organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Meth­­oxy­phen­yl)-2-{[2-(2-meth­­oxy­phen­yl)hydrazinyl­­idene](nitro)­meth­yl}diazene

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: veschwkg@ufs.ac.za

(Received 19 January 2012; accepted 31 January 2012; online 4 February 2012)

In the title compound, C15H15N5O4, a nitro­formazan derivative, the formazan unit is essentially planar with an r.m.s. deviation of 0.0204 (6) Å and adopts a closed syn,s-cis configuration with an intra­molecular N—H⋯N hydrogen bond. The formazan plane makes dihedral angles of 4.32 (5) and 24.35 (5)° with the benzene rings. The dihedral angle between the formazan plane and the nitro group is 12.58 (8)°. In the crystal, C—H⋯O inter­actions connect the mol­ecules into an inversion dimer.

Related literature

For synthetic background, see: Pelkis et al. (1957[Pelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR (Engl. Transl.), 27, 2190-2194.]). For applications of formazans, see: Irving (1977[Irving, H. M. N. H. (1977). Dithizone. Analytical Sciences Monographs, No. 5. London: The Chemical Society.]). For related structures, see: Gilroy et al. (2008[Gilroy, J. B., Otieno, P. O., Ferguson, M. J., McDonald, R. & Hicks, R. G. (2008). Inorg. Chem. 47, 1279-1286.]); Laing (1977[Laing, M. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1248-1252.]); Mito et al. (1997[Mito, M., Takeda, K., Mukai, K., Azuma, N., Gleiter, M. R., Krieger, C. & Neugebaue, F. A. (1997). J. Phys. Chem. B, 101, 9517-9524.]); von Eschwege et al. (2011[Eschwege, K. G. von, Conradie, J. & Kuhn, A. (2011). J. Phys. Chem. A, 115, 14637-14646.], 2012[Eschwege, K. G. von, Muller, F. & Hosten, E. C. (2012). Acta Cryst. E68, o199-o200.]); von Eschwege & Swarts (2010[Eschwege, K. G. von & Swarts, J. C. (2010). Polyhedron, 29, 1727-1733.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N5O4

  • Mr = 329.32

  • Triclinic, [P \overline 1]

  • a = 7.2025 (5) Å

  • b = 10.9574 (8) Å

  • c = 11.2190 (9) Å

  • α = 117.188 (2)°

  • β = 91.416 (2)°

  • γ = 107.251 (2)°

  • V = 738.66 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.25 × 0.21 × 0.06 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.]) Tmin = 0.668, Tmax = 0.746

  • 10250 measured reflections

  • 3431 independent reflections

  • 2824 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.11

  • S = 1.04

  • 3431 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N2 1.10 (3) 1.73 (3) 2.6117 (15) 134 (3)
C17—H17B⋯O1i 0.98 2.47 3.3325 (16) 146
C27—H27C⋯O2i 0.98 2.65 3.3907 (17) 133
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Imapct GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

During synthesis of the versatile trace metal analysis dithizone reagent, aniline is first diazotized and then treated with nitromethane to form the bright orange–red nitroformazan product (Pelkis et al., 1957). Ammonia and hydrogen sulfide gas is used to substitute the nitro group with sulfur towards the formation of dithizone, the chemistry of which is extensively described by Irving (1977). Single crystal X-ray structures of nitroformazan derivatives were determined by Gilroy et al. (2008) and Mito et al. (1997), and the dithizone structure by Laing (1977), while we performed extensive DFT (von Eschwege et al., 2011) and electrochemistry studies (von Eschwege & Swarts, 2010) on the free ligand. We recently embarked on a study during which we synthesized a series of electronically altered dithizones for the purpose of investigating its altered redox and structural properties. During this process orange 1,5-bis(2-methoxyphenyl)-3-nitroformazan (I, Fig. 1) crystals suitable for X-ray crystallography were grown from an acetone solution overlaid with n-hexane.

The formazan backbone (N4—N3—C1—N1—N2) was found to be highly delocalized, showing minimal bond-length alternation [N1—N2 1.290 (1), N3—N4 1.301 (1), N1—C1 1.356 (2), N3—C1 1.325 (2) Å] which are similar to the values found by Gilroy et al. (2008) for the `closed' nitroformazan derivatives. The backbone was found to be essentially planar with an r.m.s. deviation of 0.0204 Å, and with a maximum deviation 0.0297 (8) Å for atom C1. The N—H bond in the expected intramolecular N—H···N hydrogen bond is elongated due to bridging with a distance of 1.10 (3) Å. Two additional hydrogen bond interactions (C17—H17B···O1i and C27—H27C···O2i; Table 1) are observed between the O atoms of the nitro substituent on the formazan backbone with an adjacent molecule, resulting in the formation of 'dimeric' unit (Fig. 2) and a parallel sheet configuration when viewed along the b-axis (Fig. 3). The nitro group is twisted by 12.58 (8)° relative to the plane of the formazan backbone, while average twisting is observed for the phenyl substituents [4.32 (5)° and 24.35 (5)°].

Related literature top

For synthetic background, see: Pelkis et al. (1957). For applications of formazans, see: Irving (1977). For related structures, see: Gilroy et al. (2008); Laing (1977); Mito et al. (1997); von Eschwege et al. (2011, 2012); von Eschwege & Swarts (2010).

Experimental top

Solvents (AR) purchased from Merck and reagents from Sigma–Aldrich were used without further purification. The ortho-methoxy derivative of nitroformazan was prepared according to the procedure reported by Pelkis et al. (1957). M.p. 164 °C; λmax (dicloromethane) 362, 462 nm. δH (600 MHz, CDCl3) 14.92 (1H, s, NH), 4.03 (6H, s, OCH3), 8.00–7.04 (8H, m, C6H4).

Refinement top

The C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95 or 0.98 Å) and constrained to ride on their parent atoms. The imine H atom (H4) bonded to the dithizone group was located in a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Intermolecular hydrogen bond interactions (dashed bonds) of the title compound. Non-relevant H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
[Figure 3] Fig. 3. A packing diagram of the title compound, illustrating the parallel sheet configuration as viewed along the b axis.
1-(2-Methoxyphenyl)-2-{[2-(2-methoxyphenyl)hydrazinylidene](nitro)methyl}diazene top
Crystal data top
C15H15N5O4Z = 2
Mr = 329.32F(000) = 344
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2025 (5) ÅCell parameters from 5015 reflections
b = 10.9574 (8) Åθ = 3.0–28.4°
c = 11.2190 (9) ŵ = 0.11 mm1
α = 117.188 (2)°T = 100 K
β = 91.416 (2)°Cuboid, red
γ = 107.251 (2)°0.25 × 0.21 × 0.06 mm
V = 738.66 (10) Å3
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3431 independent reflections
Radiation source: sealed tube2824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 512 pixels mm-1θmax = 28.0°, θmin = 2.1°
ϕ and ω scansh = 97
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1014
Tmin = 0.668, Tmax = 0.746l = 1414
10250 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.2301P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.11(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.32 e Å3
3431 reflectionsΔρmin = 0.22 e Å3
223 parameters
Crystal data top
C15H15N5O4γ = 107.251 (2)°
Mr = 329.32V = 738.66 (10) Å3
Triclinic, P1Z = 2
a = 7.2025 (5) ÅMo Kα radiation
b = 10.9574 (8) ŵ = 0.11 mm1
c = 11.2190 (9) ÅT = 100 K
α = 117.188 (2)°0.25 × 0.21 × 0.06 mm
β = 91.416 (2)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3431 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2824 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.746Rint = 0.027
10250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.11H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
3431 reflectionsΔρmin = 0.22 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24373 (18)0.35944 (13)0.57201 (13)0.0165 (3)
C110.20805 (18)0.09665 (13)0.23162 (13)0.0163 (3)
C120.26683 (17)0.09557 (13)0.11311 (13)0.0163 (3)
C130.22134 (18)0.03694 (14)0.00672 (13)0.0187 (3)
H130.25940.03850.08770.022*
C140.11980 (19)0.16760 (14)0.00785 (14)0.0201 (3)
H140.08740.25790.09010.024*
C150.06606 (18)0.16640 (13)0.11022 (14)0.0193 (3)
H150.00050.25590.10950.023*
C160.10804 (18)0.03447 (13)0.22960 (13)0.0175 (3)
H160.06850.03360.31010.021*
C170.4352 (2)0.23340 (14)0.00981 (14)0.0202 (3)
H17A0.51080.16750.02690.03*
H17B0.51980.33340.03570.03*
H17C0.3210.20220.05980.03*
C210.26964 (17)0.64157 (13)0.49771 (13)0.0161 (3)
C220.27401 (18)0.65519 (13)0.37900 (13)0.0166 (3)
C230.27496 (19)0.78593 (14)0.38634 (13)0.0188 (3)
H230.27670.7960.30660.023*
C240.27338 (19)0.90125 (13)0.50974 (14)0.0203 (3)
H240.27310.98970.51390.024*
C250.2722 (2)0.88841 (14)0.62726 (14)0.0215 (3)
H250.27320.96840.71160.026*
C260.26962 (19)0.75873 (14)0.62146 (13)0.0192 (3)
H260.26780.74970.70170.023*
C270.2702 (2)0.54524 (15)0.14037 (13)0.0226 (3)
H27A0.14810.56110.12180.034*
H27B0.27250.45370.06450.034*
H27C0.38480.62680.15020.034*
N10.24998 (15)0.49180 (11)0.59013 (11)0.0178 (2)
N20.26924 (15)0.50650 (11)0.48294 (11)0.0164 (2)
N30.23306 (15)0.23476 (11)0.46437 (11)0.0174 (2)
N40.24656 (15)0.23359 (11)0.34850 (11)0.0168 (2)
N50.23346 (15)0.34848 (11)0.69742 (11)0.0178 (2)
O10.20306 (15)0.44731 (10)0.79751 (10)0.0243 (2)
O20.25603 (15)0.24155 (10)0.69729 (10)0.0246 (2)
O110.36796 (14)0.22919 (9)0.12699 (9)0.0208 (2)
O210.27761 (14)0.53657 (9)0.26384 (9)0.0210 (2)
H40.272 (5)0.341 (4)0.356 (3)0.127 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0164 (6)0.0176 (6)0.0159 (6)0.0044 (5)0.0028 (4)0.0094 (5)
C110.0154 (5)0.0162 (5)0.0161 (6)0.0064 (5)0.0006 (4)0.0064 (5)
C120.0155 (5)0.0164 (5)0.0186 (6)0.0064 (5)0.0023 (5)0.0093 (5)
C130.0199 (6)0.0209 (6)0.0168 (6)0.0089 (5)0.0039 (5)0.0094 (5)
C140.0209 (6)0.0166 (6)0.0201 (7)0.0078 (5)0.0012 (5)0.0060 (5)
C150.0192 (6)0.0164 (6)0.0240 (7)0.0061 (5)0.0013 (5)0.0112 (5)
C160.0174 (6)0.0201 (6)0.0185 (6)0.0076 (5)0.0031 (5)0.0115 (5)
C170.0219 (6)0.0218 (6)0.0204 (7)0.0074 (5)0.0069 (5)0.0129 (5)
C210.0147 (5)0.0156 (5)0.0190 (6)0.0051 (5)0.0032 (5)0.0092 (5)
C220.0159 (5)0.0154 (5)0.0169 (6)0.0050 (5)0.0027 (4)0.0069 (5)
C230.0215 (6)0.0190 (6)0.0180 (6)0.0071 (5)0.0034 (5)0.0108 (5)
C240.0223 (6)0.0153 (6)0.0236 (7)0.0074 (5)0.0022 (5)0.0092 (5)
C250.0261 (6)0.0176 (6)0.0183 (6)0.0098 (5)0.0044 (5)0.0054 (5)
C260.0215 (6)0.0208 (6)0.0167 (6)0.0084 (5)0.0048 (5)0.0094 (5)
C270.0320 (7)0.0222 (6)0.0158 (6)0.0111 (6)0.0045 (5)0.0098 (5)
N10.0163 (5)0.0195 (5)0.0175 (5)0.0041 (4)0.0023 (4)0.0102 (4)
N20.0175 (5)0.0163 (5)0.0172 (5)0.0053 (4)0.0034 (4)0.0098 (4)
N30.0161 (5)0.0211 (5)0.0165 (5)0.0061 (4)0.0026 (4)0.0106 (4)
N40.0178 (5)0.0163 (5)0.0164 (5)0.0059 (4)0.0026 (4)0.0081 (4)
N50.0183 (5)0.0171 (5)0.0163 (5)0.0027 (4)0.0019 (4)0.0088 (4)
O10.0331 (5)0.0208 (5)0.0164 (5)0.0081 (4)0.0070 (4)0.0077 (4)
O20.0335 (5)0.0227 (5)0.0237 (5)0.0103 (4)0.0056 (4)0.0158 (4)
O110.0258 (5)0.0171 (4)0.0179 (5)0.0038 (4)0.0050 (4)0.0095 (4)
O210.0334 (5)0.0171 (4)0.0150 (5)0.0115 (4)0.0060 (4)0.0081 (4)
Geometric parameters (Å, º) top
C1—N31.3252 (16)C21—C221.4063 (18)
C1—N11.3559 (16)C21—N21.4111 (15)
C1—N51.4675 (16)C22—O211.3588 (15)
C11—C161.3926 (17)C22—C231.3949 (17)
C11—C121.4013 (18)C23—C241.3872 (18)
C11—N41.4089 (16)C23—H230.95
C12—O111.3608 (14)C24—C251.3884 (19)
C12—C131.3911 (17)C24—H240.95
C13—C141.3952 (18)C25—C261.3869 (18)
C13—H130.95C25—H250.95
C14—C151.3847 (19)C26—H260.95
C14—H140.95C27—O211.4319 (16)
C15—C161.3880 (18)C27—H27A0.98
C15—H150.95C27—H27B0.98
C16—H160.95C27—H27C0.98
C17—O111.4278 (15)N1—N21.2897 (15)
C17—H17A0.98N3—N41.3005 (15)
C17—H17B0.98N4—H41.10 (3)
C17—H17C0.98N5—O21.2292 (14)
C21—C261.3953 (18)N5—O11.2342 (15)
N3—C1—N1134.09 (12)O21—C22—C21116.00 (11)
N3—C1—N5112.67 (11)C23—C22—C21119.20 (11)
N1—C1—N5113.09 (11)C24—C23—C22120.17 (12)
C16—C11—C12120.02 (11)C24—C23—H23119.9
C16—C11—N4122.24 (12)C22—C23—H23119.9
C12—C11—N4117.68 (11)C23—C24—C25120.55 (12)
O11—C12—C13125.15 (12)C23—C24—H24119.7
O11—C12—C11115.31 (11)C25—C24—H24119.7
C13—C12—C11119.54 (11)C26—C25—C24119.98 (12)
C12—C13—C14119.96 (12)C26—C25—H25120
C12—C13—H13120C24—C25—H25120
C14—C13—H13120C25—C26—C21119.99 (12)
C15—C14—C13120.36 (12)C25—C26—H26120
C15—C14—H14119.8C21—C26—H26120
C13—C14—H14119.8O21—C27—H27A109.5
C14—C15—C16120.00 (11)O21—C27—H27B109.5
C14—C15—H15120H27A—C27—H27B109.5
C16—C15—H15120O21—C27—H27C109.5
C15—C16—C11120.10 (12)H27A—C27—H27C109.5
C15—C16—H16120H27B—C27—H27C109.5
C11—C16—H16120N2—N1—C1114.18 (11)
O11—C17—H17A109.5N1—N2—C21115.34 (10)
O11—C17—H17B109.5N4—N3—C1117.69 (11)
H17A—C17—H17B109.5N3—N4—C11117.09 (10)
O11—C17—H17C109.5N3—N4—H4113.3 (17)
H17A—C17—H17C109.5C11—N4—H4129.2 (17)
H17B—C17—H17C109.5O2—N5—O1123.48 (11)
C26—C21—C22120.09 (11)O2—N5—C1118.27 (11)
C26—C21—N2123.72 (12)O1—N5—C1118.25 (11)
C22—C21—N2116.18 (11)C12—O11—C17117.37 (10)
O21—C22—C23124.80 (12)C22—O21—C27116.76 (10)
C16—C11—C12—O11178.36 (11)C22—C21—C26—C250.55 (19)
N4—C11—C12—O114.19 (17)N2—C21—C26—C25179.30 (12)
C16—C11—C12—C131.18 (19)N3—C1—N1—N28.2 (2)
N4—C11—C12—C13176.26 (11)N5—C1—N1—N2176.64 (10)
O11—C12—C13—C14178.79 (12)C1—N1—N2—C21178.01 (10)
C11—C12—C13—C140.71 (19)C26—C21—N2—N16.28 (17)
C12—C13—C14—C150.8 (2)C22—C21—N2—N1174.93 (11)
C13—C14—C15—C161.89 (19)N1—C1—N3—N46.7 (2)
C14—C15—C16—C111.41 (19)N5—C1—N3—N4178.05 (10)
C12—C11—C16—C150.12 (19)C1—N3—N4—C11171.54 (10)
N4—C11—C16—C15177.20 (11)C16—C11—N4—N317.56 (18)
C26—C21—C22—O21178.75 (11)C12—C11—N4—N3165.06 (11)
N2—C21—C22—O210.09 (16)N3—C1—N5—O214.10 (16)
C26—C21—C22—C231.06 (18)N1—C1—N5—O2169.63 (10)
N2—C21—C22—C23179.90 (11)N3—C1—N5—O1166.06 (11)
O21—C22—C23—C24179.23 (12)N1—C1—N5—O110.20 (16)
C21—C22—C23—C240.57 (19)C13—C12—O11—C170.99 (18)
C22—C23—C24—C250.4 (2)C11—C12—O11—C17178.52 (10)
C23—C24—C25—C261.0 (2)C23—C22—O21—C273.81 (18)
C24—C25—C26—C210.5 (2)C21—C22—O21—C27176.39 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N21.10 (3)1.73 (3)2.6117 (15)134 (3)
N4—H4···N11.10 (3)2.42 (3)2.8812 (16)103 (2)
C17—H17B···O1i0.982.473.3325 (16)146
C27—H27C···O2i0.982.653.3907 (17)133
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H15N5O4
Mr329.32
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2025 (5), 10.9574 (8), 11.2190 (9)
α, β, γ (°)117.188 (2), 91.416 (2), 107.251 (2)
V3)738.66 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.21 × 0.06
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.668, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
10250, 3431, 2824
Rint0.027
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.11, 1.04
No. of reflections3431
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N21.10 (3)1.73 (3)2.6117 (15)134 (3)
N4—H4···N11.10 (3)2.42 (3)2.8812 (16)103 (2)
C17—H17B···O1i0.982.473.3325 (16)146.1
C27—H27C···O2i0.982.653.3907 (17)132.8
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Financial assistance from the University of the Free State is gratefully acknowledged. We also express our gratitude towards SASOL and the South African National Research Foundation (SA-NRF/THRIP) for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Imapct GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEschwege, K. G. von, Conradie, J. & Kuhn, A. (2011). J. Phys. Chem. A, 115, 14637–14646.  Web of Science PubMed Google Scholar
First citationEschwege, K. G. von, Muller, F. & Hosten, E. C. (2012). Acta Cryst. E68, o199–o200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEschwege, K. G. von & Swarts, J. C. (2010). Polyhedron, 29, 1727–1733.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGilroy, J. B., Otieno, P. O., Ferguson, M. J., McDonald, R. & Hicks, R. G. (2008). Inorg. Chem. 47, 1279–1286.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIrving, H. M. N. H. (1977). Dithizone. Analytical Sciences Monographs, No. 5. London: The Chemical Society.  Google Scholar
First citationLaing, M. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1248–1252.  CSD CrossRef Google Scholar
First citationMito, M., Takeda, K., Mukai, K., Azuma, N., Gleiter, M. R., Krieger, C. & Neugebaue, F. A. (1997). J. Phys. Chem. B, 101, 9517–9524.  CSD CrossRef CAS Web of Science Google Scholar
First citationPelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR (Engl. Transl.), 27, 2190–2194.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds