organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R*,2S*,4S*,5R*)-Cyclo­hexane-1,2:4,5-tetra­carb­­oxy­lic dianhydride

aDepartment of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, bDepartment of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, and cDepartment of Research and Development, Gas Chemical Division, Iwatani Industrial Gases Corporation Ltd, 10 Otakasu-cho, Amagasaki, Hyogo 660-0842, Japan
*Correspondence e-mail: auchida@biomol.sci.toho-u.ac.jp

(Received 28 December 2011; accepted 26 January 2012; online 4 February 2012)

The title compound, C10H8O6, a promising raw material to obtain colorless polyimides which are applied to microelectronic and optoelectronic devices, adopts a folded conformation in which the dihedral angle between the two anhydro rings is 55.15 (8)°. The central six-membered ring assumes a conformation inter­mediate between boat and twist-boat. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, forming a layer parallel to the bc plane.

Related literature

For microelectronic applications of the present compound, see: Ando et al. (2010[Ando, S., Ueda, M., Kakimoto, M., Kochi, M., Takeichi, T., Hasegawa, M. & Yokota, R. (2010). The Latest Polyimides: Fundamentals and Applications, 2nd ed. Tokyo: NTS.]). For background to polyimides, see: Hasegawa et al. (2007[Hasegawa, M., Horiuchi, M. & Wada, Y. (2007). High Perform. Polym. 19, 175-193.], 2008[Hasegawa, M., Fujii, M., Uchida, A., Hirano, D., Yamaguchi, S., Takezawa, E. & Ishikawa, A. (2008). Polym. Prep. Jpn, 57, 4031-4032.]); Hasegawa & Horie (2001[Hasegawa, M. & Horie, K. (2001). Prog. Polym. Sci. 26, 259-335.]). For a related structure, see: Uchida et al. (2003[Uchida, A., Hasegawa, M. & Manami, H. (2003). Acta Cryst. C59, o435-o438.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8O6

  • Mr = 224.16

  • Monoclinic, P 21 /c

  • a = 12.167 (2) Å

  • b = 7.1380 (14) Å

  • c = 10.626 (2) Å

  • β = 90.12 (3)°

  • V = 922.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.51 × 0.42 × 0.42 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.945

  • 6648 measured reflections

  • 2285 independent reflections

  • 2015 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.140

  • S = 1.00

  • 2285 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3i 0.98 2.40 3.3384 (19) 159
C3—H3B⋯O6ii 0.97 2.58 3.429 (2) 146
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Aromatic polyimides (PI) have been widely applied to microelectronic and optoelectronic devices for their reliable combined properties: considerably high glass transition temperatures (Tg), non-flammability, and good dielectric and mechanical properties (Ando et al., 2010). Conventional aromatic PI films are intensively colored on the basis of charge-transfer (CT) interactions (Hasegawa & Horie, 2001). However, the coloration often disturbs optical applications of PIs. Recently, there is a strong demand that further lightens the total weights of flat panel displays by replacing fragile inorganic glass substrates (~400 µm thick) by plastic substrates (~100 µm thick). However, it is not easy to develop the practically useful plastic substrates simultaneously possessing excellent optical transparency and sufficient heat resistance (Tg's > 250 °C) for the device fabrication processes such as inorganic transparent electrode deposition. The most effective strategy for completely erasing the significant PI film coloration is to use non-aromatic (cycloaliphatic) monomers either in tetracarboxylic dianhydride or diamine, thereby the CT interactions are inhibited. Our previous work illustrated that the equimolar polyaddition of cis, cis, cis-1,2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA), synthesized by hydrogenation of pyromellitic dianhydride (PMDA), and some diamines indeed led to colorless PIs with very high Tg's (Hasegawa et al., 2007). However, the obtained PI films were very brittle in some cases owing to poor chain entanglement caused by insufficient molecular weights of the resultant PIs, which come from the insufficient reactivity of H-PMDA with diamines. The low reactivity of H-PMDA can be explained in terms of its steric structure (Uchida et al., 2003). In order to solve this crucial problem, we developed another H-PMDA isomer, i.e., 1R*, 2S*, 4S*, 5R*-cyclohexanetetracarboxylic dianhydride (H"-PMDA) (Hasegawa et al., 2008). The present work reports the crystal structure of this compound.

Related literature top

For microelectronic application of the present compound, see: Ando et al. (2010). For background to polyimides, see: Hasegawa et al. (2007, 2008); Hasegawa & Horie (2001). For a related structure, see: Uchida et al. (2003).

Experimental top

H"-PMDA was synthesized as follows (Hasegawa et al., 2008); PMDA was hydrolyzed with a NaOH aqueous solution. The pyromellitic acid tetrasodium salt formed was hydrogenated in a high-pressure hydrogen atmosphere in the presence of a ruthenium catalyst, and neutralized with conc. HCl. The tetracarboxylic acid obtained was isomerized by dehydrating with acetic anhydride at a precisely controlled temperature. Crystals of the title compound suitable for X-ray analysis were obtained from an acetic anhydride solution.

Refinement top

All H atoms were placed in geometrical positions (C—H = 0.98 and 0.97 Å for CH and CH2, respectively) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. The dashed lines indicate C—H···O intermolecular interactions.
(1R*,3R*,7S*,9S*)- 5,11-dioxatricyclo[7.3.0.03,7]dodecane-4,6,10,12-tetrone top
Crystal data top
C10H8O6F(000) = 464
Mr = 224.16Dx = 1.613 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3549 reflections
a = 12.167 (2) Åθ = 2.5–28.3°
b = 7.1380 (14) ŵ = 0.14 mm1
c = 10.626 (2) ÅT = 296 K
β = 90.12 (3)°Block, colorless
V = 922.8 (3) Å30.51 × 0.42 × 0.42 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2285 independent reflections
Radiation source: fine-focus sealed tube2015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.3°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.934, Tmax = 0.945k = 99
6648 measured reflectionsl = 714
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0954P)2 + 0.121P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2285 reflectionsΔρmax = 0.30 e Å3
146 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.057 (8)
Crystal data top
C10H8O6V = 922.8 (3) Å3
Mr = 224.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.167 (2) ŵ = 0.14 mm1
b = 7.1380 (14) ÅT = 296 K
c = 10.626 (2) Å0.51 × 0.42 × 0.42 mm
β = 90.12 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2285 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2015 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.945Rint = 0.026
6648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
2285 reflectionsΔρmin = 0.18 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.05049 (8)0.0274 (2)0.67601 (13)0.0712 (4)
O20.97350 (9)0.22073 (16)0.58580 (11)0.0583 (3)
O30.85376 (13)0.43198 (17)0.50962 (13)0.0773 (4)
O40.54696 (9)0.16073 (17)0.83493 (12)0.0642 (3)
O50.61479 (8)0.12795 (16)0.85526 (9)0.0504 (3)
O60.68964 (10)0.40914 (17)0.82316 (12)0.0662 (4)
C10.85268 (9)0.02100 (17)0.69704 (11)0.0371 (3)
H10.84920.00030.78810.045*
C20.79051 (10)0.20009 (16)0.66127 (11)0.0382 (3)
H20.77810.27480.73730.046*
C30.68030 (11)0.16836 (17)0.59459 (13)0.0439 (3)
H3A0.63500.27940.60320.053*
H3B0.69300.14730.50560.053*
C40.62021 (9)0.00055 (17)0.65005 (11)0.0374 (3)
H40.55300.02040.60100.045*
C50.68715 (10)0.18238 (16)0.65113 (11)0.0363 (3)
H50.65730.26890.58810.044*
C60.80993 (10)0.15105 (16)0.62629 (12)0.0401 (3)
H6A0.85090.26080.65280.048*
H6B0.82160.13420.53670.048*
C70.96943 (10)0.0603 (2)0.65718 (13)0.0479 (3)
C80.86994 (13)0.3023 (2)0.57707 (14)0.0508 (4)
C90.58864 (9)0.0285 (2)0.78582 (13)0.0431 (3)
C100.66715 (10)0.2597 (2)0.78074 (13)0.0434 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0325 (5)0.0985 (10)0.0825 (9)0.0007 (5)0.0011 (5)0.0044 (7)
O20.0524 (6)0.0621 (7)0.0605 (7)0.0161 (5)0.0189 (5)0.0008 (5)
O30.1034 (10)0.0551 (7)0.0736 (8)0.0151 (7)0.0130 (7)0.0214 (6)
O40.0493 (6)0.0756 (8)0.0679 (7)0.0162 (5)0.0054 (5)0.0189 (6)
O50.0465 (5)0.0679 (7)0.0369 (5)0.0015 (4)0.0045 (4)0.0062 (4)
O60.0716 (7)0.0576 (7)0.0694 (7)0.0034 (5)0.0005 (6)0.0278 (6)
C10.0332 (5)0.0456 (6)0.0326 (5)0.0024 (4)0.0015 (4)0.0029 (5)
C20.0437 (6)0.0349 (6)0.0359 (6)0.0044 (4)0.0042 (5)0.0022 (4)
C30.0494 (7)0.0388 (6)0.0436 (7)0.0024 (5)0.0066 (5)0.0077 (5)
C40.0318 (5)0.0427 (6)0.0377 (6)0.0014 (4)0.0066 (4)0.0019 (5)
C50.0359 (6)0.0361 (6)0.0368 (6)0.0030 (4)0.0003 (4)0.0013 (4)
C60.0365 (6)0.0379 (6)0.0461 (7)0.0009 (4)0.0073 (5)0.0005 (5)
C70.0383 (6)0.0595 (8)0.0460 (7)0.0094 (6)0.0031 (5)0.0051 (6)
C80.0627 (9)0.0427 (7)0.0471 (7)0.0126 (6)0.0090 (6)0.0006 (6)
C90.0282 (5)0.0548 (7)0.0464 (7)0.0024 (5)0.0005 (5)0.0042 (5)
C100.0368 (6)0.0487 (7)0.0447 (7)0.0040 (5)0.0011 (5)0.0091 (5)
Geometric parameters (Å, º) top
O1—C71.1850 (19)C2—C31.5322 (18)
O2—C71.3745 (19)C2—H20.9800
O2—C81.391 (2)C3—C41.5226 (17)
O3—C81.1869 (19)C3—H3A0.9700
O4—C91.1923 (17)C3—H3B0.9700
O5—C91.3754 (18)C4—C91.5070 (18)
O5—C101.3853 (18)C4—C51.5390 (16)
O6—C101.1898 (18)C4—H40.9800
C1—C71.5095 (17)C5—C101.5039 (17)
C1—C61.5304 (17)C5—C61.5341 (17)
C1—C21.5328 (17)C5—H50.9800
C1—H10.9800C6—H6A0.9700
C2—C81.5068 (18)C6—H6B0.9700
C7—O2—C8110.60 (10)C5—C4—H4108.4
C9—O5—C10110.53 (10)C10—C5—C6111.75 (10)
C7—C1—C6109.29 (10)C10—C5—C4103.39 (10)
C7—C1—C2103.86 (10)C6—C5—C4112.99 (9)
C6—C1—C2112.36 (10)C10—C5—H5109.5
C7—C1—H1110.4C6—C5—H5109.5
C6—C1—H1110.4C4—C5—H5109.5
C2—C1—H1110.4C1—C6—C5111.25 (10)
C8—C2—C3111.02 (11)C1—C6—H6A109.4
C8—C2—C1103.55 (10)C5—C6—H6A109.4
C3—C2—C1114.98 (10)C1—C6—H6B109.4
C8—C2—H2109.0C5—C6—H6B109.4
C3—C2—H2109.0H6A—C6—H6B108.0
C1—C2—H2109.0O1—C7—O2120.18 (13)
C4—C3—C2110.96 (9)O1—C7—C1129.62 (14)
C4—C3—H3A109.4O2—C7—C1110.16 (12)
C2—C3—H3A109.4O3—C8—O2121.05 (14)
C4—C3—H3B109.4O3—C8—C2129.08 (16)
C2—C3—H3B109.4O2—C8—C2109.86 (12)
H3A—C3—H3B108.0O4—C9—O5120.41 (13)
C9—C4—C3112.95 (11)O4—C9—C4129.29 (13)
C9—C4—C5103.95 (10)O5—C9—C4110.30 (10)
C3—C4—C5114.57 (10)O6—C10—O5119.85 (13)
C9—C4—H4108.4O6—C10—C5129.67 (14)
C3—C4—H4108.4O5—C10—C5110.48 (11)
C7—C1—C2—C813.48 (13)C6—C1—C7—O2109.53 (12)
C6—C1—C2—C8104.52 (11)C2—C1—C7—O210.57 (13)
C7—C1—C2—C3134.77 (11)C7—O2—C8—O3172.68 (15)
C6—C1—C2—C316.77 (14)C7—O2—C8—C26.61 (15)
C8—C2—C3—C4155.23 (11)C3—C2—C8—O342.5 (2)
C1—C2—C3—C438.11 (15)C1—C2—C8—O3166.44 (16)
C2—C3—C4—C963.98 (13)C3—C2—C8—O2136.70 (12)
C2—C3—C4—C554.81 (14)C1—C2—C8—O212.78 (14)
C9—C4—C5—C1011.25 (11)C10—O5—C9—O4176.99 (12)
C3—C4—C5—C10134.99 (11)C10—O5—C9—C43.01 (13)
C9—C4—C5—C6109.73 (11)C3—C4—C9—O445.97 (18)
C3—C4—C5—C614.02 (14)C5—C4—C9—O4170.76 (14)
C7—C1—C6—C5172.96 (10)C3—C4—C9—O5134.04 (11)
C2—C1—C6—C558.22 (13)C5—C4—C9—O59.25 (12)
C10—C5—C6—C174.30 (13)C9—O5—C10—O6175.24 (13)
C4—C5—C6—C141.81 (13)C9—O5—C10—C54.90 (14)
C8—O2—C7—O1179.25 (14)C6—C5—C10—O668.34 (18)
C8—O2—C7—C12.77 (15)C4—C5—C10—O6169.85 (14)
C6—C1—C7—O168.20 (19)C6—C5—C10—O5111.50 (11)
C2—C1—C7—O1171.70 (15)C4—C5—C10—O510.31 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i0.982.403.3384 (19)159
C3—H3B···O6ii0.972.583.429 (2)146
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H8O6
Mr224.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.167 (2), 7.1380 (14), 10.626 (2)
β (°) 90.12 (3)
V3)922.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.51 × 0.42 × 0.42
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
6648, 2285, 2015
Rint0.026
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.140, 1.00
No. of reflections2285
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i0.982.403.3384 (19)159
C3—H3B···O6ii0.972.583.429 (2)146
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z1/2.
 

References

First citationAndo, S., Ueda, M., Kakimoto, M., Kochi, M., Takeichi, T., Hasegawa, M. & Yokota, R. (2010). The Latest Polyimides: Fundamentals and Applications, 2nd ed. Tokyo: NTS.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHasegawa, M., Fujii, M., Uchida, A., Hirano, D., Yamaguchi, S., Takezawa, E. & Ishikawa, A. (2008). Polym. Prep. Jpn, 57, 4031–4032.  Google Scholar
First citationHasegawa, M. & Horie, K. (2001). Prog. Polym. Sci. 26, 259–335.  CrossRef CAS Google Scholar
First citationHasegawa, M., Horiuchi, M. & Wada, Y. (2007). High Perform. Polym. 19, 175–193.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, A., Hasegawa, M. & Manami, H. (2003). Acta Cryst. C59, o435–o438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds