furan 0.67-solvate

aDepartment of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
*Correspondence e-mail: dave.liles@up.ac.za

(Received 23 January 2012; accepted 14 February 2012; online 17 February 2012)

The title complex, [Re2(C27H25N2O2)H(CO)8]·0.67C4H8O, was formed as a product in the reaction of a rhenium(I)–Fischer carbene complex with a free NHC carbene. The coordination environment about the two Re atoms is slightly distorted octahedral, including a bridging H atom. The imidazolium and furan groups are almost coplanar, whereas the mesityl substituents show an almost perpendicular arrangement with respect to both heterocyclic units. Mol­ecules of the complex pack in such a way as to form channels parallel with the bc unit-cell face diagonal running through the unit face diagonal. These channels are partially occupied by tetra­hydro­furan solvent mol­ecules.

Related literature

For other examples of ketenyl complexes, see: Kreissl et al. (1976[Kreissl, F. R., Frank, A., Schubert, U., Lindner, T. L. & Huttner, G. (1976). Angew. Chem. Int. Ed. Engl. 15, 632-633.], 1977[Kreissl, F. R., Eberl, K. & Uedelhoven, W. (1977). Chem. Ber. 110, 3782-3791.]); Li et al. (2006[Li, X., Schopf, M., Stephan, J., Kipke, J., Harms, K. & Sundermeyer, J. (2006). Organometallics, 25, 528-530.]). Recent examples of dimesityl­imidazol-2-yl groups bonded to a C atom have been reported by: Naeem et al. (2010[Naeem, S., Delaude, L., White, A. J. P. & Wilton-Ely, J. D. E. T. (2010). Inorg. Chem. 49, 1784-1793.]); Chia et al. (2011[Chia, E. Y., Naeem, S., Delaude, L., White, A. J. P. & Wilton-Ely, J. D. E. T. (2011). Dalton Trans. 40, 6645-6658.]).

[Scheme 1]

Experimental

Crystal data
  • [Re2(C27H25N2O2)H(CO)8]·0.67C4H8O

  • Mr = 1054.99

  • Triclinic, [P \overline 1]

  • a = 12.7058 (7) Å

  • b = 13.8293 (8) Å

  • c = 13.9679 (8) Å

  • α = 60.760 (1)°

  • β = 77.680 (1)°

  • γ = 89.564 (1)°

  • V = 2078.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.87 mm−1

  • T = 293 K

  • 0.27 × 0.18 × 0.06 mm

Data collection
  • Siemens P4 diffractometer with SMART 1000 CCD detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.366, Tmax = 0.703

  • 11527 measured reflections

  • 7743 independent reflections

  • 6404 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.137

  • S = 1.16

  • 7743 reflections

  • 456 parameters

  • H-atom parameters constrained

  • Δρmax = 2.10 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
r.m.s. deviations of atoms (δr.m.s., Å) and dihedral angles between planes (°) for selected mean planes

Plane Atoms δr.m.s. Plane:1 2 3 4
1 C20–C26 0.001      
2 C29–C34 0.011 34.8 (4)    
3 N1/N2/C15–C17 0.003 84.8 (3) 86.2 (3)  
4 C10–C13/O14 0.004 79.3 (5) 87.3 (4) 5.5 (7)
5 Re1/Re2/C9–C11 0.041     11.1 (6) 5.7 (4)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title complex (1) was formed as a product in the reaction of a rhenium(I)–Fischer carbene complex with a free NHC carbene, prepared in situ by the deprotonation of N,N'-dimesitylimidazolium chloride (HIMesCl) with n-butyllithium. Formation of this complex is quite unique and involves four reaction sites. Rhenium complexes can mimic transition metal Lewis acids to catalyse Friedel–Crafts C—C bond formation. The catalytic activity of the rhenium complexes is initiated by decarbonylation under heating to form the active species [ReBr(CO)4]. In complex 1 the position most susceptible to nucleophilic attack is the 2-position on the furan ring. This is attributed to the electron withdrawing effect of the carbene ligand on the ring. Subsequent C—H activation leads to hydride migration and Re—Re bond breaking. The resulting complex now contains both a Re—C and Re—H bond. The Re atom from the original Fischer carbene moiety is left with a vacant coordination site enabling the newly formed hydride to form a bridge between the two Re atoms. Ketenyl complexes of tungsten have been previously reported by Kreissl et al. (1976, 1977) and later these types of complexes were also described for rhenium(VII) complexes (Li et al., 2006). The insertion of a bridging CO can lead to the ketene formation observed in complex 1.

The geometry of the dimesitylimidazol-2-yl moiety is similar to those observed for previously published dimesitylimidazol-2-yl structures, in particular for some recent examples bonded to a C atom (Naeem et al., 2010; Chia et al., 2011). As usual, the planes of the rings of the mesityl substituents are close to perpendicular to that of the imidazole ring (Table 1). However, the furan ring is close to being coplanar with the imidazole ring (Table 1).

The overall shape of the molecule of the complex does not lend itself to efficient close-packing in the crystal. The molecules of the complex pack in layers parallel with the A face of the unit cell with the two C—H moieties of each imidazol ring in close contact with the Re(CO)4 moieties of molecules in the next layer. Such an arrangement leaves voids in the crystal structure which form channels running parallel with the b,-c face diagonal of the unit cell (Fig. 2). The thf solvent molecules occupy these channels (Fig. 3). The channels allow egress of thf molecules out of the crystal without significant degradation of the structure. Thus loss of solvent has occurred leading to a partial occupancy of the site by the thf solvate of 0.666 (13) of a molecule per asymmetric unit. Uncertainty in the precise positions of the thf molecules within the channels leads to the molecule being ill-defined in the structure solution and refinement, thus the thf molecule needed to be treated as a rigid body.

Related literature top

For other examples of ketenyl complexes, see: Kreissl et al. (1976, 1977); Li et al. (2006). Recent examples of dimesitylimidazol-2-yl groups bonded to a C atom have been reported by: Naeem et al. (2010); Chia et al. (2011).

Experimental top

HIMesCl (1 mmol, 0.34 g) was dissolved in thf and cooled to -78°C. nBuLi (1 mmol, 0.7 ml) was added and stirred for 20 min after which the Fischer carbene, [eqRe2(CO)9{C(OEt)Fu}], (1 mmol, 0.75 g) was added. The solution was stirred at -78°C for 1hr, 30 min at -30°C and then allowed to warm to room temperature. The solvents were removed in vacuo and purification was done using cold column chromatography on florasil. The unreacted starting material was eluted with dcm and the polar fraction collected using thf as eluent. Complex 1 was crystallized from a thf solution (yield: 50 mg, 5%).

1H NMR (δ, p.p.m.), C6D6: -15.48 (s, 1H), 2.06 (br, 6H), 2.07 (br, 6H), 2.19 (br, 6H), 6.70 (s, 4H), 7.63 (s, 2H); 13C NMR (δ, p.p.m.), C6D6: 16.9, 20.6, 125.5, 129.3, 130.4, 136.7, 141.9, 147.0, 148.8, 159.2, 164.4, 249.8, 275.4. IR (dcm): νCO (cm-1) 2086, 1970, 1948, 1937, 1932, 1903, 1883, 1876.

Refinement top

All H atoms were included in calculated positions and allowed to ride on the atom to which each is bonded (except for H1 which bridges the two Re atoms the coordinates of which were not varied). The isotropic adp's for each H were set to 1.2 × the equivalent isotropic adp of the atom to which each is bonded (1.5 × for H1). A poorly defined thf solvent molecule was treated as a rigid body and a common isotropic adp was refined for all its non-H atoms. A common site occupation factor for all the atoms of the thf molecule refined to a value of 0.666 (13).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), POV-RAY (Cason, 2004) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of 1 showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level. The thf solvent molecule and all H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Space-filling model of the crystal structure of 1 with the thf solvent molecules removed. The view is along the b,-c direction showing the channels in the structure running parallel with the b,-c face diagonal.
[Figure 3] Fig. 3. Sspace-filling model of the crystal structure of 1, as in Fig. 2 but with the thf solvent molecules included (shown in green).
{µ-5-[1,3-Bis(2,4,6-trimethylphenyl)-3H-imidazolium-2-yl]- 2-(2-oxoethenyl-1κC1)furan-3-yl-2κC3}-µ-hydrido- bis(tetracarbonylrhenium) tetrahydrofuran 0.67-solvate top
Crystal data top
[Re2(C27H25N2O2)H(CO)8]·0.67C4H8OZ = 2
Mr = 1054.99F(000) = 1013
Triclinic, P1Dx = 1.685 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.7058 (7) ÅCell parameters from 7068 reflections
b = 13.8293 (8) Åθ = 2.7–26.4°
c = 13.9679 (8) ŵ = 5.87 mm1
α = 60.760 (1)°T = 293 K
β = 77.680 (1)°Plate, orange
γ = 89.564 (1)°0.27 × 0.18 × 0.06 mm
V = 2078.8 (2) Å3
Data collection top
Siemens P4 with SMART 1000 CCD detector
diffractometer
7743 independent reflections
Radiation source: fine-focus sealed tube6404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3 pixels mm-1θmax = 26.5°, θmin = 2.1°
ϕ and ω scansh = 1510
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1416
Tmin = 0.366, Tmax = 0.703l = 1615
11527 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.080P)2 + 2.0563P]
where P = (Fo2 + 2Fc2)/3
7743 reflections(Δ/σ)max = 0.002
456 parametersΔρmax = 2.10 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Re2(C27H25N2O2)H(CO)8]·0.67C4H8Oγ = 89.564 (1)°
Mr = 1054.99V = 2078.8 (2) Å3
Triclinic, P1Z = 2
a = 12.7058 (7) ÅMo Kα radiation
b = 13.8293 (8) ŵ = 5.87 mm1
c = 13.9679 (8) ÅT = 293 K
α = 60.760 (1)°0.27 × 0.18 × 0.06 mm
β = 77.680 (1)°
Data collection top
Siemens P4 with SMART 1000 CCD detector
diffractometer
7743 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6404 reflections with I > 2σ(I)
Tmin = 0.366, Tmax = 0.703Rint = 0.025
11527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.16Δρmax = 2.10 e Å3
7743 reflectionsΔρmin = 0.83 e Å3
456 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.75162 (2)1.01206 (2)0.10173 (2)0.04870 (12)
Re20.74307 (2)0.78055 (2)0.06999 (2)0.05348 (12)
H10.76480.89440.07640.080*
C10.7453 (7)1.1333 (7)0.1313 (7)0.071 (2)
O10.7459 (7)1.2100 (7)0.1450 (7)0.105 (2)
C20.8343 (6)0.9350 (7)0.2195 (7)0.0610 (18)
O20.8773 (7)0.8918 (7)0.2893 (7)0.100 (2)
C30.8808 (6)1.0869 (7)0.0174 (7)0.0629 (19)
O30.9567 (6)1.1295 (7)0.0894 (6)0.095 (2)
C40.6540 (7)1.0767 (7)0.0043 (7)0.067 (2)
O40.5986 (6)1.1107 (7)0.0618 (7)0.101 (2)
C50.7160 (8)0.6440 (8)0.0693 (8)0.075 (2)
O50.7008 (7)0.5623 (6)0.0714 (7)0.107 (3)
C60.8170 (8)0.7038 (7)0.1952 (7)0.068 (2)
O60.8582 (7)0.6603 (7)0.2671 (7)0.104 (2)
C70.8785 (7)0.8279 (8)0.0455 (8)0.073 (2)
O70.9577 (6)0.8573 (8)0.1145 (7)0.109 (3)
C80.6567 (8)0.8596 (8)0.0450 (8)0.075 (2)
O80.6070 (8)0.9024 (8)0.1087 (7)0.113 (3)
C90.6010 (5)0.9122 (6)0.2305 (6)0.0502 (15)
C100.5530 (5)0.8113 (5)0.2430 (5)0.0501 (15)
C110.5923 (6)0.7459 (6)0.1963 (6)0.0529 (16)
C120.5051 (6)0.6574 (6)0.2443 (6)0.0585 (17)
H120.50500.59820.23030.070*
C130.4233 (5)0.6738 (6)0.3127 (6)0.0516 (15)
O140.4522 (4)0.7695 (4)0.3141 (4)0.0531 (11)
N10.2703 (5)0.5301 (6)0.3776 (6)0.0661 (17)
N20.2422 (5)0.6485 (6)0.4372 (6)0.0646 (16)
C150.3163 (6)0.6195 (6)0.3746 (6)0.0556 (16)
C160.1654 (7)0.5030 (8)0.4448 (9)0.086 (3)
H160.11620.44430.46160.104*
C170.1478 (7)0.5758 (8)0.4809 (9)0.084 (3)
H170.08400.57780.52700.101*
C180.5526 (6)0.9585 (8)0.2842 (8)0.067 (2)
O180.5148 (6)1.0090 (6)0.3294 (7)0.105 (2)
C200.3203 (6)0.4712 (6)0.3226 (7)0.0592 (17)
C210.3690 (7)0.3778 (7)0.3837 (7)0.068 (2)
C220.4181 (8)0.3233 (7)0.3273 (9)0.088 (3)
H220.45150.26020.36590.106*
C230.4185 (9)0.3602 (9)0.2152 (10)0.091 (3)
C240.3701 (9)0.4516 (8)0.1600 (9)0.091 (3)
H240.37050.47670.08480.109*
C250.3205 (8)0.5084 (7)0.2099 (8)0.077 (2)
C260.3714 (10)0.3376 (10)0.5035 (8)0.106 (4)
H26A0.41630.27800.52770.159*
H26B0.29920.31120.55050.159*
H26C0.40040.39780.50950.159*
C270.4768 (15)0.2985 (13)0.1582 (14)0.153 (6)
H27A0.44000.30160.10360.230*
H27B0.47710.22200.21410.230*
H27C0.55010.33280.12100.230*
C280.2608 (11)0.6106 (8)0.1472 (10)0.112 (4)
H28A0.26730.62560.07130.169*
H28B0.29260.67430.14550.169*
H28C0.18560.59510.18600.169*
C290.2527 (6)0.7402 (7)0.4599 (7)0.0638 (19)
C300.2917 (7)0.7179 (8)0.5537 (7)0.072 (2)
C310.3037 (8)0.8072 (9)0.5709 (8)0.084 (3)
H310.33200.79600.63130.100*
C320.2764 (9)0.9113 (10)0.5041 (10)0.091 (3)
C330.2344 (8)0.9257 (8)0.4147 (8)0.085 (3)
H330.21410.99530.36920.102*
C340.2210 (7)0.8417 (8)0.3895 (7)0.072 (2)
C350.3235 (9)0.6052 (8)0.6298 (9)0.099 (3)
H35A0.26150.55020.66320.148*
H35B0.34950.60780.68830.148*
H35C0.37970.58590.58620.148*
C360.2952 (12)1.0079 (10)0.5234 (12)0.127 (5)
H36A0.30621.07670.45300.191*
H36B0.35820.99970.55320.191*
H36C0.23321.00840.57610.191*
C370.1771 (9)0.8593 (9)0.2922 (8)0.095 (3)
H37A0.23360.85610.23620.142*
H37B0.15070.93090.25990.142*
H37C0.11890.80210.31790.142*
O400.0474 (14)0.6479 (15)0.6302 (16)0.198 (6)*0.666 (13)
C410.0517 (17)0.7624 (15)0.5829 (14)0.198 (6)*0.666 (13)
H41A0.10620.78580.53910.237*0.666 (13)
H41B0.01790.80290.53380.237*0.666 (13)
C420.0803 (17)0.7828 (14)0.679 (2)0.198 (6)*0.666 (13)
H42A0.04930.85630.65850.237*0.666 (13)
H42B0.15840.77660.70580.237*0.666 (13)
C430.0338 (19)0.6956 (19)0.7661 (15)0.198 (6)*0.666 (13)
H43A0.08460.66240.83950.237*0.666 (13)
H43B0.03250.72570.77080.237*0.666 (13)
C440.0114 (17)0.6130 (13)0.7289 (16)0.198 (6)*0.666 (13)
H44A0.06580.60690.71430.237*0.666 (13)
H44B0.04870.54050.78740.237*0.666 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.04431 (17)0.05048 (18)0.04742 (18)0.00269 (12)0.00936 (12)0.02200 (14)
Re20.05102 (19)0.0588 (2)0.05106 (19)0.00255 (13)0.00578 (13)0.03011 (15)
C10.076 (5)0.063 (5)0.068 (5)0.005 (4)0.004 (4)0.032 (4)
O10.131 (7)0.094 (5)0.108 (6)0.025 (5)0.023 (5)0.067 (5)
C20.047 (4)0.073 (5)0.061 (5)0.004 (4)0.015 (4)0.032 (4)
O20.095 (5)0.131 (6)0.087 (5)0.041 (5)0.050 (4)0.054 (5)
C30.054 (4)0.074 (5)0.057 (4)0.010 (4)0.008 (4)0.031 (4)
O30.076 (4)0.117 (6)0.070 (4)0.025 (4)0.003 (3)0.037 (4)
C40.058 (5)0.067 (5)0.059 (5)0.001 (4)0.018 (4)0.018 (4)
O40.085 (5)0.110 (6)0.096 (5)0.026 (4)0.049 (4)0.033 (4)
C50.077 (6)0.077 (6)0.071 (5)0.002 (4)0.011 (4)0.041 (5)
O50.146 (7)0.069 (4)0.120 (6)0.007 (4)0.041 (5)0.054 (4)
C60.074 (5)0.058 (5)0.056 (5)0.004 (4)0.012 (4)0.017 (4)
O60.109 (6)0.094 (5)0.082 (5)0.007 (4)0.039 (5)0.017 (4)
C70.068 (5)0.087 (6)0.068 (5)0.009 (4)0.000 (4)0.048 (5)
O70.082 (5)0.148 (7)0.099 (5)0.013 (5)0.017 (4)0.078 (5)
C80.088 (6)0.078 (6)0.068 (5)0.001 (5)0.022 (5)0.041 (5)
O80.141 (8)0.123 (7)0.094 (5)0.033 (6)0.068 (6)0.053 (5)
C90.047 (4)0.053 (4)0.052 (4)0.001 (3)0.009 (3)0.028 (3)
C100.049 (4)0.049 (4)0.045 (3)0.002 (3)0.011 (3)0.018 (3)
C110.047 (4)0.056 (4)0.053 (4)0.003 (3)0.015 (3)0.025 (3)
C120.058 (4)0.057 (4)0.059 (4)0.001 (3)0.015 (3)0.027 (4)
C130.041 (3)0.055 (4)0.053 (4)0.006 (3)0.007 (3)0.024 (3)
O140.043 (2)0.057 (3)0.051 (3)0.006 (2)0.004 (2)0.024 (2)
N10.051 (4)0.067 (4)0.071 (4)0.008 (3)0.010 (3)0.029 (3)
N20.043 (3)0.075 (4)0.070 (4)0.012 (3)0.003 (3)0.036 (4)
C150.052 (4)0.055 (4)0.055 (4)0.004 (3)0.015 (3)0.024 (3)
C160.051 (5)0.087 (6)0.108 (7)0.025 (4)0.005 (5)0.044 (6)
C170.055 (5)0.091 (6)0.101 (7)0.011 (4)0.003 (5)0.050 (6)
C180.052 (4)0.082 (5)0.075 (5)0.008 (4)0.001 (4)0.050 (5)
O180.098 (5)0.113 (5)0.126 (6)0.002 (4)0.002 (4)0.087 (5)
C200.056 (4)0.053 (4)0.063 (4)0.009 (3)0.015 (3)0.024 (4)
C210.065 (5)0.062 (5)0.072 (5)0.005 (4)0.023 (4)0.026 (4)
C220.092 (7)0.058 (5)0.109 (8)0.011 (5)0.039 (6)0.031 (5)
C230.102 (8)0.083 (6)0.101 (8)0.009 (6)0.025 (6)0.056 (6)
C240.132 (9)0.080 (6)0.080 (6)0.005 (6)0.040 (6)0.048 (5)
C250.087 (6)0.061 (5)0.083 (6)0.007 (4)0.039 (5)0.029 (4)
C260.110 (9)0.110 (8)0.066 (6)0.017 (7)0.028 (6)0.016 (6)
C270.204 (17)0.129 (11)0.168 (14)0.023 (11)0.031 (12)0.110 (11)
C280.158 (11)0.069 (6)0.110 (9)0.021 (6)0.087 (9)0.022 (6)
C290.053 (4)0.067 (5)0.070 (5)0.003 (3)0.005 (4)0.036 (4)
C300.061 (5)0.086 (6)0.060 (5)0.001 (4)0.016 (4)0.029 (4)
C310.081 (6)0.111 (8)0.069 (5)0.003 (5)0.017 (5)0.054 (6)
C320.091 (7)0.105 (8)0.097 (7)0.013 (6)0.018 (6)0.067 (7)
C330.088 (6)0.083 (6)0.079 (6)0.018 (5)0.018 (5)0.038 (5)
C340.067 (5)0.081 (6)0.064 (5)0.012 (4)0.012 (4)0.036 (5)
C350.103 (8)0.089 (7)0.091 (7)0.004 (6)0.039 (6)0.029 (6)
C360.170 (13)0.113 (9)0.143 (12)0.027 (9)0.045 (10)0.094 (9)
C370.110 (8)0.098 (7)0.079 (6)0.029 (6)0.039 (6)0.040 (6)
Geometric parameters (Å, º) top
Re1—C11.909 (9)C23—C271.521 (16)
Re1—C31.926 (8)C24—C251.356 (14)
Re1—C21.989 (8)C24—H240.93
Re1—C42.001 (8)C25—C281.548 (12)
Re1—C92.225 (7)C26—H26A0.96
Re1—H11.83C26—H26B0.96
Re2—C51.927 (9)C26—H26C0.96
Re2—C71.947 (9)C27—H27A0.96
Re2—C61.984 (9)C27—H27B0.96
Re2—C81.999 (10)C27—H27C0.96
Re2—C112.182 (7)C28—H28A0.96
Re2—H11.65C28—H28B0.96
C1—O11.167 (10)C28—H28C0.96
C2—O21.121 (10)C29—C341.383 (12)
C3—O31.142 (10)C29—C301.393 (11)
C4—O41.108 (10)C30—C311.384 (13)
C5—O51.133 (10)C30—C351.508 (13)
C6—O61.129 (11)C31—C321.372 (14)
C7—O71.147 (11)C31—H310.9300
C8—O81.123 (12)C32—C331.387 (14)
C9—C181.272 (10)C32—C361.515 (14)
C9—C101.442 (9)C33—C341.388 (13)
C10—O141.366 (8)C33—H330.93
C10—C111.387 (10)C34—C371.488 (12)
C11—C121.441 (10)C35—H35A0.96
C12—C131.353 (10)C35—H35B0.96
C12—H120.93C35—H35C0.96
C13—O141.386 (8)C36—H36A0.96
C13—C151.429 (9)C36—H36B0.96
N1—C151.349 (10)C36—H36C0.96
N1—C161.389 (11)C37—H37A0.96
N1—C201.433 (10)C37—H37B0.96
N2—C151.340 (10)C37—H37C0.96
N2—C171.388 (10)O40—C411.39
N2—C291.463 (11)O40—C441.40
C16—C171.328 (13)C41—C421.48
C16—H160.93C41—H41A0.97
C17—H170.93C41—H41B0.97
C18—O181.188 (10)C42—C431.46
C20—C211.384 (11)C42—H42A0.97
C20—C251.397 (11)C42—H42B0.97
C21—C221.394 (13)C43—C441.47
C21—C261.492 (13)C43—H43A0.97
C22—C231.388 (14)C43—H43B0.97
C22—H220.93C44—H44A0.97
C23—C241.345 (14)C44—H44B0.97
C1—Re1—C390.7 (4)C25—C24—H24118.7
C1—Re1—C289.7 (4)C24—C25—C20118.9 (8)
C3—Re1—C293.3 (3)C24—C25—C28122.1 (9)
C1—Re1—C492.2 (4)C20—C25—C28119.0 (9)
C3—Re1—C493.0 (3)C21—C26—H26A109.5
C2—Re1—C4173.4 (3)C21—C26—H26B109.5
C1—Re1—C996.0 (3)H26A—C26—H26B109.5
C3—Re1—C9173.0 (3)C21—C26—H26C109.5
C2—Re1—C988.6 (3)H26A—C26—H26C109.5
C4—Re1—C985.0 (3)H26B—C26—H26C109.5
C1—Re1—H1177.0C23—C27—H27A109.5
C3—Re1—H188.0C23—C27—H27B109.5
C2—Re1—H187.0H27A—C27—H27B109.5
C4—Re1—H191.0C23—C27—H27C109.5
C9—Re1—H185.0H27A—C27—H27C109.5
C5—Re2—C793.7 (4)H27B—C27—H27C109.5
C5—Re2—C691.3 (4)C25—C28—H28A109.5
C7—Re2—C692.9 (4)C25—C28—H28B109.5
C5—Re2—C890.9 (4)H28A—C28—H28B109.5
C7—Re2—C892.4 (4)C25—C28—H28C109.5
C6—Re2—C8174.2 (4)H28A—C28—H28C109.5
C5—Re2—C1192.4 (3)H28B—C28—H28C109.5
C7—Re2—C11173.8 (3)C34—C29—C30124.2 (8)
C6—Re2—C1188.4 (3)C34—C29—N2118.5 (8)
C8—Re2—C1186.1 (3)C30—C29—N2117.2 (8)
C5—Re2—H1178.0C31—C30—C29115.7 (8)
C7—Re2—H188.0C31—C30—C35121.6 (8)
C6—Re2—H187.0C29—C30—C35122.6 (9)
C8—Re2—H191.0C32—C31—C30123.8 (9)
C11—Re2—H186.0C32—C31—H31118.1
O1—C1—Re1176.7 (8)C30—C31—H31118.1
O2—C2—Re1176.9 (8)C33—C32—C31116.9 (9)
O3—C3—Re1178.0 (8)C33—C32—C36121.1 (11)
O4—C4—Re1178.7 (9)C31—C32—C36121.9 (10)
O5—C5—Re2178.3 (9)C32—C33—C34123.5 (9)
O6—C6—Re2179.3 (10)C32—C33—H33118.2
O7—C7—Re2178.9 (11)C34—C33—H33118.2
O8—C8—Re2178.8 (10)C29—C34—C33115.7 (8)
C18—C9—C10121.6 (7)C29—C34—C37121.6 (9)
C18—C9—Re1114.0 (6)C33—C34—C37122.7 (9)
C10—C9—Re1123.8 (5)C30—C35—H35A109.5
O14—C10—C11112.6 (6)C30—C35—H35B109.5
O14—C10—C9116.3 (6)H35A—C35—H35B109.5
C11—C10—C9131.1 (6)C30—C35—H35C109.5
C10—C11—C12102.7 (6)H35A—C35—H35C109.5
C10—C11—Re2127.3 (5)H35B—C35—H35C109.5
C12—C11—Re2129.7 (5)C32—C36—H36A109.5
C13—C12—C11109.4 (7)C32—C36—H36B109.5
C13—C12—H12125.3H36A—C36—H36B109.5
C11—C12—H12125.3C32—C36—H36C109.5
C12—C13—O14109.3 (6)H36A—C36—H36C109.5
C12—C13—C15134.2 (7)H36B—C36—H36C109.5
O14—C13—C15116.4 (6)C34—C37—H37A109.5
C10—O14—C13106.0 (5)C34—C37—H37B109.5
C15—N1—C16108.4 (7)H37A—C37—H37B109.5
C15—N1—C20126.5 (7)C34—C37—H37C109.5
C16—N1—C20125.1 (7)H37A—C37—H37C109.5
C15—N2—C17109.1 (7)H37B—C37—H37C109.5
C15—N2—C29128.3 (6)C41—O40—C44106.5
C17—N2—C29122.6 (7)O40—C41—C42105.7
N2—C15—N1107.3 (6)O40—C41—H41A110.6
N2—C15—C13127.2 (7)C42—C41—H41A110.6
N1—C15—C13125.5 (7)O40—C41—H41B110.6
C17—C16—N1107.9 (8)C42—C41—H41B110.6
C17—C16—H16126.1H41A—C41—H41B108.7
N1—C16—H16126.1C43—C42—C41104.2
C16—C17—N2107.3 (8)C43—C42—H42A110.9
C16—C17—H17126.4C41—C42—H42A110.9
N2—C17—H17126.4C43—C42—H42B110.9
O18—C18—C9174.3 (9)C41—C42—H42B110.9
C21—C20—C25121.2 (8)H42A—C42—H42B108.9
C21—C20—N1118.3 (7)C42—C43—C44104.7
C25—C20—N1120.4 (7)C42—C43—H43A110.8
C20—C21—C22116.8 (8)C44—C43—H43A110.8
C20—C21—C26122.2 (9)C42—C43—H43B110.8
C22—C21—C26121.0 (9)C44—C43—H43B110.8
C23—C22—C21122.0 (9)H43A—C43—H43B108.9
C23—C22—H22119.0O40—C44—C43108.5
C21—C22—H22119.0O40—C44—H44A110.0
C24—C23—C22118.5 (9)C43—C44—H44A110.0
C24—C23—C27122.5 (11)O40—C44—H44B110.0
C22—C23—C27119.0 (11)C43—C44—H44B110.0
C23—C24—C25122.5 (9)H44A—C44—H44B108.4
C23—C24—H24118.7
C1—Re1—C9—C181.3 (7)C15—N1—C20—C2194.5 (9)
C2—Re1—C9—C1890.8 (7)C16—N1—C20—C2184.7 (10)
C4—Re1—C9—C1890.4 (7)C15—N1—C20—C2584.9 (10)
C1—Re1—C9—C10173.2 (6)C16—N1—C20—C2595.9 (10)
C2—Re1—C9—C1097.2 (6)C25—C20—C21—C220.1 (12)
C4—Re1—C9—C1081.5 (6)N1—C20—C21—C22179.3 (7)
C18—C9—C10—O141.0 (10)C25—C20—C21—C26179.0 (9)
Re1—C9—C10—O14170.3 (4)N1—C20—C21—C260.4 (12)
C18—C9—C10—C11177.6 (8)C20—C21—C22—C230.0 (14)
Re1—C9—C10—C1111.1 (10)C26—C21—C22—C23178.9 (10)
O14—C10—C11—C120.6 (7)C21—C22—C23—C240.1 (16)
C9—C10—C11—C12179.2 (7)C21—C22—C23—C27178.1 (11)
O14—C10—C11—Re2175.6 (4)C22—C23—C24—C250.3 (17)
C9—C10—C11—Re25.7 (11)C27—C23—C24—C25178.2 (12)
C5—Re2—C11—C10179.8 (6)C23—C24—C25—C200.4 (15)
C6—Re2—C11—C1088.6 (6)C23—C24—C25—C28177.4 (10)
C8—Re2—C11—C1089.4 (6)C21—C20—C25—C240.3 (13)
C5—Re2—C11—C126.5 (7)N1—C20—C25—C24179.0 (8)
C6—Re2—C11—C1297.7 (7)C21—C20—C25—C28177.6 (8)
C8—Re2—C11—C1284.3 (7)N1—C20—C25—C283.1 (12)
C10—C11—C12—C130.1 (8)C15—N2—C29—C3492.4 (10)
Re2—C11—C12—C13174.8 (5)C17—N2—C29—C3487.7 (10)
C11—C12—C13—O140.6 (8)C15—N2—C29—C3089.4 (10)
C11—C12—C13—C15174.6 (7)C17—N2—C29—C3090.6 (10)
C11—C10—O14—C131.0 (7)C34—C29—C30—C313.7 (13)
C9—C10—O14—C13179.8 (6)N2—C29—C30—C31178.2 (7)
C12—C13—O14—C101.0 (7)C34—C29—C30—C35178.7 (9)
C15—C13—O14—C10175.2 (6)N2—C29—C30—C350.6 (12)
C17—N2—C15—N10.2 (9)C29—C30—C31—C322.2 (14)
C29—N2—C15—N1179.8 (8)C35—C30—C31—C32179.8 (10)
C17—N2—C15—C13178.5 (8)C30—C31—C32—C330.0 (16)
C29—N2—C15—C131.5 (13)C30—C31—C32—C36177.5 (10)
C16—N1—C15—N20.5 (9)C31—C32—C33—C341.1 (16)
C20—N1—C15—N2179.8 (7)C36—C32—C33—C34176.4 (11)
C16—N1—C15—C13178.9 (8)C30—C29—C34—C332.7 (13)
C20—N1—C15—C131.8 (12)N2—C29—C34—C33179.2 (8)
C12—C13—C15—N2177.7 (8)C30—C29—C34—C37178.3 (9)
O14—C13—C15—N22.7 (11)N2—C29—C34—C370.2 (13)
C12—C13—C15—N10.3 (13)C32—C33—C34—C290.2 (14)
O14—C13—C15—N1175.3 (7)C32—C33—C34—C37179.1 (10)
C15—N1—C16—C170.7 (11)C44—O40—C41—C4232.4
C20—N1—C16—C17179.9 (8)O40—C41—C42—C4330.3
N1—C16—C17—N20.5 (12)C41—C42—C43—C4416.4
C15—N2—C17—C160.2 (11)C41—O40—C44—C4322.0
C29—N2—C17—C16179.8 (8)C42—C43—C44—O402.6

Experimental details

Crystal data
Chemical formula[Re2(C27H25N2O2)H(CO)8]·0.67C4H8O
Mr1054.99
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.7058 (7), 13.8293 (8), 13.9679 (8)
α, β, γ (°)60.760 (1), 77.680 (1), 89.564 (1)
V3)2078.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.87
Crystal size (mm)0.27 × 0.18 × 0.06
Data collection
DiffractometerSiemens P4 with SMART 1000 CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.366, 0.703
No. of measured, independent and
observed [I > 2σ(I)] reflections
11527, 7743, 6404
Rint0.025
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.137, 1.16
No. of reflections7743
No. of parameters456
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.10, 0.83

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), SHELXTL and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), POV-RAY (Cason, 2004) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

r.m.s. deviations of atoms (δrms, Å) and dihedral angles between planes (°) for selected mean planes top
PlaneAtomsδrmsPlane:1234
1C20–C260.001
2C29–C340.01134.8 (4)
3N1/N2/C15–C170.00384.8 (3)86.2 (3)
4C10–C13/O140.00479.3 (5)87.3 (4)5.5 (7)
5Re1/Re2/C9–C110.04111.1 (6)5.7 (4)
 

Acknowledgements

Funding received for this work from the University of Pretoria and the National Research Foundation is acknowledged.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.  Google Scholar
First citationChia, E. Y., Naeem, S., Delaude, L., White, A. J. P. & Wilton-Ely, J. D. E. T. (2011). Dalton Trans. 40, 6645–6658.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKreissl, F. R., Eberl, K. & Uedelhoven, W. (1977). Chem. Ber. 110, 3782–3791.  CAS Google Scholar
First citationKreissl, F. R., Frank, A., Schubert, U., Lindner, T. L. & Huttner, G. (1976). Angew. Chem. Int. Ed. Engl. 15, 632–633.  CSD CrossRef Web of Science Google Scholar
First citationLi, X., Schopf, M., Stephan, J., Kipke, J., Harms, K. & Sundermeyer, J. (2006). Organometallics, 25, 528–530.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaeem, S., Delaude, L., White, A. J. P. & Wilton-Ely, J. D. E. T. (2010). Inorg. Chem. 49, 1784–1793.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m308-m309
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds