organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o892-o893

Di­ethyl 2,6-di­methyl-4-(5-phenyl-1H-pyrazol-4-yl)-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India, and cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel
*Correspondence e-mail: hkfun@usm.my

(Received 21 February 2012; accepted 23 February 2012; online 29 February 2012)

In the title compound, C22H25N3O4, the dihydro­pyridine ring adopts a flattened boat conformation. The pyrazole ring makes a dihedral angle of 29.04 (5)° with the benzene ring. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond which generates an S(9) ring motif. In the crystal, mol­ecules are linked via N—H⋯O and C—H⋯N hydrogen bonds into a two-dimensional network parallel to the ab plane. The crystal structure is further consolidated by weak C—H⋯π inter­actions.

Related literature

For details and applications of dihydro­pyridine, see: Stout & Meyers (1982[Stout, D. M. & Meyers, A. I. (1982). Chem. Rev. 82, 223-243.]); Böcker & Guengerich (1986[Böcker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596-1603.]); Vo et al. (1995[Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformation, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Vijesh, A. M., Isloor, A. M. & Malladi, S. (2011). Acta Cryst. E67, o1417-o1418.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25N3O4

  • Mr = 395.45

  • Monoclinic, P 21 /c

  • a = 9.7700 (4) Å

  • b = 8.6431 (4) Å

  • c = 24.8878 (9) Å

  • β = 105.646 (2)°

  • V = 2023.73 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.32 × 0.32 × 0.20 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.982

  • 27563 measured reflections

  • 7361 independent reflections

  • 5987 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.04

  • 7361 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and C1–C6 rings.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O3i 0.89 2.09 2.9597 (12) 167
N1—H2⋯O1ii 0.90 1.96 2.8506 (10) 171
C3—H3A⋯N2iii 0.93 2.51 3.4202 (13) 164
C5—H5A⋯O4 0.93 2.50 3.4266 (12) 172
C21—H21C⋯N2iv 0.96 2.45 3.3300 (14) 153
C16—H16ACg1v 0.97 2.80 3.5318 (11) 133
C17—H17CCg2 0.96 2.99 3.7750 (15) 140
C19—H19ACg2vi 0.97 2.88 3.7079 (11) 144
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) x-1, y, z; (iv) x, y+1, z; (v) -x+1, -y+1, -z; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,4-Dihydropyridine (DHP) (Stout & Meyers, 1982) scaffold is a heterocyclic unit with remarkable pharmacological efficiency. They are widely used clinically as calcium channel blockers for the treatment of cardiovascular diseases. For example, nifedipine and nitrendipine are used for the treatment of hypertension and angina pectorism with nisoldipine being a potent vasodilator and nimodipine exhibiting selectivity for cerebral vasculature (Böcker & Guengerich, 1986). A number of DHP derivatives are employed as potential drug candidates for the treatment of congestive heart failure (Vo et al., 1995). Prompted by the diverse activities of 1,4-dihydropyridines, we have synthesized the title compound to study its crystal structure.

In the title compound (Fig. 1), the dihydropyridine (N3/C10–C14) ring adopts a flattened boat conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.2966 (9) Å, θ = 73.57 (17)° and ϕ = 185.61 (19)°. The pyrazole ring (N1/N2/C7–C9) is essentially planar [maximum deviation of 0.003 (1) Å at atoms C8 and C9] and makes a dihedral angle of 29.04 (5)° with the benzene ring (C1–C6). The molecular structure is stabilized by an intramolecular C5—H5A···O4 hydrogen bond (Table 1) which generates an S(9) ring motif (Bernstein et al., 1995). The bond lengths (Allen et al., 1987) and angles are within normal ranges are comparable to the related structure (Fun et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked via intermolecular N3—H1···O3, N1—H2···O1, C3—H3A···N2 and C21—H21C···N2 hydrogen bonds (Table 1) into two-dimensional networks parallel to the ab plane. The crystal structure is further consolidated by weak C—H···π interactions, involving the centroids of the pyrazole ring (N1/N2/C7–C9; Cg1; Table 1) and benzene ring (C1–C6; Cg2; Table 1).

Related literature top

For details and applications of dihydropyridine, see: Stout & Meyers (1982); Böcker & Guengerich (1986); Vo et al. (1995). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformation, see: Cremer & Pople (1975). For a related structure, see: Fun et al. (2011). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

3-Phenyl-1H-pyrazole-4-carbaldehyde (0.172 g, 1.0 mmol), ethylacetoacetate (0.26 g, 2.0 mmol) and ammonium acetate (0.092 g, 1.2 mmol) in ethanol (7 ml) were refluxed for 5 h. After the completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from ethanol: water mixture. Yield: 0.285 g, 72.15%. M.p.: 476–478 K.

Refinement top

Atoms H1 and H2 were located in a difference map and were fixed at their found positions with Uiso(H) = 1.2 Ueq(N) (N—H = 0.8870 and 0.9024 Å). The remaining H atoms were positioned geometrically and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.93–0.98 Å). A rotating group model was applied to the methyl groups. In the final refinement, the outliners (1 3 3), (-2 3 0) and (-2 3 10) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular hydrogen bond was shown as dash line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Diethyl 2,6-dimethyl-4-(5-phenyl-1H-pyrazol-4-yl)- 1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C22H25N3O4F(000) = 840
Mr = 395.45Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8661 reflections
a = 9.7700 (4) Åθ = 3.3–32.7°
b = 8.6431 (4) ŵ = 0.09 mm1
c = 24.8878 (9) ÅT = 100 K
β = 105.646 (2)°Block, colourless
V = 2023.73 (14) Å30.32 × 0.32 × 0.20 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7361 independent reflections
Radiation source: fine-focus sealed tube5987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 32.7°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.972, Tmax = 0.982k = 1312
27563 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.510P]
where P = (Fo2 + 2Fc2)/3
7361 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H25N3O4V = 2023.73 (14) Å3
Mr = 395.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7700 (4) ŵ = 0.09 mm1
b = 8.6431 (4) ÅT = 100 K
c = 24.8878 (9) Å0.32 × 0.32 × 0.20 mm
β = 105.646 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7361 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5987 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.982Rint = 0.031
27563 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
7361 reflectionsΔρmin = 0.19 e Å3
266 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58615 (8)0.77001 (8)0.04877 (3)0.01973 (14)
O20.46241 (7)0.57230 (8)0.07072 (3)0.01770 (14)
O30.81230 (7)0.30340 (9)0.29673 (3)0.02111 (15)
O40.59607 (7)0.39878 (9)0.25573 (3)0.01732 (14)
N10.64943 (8)0.08372 (9)0.08152 (3)0.01486 (14)
H20.61950.01210.06950.018*
N20.78581 (8)0.12321 (10)0.08546 (3)0.01612 (15)
N30.93751 (8)0.59581 (10)0.17656 (3)0.01588 (15)
H11.02050.64460.18540.019*
C10.34348 (10)0.08036 (11)0.05798 (4)0.01656 (16)
H1A0.38230.04150.03050.020*
C20.20104 (10)0.05325 (12)0.05454 (4)0.01944 (18)
H2A0.14540.00360.02490.023*
C30.14161 (10)0.11085 (13)0.09525 (4)0.02181 (19)
H3A0.04630.09300.09300.026*
C40.22583 (10)0.19531 (13)0.13937 (4)0.02233 (19)
H4A0.18630.23430.16670.027*
C50.36860 (10)0.22241 (12)0.14327 (4)0.01838 (17)
H5A0.42390.27860.17320.022*
C60.42916 (9)0.16544 (10)0.10232 (4)0.01384 (15)
C70.58005 (9)0.18941 (10)0.10518 (3)0.01267 (15)
C80.80244 (9)0.25795 (11)0.11222 (4)0.01455 (15)
H8A0.88660.31430.12080.017*
C90.67828 (9)0.30610 (10)0.12621 (3)0.01221 (15)
C100.66775 (8)0.45725 (10)0.15560 (3)0.01229 (14)
H10A0.57150.46850.15990.015*
C110.77430 (9)0.45646 (10)0.21308 (3)0.01313 (15)
C120.90530 (9)0.51818 (11)0.22054 (4)0.01474 (16)
C130.83443 (9)0.64531 (10)0.13003 (4)0.01427 (15)
C140.69904 (9)0.59162 (10)0.12121 (3)0.01304 (15)
C150.58227 (9)0.65490 (10)0.07696 (4)0.01430 (15)
C160.33872 (10)0.62787 (13)0.02848 (4)0.02195 (19)
H16A0.35220.61440.00840.026*
H16B0.32350.73690.03410.026*
C170.21408 (12)0.53514 (17)0.03417 (6)0.0380 (3)
H17A0.13100.56470.00540.057*
H17B0.19850.55420.07010.057*
H17C0.23270.42710.03060.057*
C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)
C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)
H19A0.60290.36770.33650.025*
H19B0.54820.22070.29950.025*
C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)
H20A0.35710.35250.32090.036*
H20B0.33690.34750.25630.036*
H20C0.39190.49890.28980.036*
C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)
H21A0.83780.73980.05560.028*
H21B0.98850.73540.09840.028*
H21C0.87670.85940.10480.028*
C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)
H22A0.98700.50490.30460.033*
H22B1.07780.61020.27610.033*
H22C1.08640.42970.27190.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0228 (3)0.0136 (3)0.0205 (3)0.0022 (3)0.0019 (3)0.0027 (2)
O20.0125 (3)0.0169 (3)0.0205 (3)0.0013 (2)0.0009 (2)0.0040 (2)
O30.0191 (3)0.0240 (4)0.0201 (3)0.0072 (3)0.0052 (2)0.0062 (3)
O40.0129 (3)0.0244 (4)0.0156 (3)0.0005 (2)0.0055 (2)0.0038 (2)
N10.0135 (3)0.0128 (3)0.0189 (3)0.0013 (3)0.0055 (3)0.0025 (3)
N20.0128 (3)0.0155 (4)0.0205 (3)0.0002 (3)0.0053 (3)0.0011 (3)
N30.0111 (3)0.0180 (4)0.0180 (3)0.0029 (3)0.0031 (3)0.0005 (3)
C10.0158 (4)0.0175 (4)0.0166 (4)0.0030 (3)0.0046 (3)0.0020 (3)
C20.0148 (4)0.0208 (4)0.0214 (4)0.0044 (3)0.0027 (3)0.0024 (3)
C30.0139 (4)0.0231 (5)0.0293 (5)0.0038 (3)0.0073 (3)0.0022 (4)
C40.0173 (4)0.0260 (5)0.0268 (5)0.0043 (4)0.0112 (3)0.0063 (4)
C50.0155 (4)0.0208 (4)0.0202 (4)0.0044 (3)0.0071 (3)0.0052 (3)
C60.0128 (3)0.0135 (4)0.0157 (3)0.0022 (3)0.0046 (3)0.0000 (3)
C70.0124 (3)0.0126 (4)0.0134 (3)0.0010 (3)0.0041 (3)0.0007 (3)
C80.0117 (3)0.0141 (4)0.0176 (4)0.0001 (3)0.0035 (3)0.0000 (3)
C90.0112 (3)0.0120 (4)0.0131 (3)0.0006 (3)0.0028 (3)0.0001 (3)
C100.0109 (3)0.0125 (4)0.0132 (3)0.0003 (3)0.0027 (3)0.0006 (3)
C110.0114 (3)0.0145 (4)0.0132 (3)0.0002 (3)0.0028 (3)0.0007 (3)
C120.0122 (3)0.0157 (4)0.0158 (4)0.0008 (3)0.0028 (3)0.0020 (3)
C130.0140 (3)0.0127 (4)0.0163 (3)0.0007 (3)0.0043 (3)0.0010 (3)
C140.0129 (3)0.0115 (4)0.0144 (3)0.0002 (3)0.0031 (3)0.0004 (3)
C150.0147 (3)0.0120 (4)0.0157 (3)0.0006 (3)0.0033 (3)0.0017 (3)
C160.0156 (4)0.0219 (5)0.0234 (4)0.0011 (3)0.0033 (3)0.0044 (4)
C170.0173 (5)0.0401 (7)0.0481 (7)0.0053 (5)0.0058 (5)0.0133 (6)
C180.0129 (3)0.0144 (4)0.0150 (3)0.0007 (3)0.0035 (3)0.0015 (3)
C190.0205 (4)0.0250 (5)0.0185 (4)0.0006 (4)0.0096 (3)0.0046 (3)
C200.0181 (4)0.0350 (6)0.0214 (4)0.0031 (4)0.0098 (3)0.0007 (4)
C210.0171 (4)0.0170 (4)0.0237 (4)0.0021 (3)0.0074 (3)0.0034 (3)
C220.0147 (4)0.0285 (5)0.0192 (4)0.0039 (4)0.0009 (3)0.0004 (4)
Geometric parameters (Å, º) top
O1—C151.2239 (11)C9—C101.5141 (12)
O2—C151.3442 (11)C10—C141.5219 (12)
O2—C161.4529 (11)C10—C111.5254 (11)
O3—C181.2181 (11)C10—H10A0.9800
O4—C181.3434 (10)C11—C121.3524 (12)
O4—C191.4560 (11)C11—C181.4730 (12)
N1—N21.3531 (10)C12—C221.4993 (12)
N1—C71.3623 (11)C13—C141.3626 (12)
N1—H20.9024C13—C211.4995 (13)
N2—C81.3296 (12)C14—C151.4613 (12)
N3—C131.3817 (11)C16—C171.4961 (16)
N3—C121.3905 (11)C16—H16A0.9700
N3—H10.8870C16—H16B0.9700
C1—C21.3910 (12)C17—H17A0.9600
C1—C61.4002 (12)C17—H17B0.9600
C1—H1A0.9300C17—H17C0.9600
C2—C31.3887 (14)C19—C201.5055 (14)
C2—H2A0.9300C19—H19A0.9700
C3—C41.3886 (14)C19—H19B0.9700
C3—H3A0.9300C20—H20A0.9600
C4—C51.3918 (13)C20—H20B0.9600
C4—H4A0.9300C20—H20C0.9600
C5—C61.3987 (12)C21—H21A0.9600
C5—H5A0.9300C21—H21B0.9600
C6—C71.4713 (11)C21—H21C0.9600
C7—C91.3933 (12)C22—H22A0.9600
C8—C91.4120 (12)C22—H22B0.9600
C8—H8A0.9300C22—H22C0.9600
C15—O2—C16115.90 (7)C14—C13—N3119.09 (8)
C18—O4—C19116.48 (7)C14—C13—C21127.35 (8)
N2—N1—C7113.24 (7)N3—C13—C21113.56 (7)
N2—N1—H2118.7C13—C14—C15121.38 (8)
C7—N1—H2127.2C13—C14—C10120.18 (8)
C8—N2—N1104.02 (7)C15—C14—C10118.36 (7)
C13—N3—C12122.73 (7)O1—C15—O2121.75 (8)
C13—N3—H1118.1O1—C15—C14126.70 (8)
C12—N3—H1114.8O2—C15—C14111.53 (8)
C2—C1—C6120.83 (8)O2—C16—C17107.09 (9)
C2—C1—H1A119.6O2—C16—H16A110.3
C6—C1—H1A119.6C17—C16—H16A110.3
C3—C2—C1120.19 (9)O2—C16—H16B110.3
C3—C2—H2A119.9C17—C16—H16B110.3
C1—C2—H2A119.9H16A—C16—H16B108.6
C4—C3—C2119.35 (8)C16—C17—H17A109.5
C4—C3—H3A120.3C16—C17—H17B109.5
C2—C3—H3A120.3H17A—C17—H17B109.5
C3—C4—C5120.83 (9)C16—C17—H17C109.5
C3—C4—H4A119.6H17A—C17—H17C109.5
C5—C4—H4A119.6H17B—C17—H17C109.5
C4—C5—C6120.19 (9)O3—C18—O4121.96 (8)
C4—C5—H5A119.9O3—C18—C11126.86 (8)
C6—C5—H5A119.9O4—C18—C11111.18 (7)
C5—C6—C1118.60 (8)O4—C19—C20106.20 (8)
C5—C6—C7122.03 (8)O4—C19—H19A110.5
C1—C6—C7119.36 (8)C20—C19—H19A110.5
N1—C7—C9105.97 (7)O4—C19—H19B110.5
N1—C7—C6119.57 (8)C20—C19—H19B110.5
C9—C7—C6134.41 (8)H19A—C19—H19B108.7
N2—C8—C9112.62 (8)C19—C20—H20A109.5
N2—C8—H8A123.7C19—C20—H20B109.5
C9—C8—H8A123.7H20A—C20—H20B109.5
C7—C9—C8104.15 (7)C19—C20—H20C109.5
C7—C9—C10132.57 (7)H20A—C20—H20C109.5
C8—C9—C10123.24 (7)H20B—C20—H20C109.5
C9—C10—C14109.67 (7)C13—C21—H21A109.5
C9—C10—C11109.33 (7)C13—C21—H21B109.5
C14—C10—C11109.94 (7)H21A—C21—H21B109.5
C9—C10—H10A109.3C13—C21—H21C109.5
C14—C10—H10A109.3H21A—C21—H21C109.5
C11—C10—H10A109.3H21B—C21—H21C109.5
C12—C11—C18120.81 (8)C12—C22—H22A109.5
C12—C11—C10120.55 (8)C12—C22—H22B109.5
C18—C11—C10118.53 (7)H22A—C22—H22B109.5
C11—C12—N3119.27 (8)C12—C22—H22C109.5
C11—C12—C22126.85 (8)H22A—C22—H22C109.5
N3—C12—C22113.87 (8)H22B—C22—H22C109.5
C7—N1—N2—C80.22 (10)C18—C11—C12—N3177.72 (8)
C6—C1—C2—C30.12 (15)C10—C11—C12—N36.18 (13)
C1—C2—C3—C40.14 (16)C18—C11—C12—C221.13 (15)
C2—C3—C4—C50.14 (17)C10—C11—C12—C22174.97 (9)
C3—C4—C5—C60.44 (16)C13—N3—C12—C1115.77 (13)
C4—C5—C6—C10.45 (15)C13—N3—C12—C22163.22 (9)
C4—C5—C6—C7179.10 (9)C12—N3—C13—C1413.03 (13)
C2—C1—C6—C50.17 (14)C12—N3—C13—C21167.59 (8)
C2—C1—C6—C7178.86 (9)N3—C13—C14—C15171.93 (8)
N2—N1—C7—C90.16 (10)C21—C13—C14—C158.78 (14)
N2—N1—C7—C6177.68 (7)N3—C13—C14—C1011.41 (13)
C5—C6—C7—N1151.31 (9)C21—C13—C14—C10167.88 (8)
C1—C6—C7—N127.33 (12)C9—C10—C14—C1390.92 (9)
C5—C6—C7—C931.60 (15)C11—C10—C14—C1329.33 (11)
C1—C6—C7—C9149.76 (10)C9—C10—C14—C1585.84 (9)
N1—N2—C8—C90.52 (10)C11—C10—C14—C15153.91 (7)
N1—C7—C9—C80.44 (9)C16—O2—C15—O10.21 (13)
C6—C7—C9—C8176.93 (9)C16—O2—C15—C14178.67 (8)
N1—C7—C9—C10178.03 (9)C13—C14—C15—O19.87 (14)
C6—C7—C9—C100.66 (17)C10—C14—C15—O1173.41 (9)
N2—C8—C9—C70.62 (10)C13—C14—C15—O2171.76 (8)
N2—C8—C9—C10178.49 (8)C10—C14—C15—O24.96 (11)
C7—C9—C10—C14118.96 (10)C15—O2—C16—C17171.85 (9)
C8—C9—C10—C1458.24 (10)C19—O4—C18—O32.98 (13)
C7—C9—C10—C11120.42 (10)C19—O4—C18—C11177.36 (8)
C8—C9—C10—C1162.38 (10)C12—C11—C18—O333.38 (14)
C9—C10—C11—C1293.77 (10)C10—C11—C18—O3142.81 (9)
C14—C10—C11—C1226.69 (11)C12—C11—C18—O4146.98 (9)
C9—C10—C11—C1882.43 (9)C10—C11—C18—O436.83 (11)
C14—C10—C11—C18157.11 (7)C18—O4—C19—C20172.95 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and C1–C6 rings.
D—H···AD—HH···AD···AD—H···A
N3—H1···O3i0.892.092.9597 (12)167
N1—H2···O1ii0.901.962.8506 (10)171
C3—H3A···N2iii0.932.513.4202 (13)164
C5—H5A···O40.932.503.4266 (12)172
C21—H21C···N2iv0.962.453.3300 (14)153
C16—H16A···Cg1v0.972.803.5318 (11)133
C17—H17C···Cg20.962.993.7750 (15)140
C19—H19A···Cg2vi0.972.883.7079 (11)144
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y1, z; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H25N3O4
Mr395.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.7700 (4), 8.6431 (4), 24.8878 (9)
β (°) 105.646 (2)
V3)2023.73 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.32 × 0.20
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.972, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
27563, 7361, 5987
Rint0.031
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.04
No. of reflections7361
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and C1–C6 rings.
D—H···AD—HH···AD···AD—H···A
N3—H1···O3i0.892.092.9597 (12)167
N1—H2···O1ii0.901.962.8506 (10)171
C3—H3A···N2iii0.932.513.4202 (13)164
C5—H5A···O40.932.503.4266 (12)172
C21—H21C···N2iv0.962.453.3300 (14)153
C16—H16A···Cg1v0.972.803.5318 (11)133
C17—H17C···Cg20.962.993.7750 (15)140
C19—H19A···Cg2vi0.972.883.7079 (11)144
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y1, z; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CWO thanks the Malaysian government and USM for the award of the post of research assistant under the Research University Grant (No. 1001/PFIZIK/811151). AMI is grateful to the Director of the National Institute of Technology Karnataka, Surathkal, India, for providing research facilities. AMI also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, and the government of India for the Young Scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBöcker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603.  PubMed Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Hemamalini, M., Vijesh, A. M., Isloor, A. M. & Malladi, S. (2011). Acta Cryst. E67, o1417–o1418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStout, D. M. & Meyers, A. I. (1982). Chem. Rev. 82, 223–243.  CrossRef CAS Web of Science Google Scholar
First citationVo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o892-o893
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds