organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-[(2-Chloro­pyridin-5-ylmeth­yl)(eth­yl)­azan­yl]-4-(2-fluoro­phen­yl)-1-methyl-5-nitro-1,2,3,4-tetra­hydro­pyridin-2-one

aDepartment of Chemistry, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
*Correspondence e-mail: jingwangchemistry@163.com

(Received 5 January 2012; accepted 9 February 2012; online 17 February 2012)

In the title compound, C20H20ClFN4O3, the tetra­hydro­pyridone ring adopts a skew boat conformation. The dihedral angle between the mean planes of the benzene and pyridine rings is 80.7 (3)°. In the crystal, weak C—H⋯O inter­actions are observed.

Related literature

For general background to neonicotinoid compounds and their application as insecticides, see: Jeschke & Nauen (2008[Jeschke, P. & Nauen, R. (2008). Pest Manage. Sci. 64, 1084-1098.]); Kagabu & Matsuno (1997[Kagabu, S. & Matsuno, H. (1997). J. Agric. Food Chem. 45, 276-281.]); Ohno et al. (2009[Ohno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476-482.]); Shao et al. (2008[Shao, X. S., Zhang, W. W., Peng, Y. Q., Li, Z., Tian, Z. Z. & Qian, X. H. (2008). Bioorg. Med. Chem. Lett. 18, 6513-6516.]); Tian et al. (2007[Tian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food Chem. 55, 2288-2292.]); Tomizawa & Casida (2009[Tomizawa, M. & Casida, J. E. (2009). Acc. Chem. Res. 42, 260-269.]). For the synthesis of the title compound, see: Zhang et al. (2010[Zhang, W. W., Yang, X. B., Chen, W. D., Xu, X. Y., Li, L., Zhai, H. B. & Li, Z. (2010). J. Agric. Food Chem. 58, 2741-2745.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20ClFN4O3

  • Mr = 418.85

  • Triclinic, [P \overline 1]

  • a = 6.750 (2) Å

  • b = 8.262 (3) Å

  • c = 17.853 (6) Å

  • α = 94.981 (6)°

  • β = 91.302 (7)°

  • γ = 100.593 (7)°

  • V = 974.2 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.938, Tmax = 0.954

  • 5691 measured reflections

  • 3391 independent reflections

  • 1943 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.151

  • S = 0.96

  • 3391 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯O1i 0.96 2.46 3.383 (5) 161
C6—H6A⋯O3ii 0.97 2.57 3.506 (5) 161
C3—H3⋯O1 0.93 2.53 3.320 (5) 143
C2—H2⋯O3iii 0.93 2.46 3.344 (5) 159
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, neonicotinoid insecticide compounds have rapidly grown and become a new chemical class of insecticides because of their novel structure and mode of action (Jeschke & Nauen,2008; Kagabu & Matsuno,1997; Ohno et al., 2009; Shao et al., 2008; Tian et al., 2007; Tomizawa & Casida, 2009). We report here the synthesis and crystal structure of one of these compounds, C20H20ClFN4O3, the title compound, (I).

In (I) the tetrahydropyridone ring adopts a skew boat conformation with puckering paramers (Cremer & Pople, 1975) Q, θ and ϕ of 0.526 (4)Å, 113.2 (4)° and 22.0 (4)°) and a N2/C9/C10/N4 dihedral angle of -21.6 (6)° (Fig.1). In the tetrahydropyridone moiety, C11—C10, C12—C11 and C13—C12 bond lengths (1.499 (5) Å, 1.527 (5) Å and 1.503 (5) Å) are slightly shorter than normal. The C13—N3, C9—N3, and C10—N4 bond lengths (1.391 (4)Å, 1.417 (4)Å, and 1.422 (4)Å, respectively) are slightly shorter than normal while the C9C10 bond length (1.360 (4)Å) is slightly longer than normal. The dihedral angle between the mean planes of the benzene and pryidine rings is 80.7 (3)°. In the crystal structure weak C2—H2···O3, C8—H8C···O1 and C6—H6A···O3 intermolecular interactions are observed which may influence crystal packing (Fig.2).

Related literature top

For general background to neonicotinoid compounds and their application as insecticides, see: Jeschke & Nauen (2008); Kagabu & Matsuno (1997); Ohno et al. (2009); Shao et al. (2008); Tian et al. (2007); Tomizawa & Casida (2009). For the synthesis of the title compound, see: Zhang et al. (2010). For puckering parameters, see Cremer & Pople (1975).

Experimental top

In the preparation of the title compound, a solution of 2-fluorobenzaldehyde (15 mmol), Meldrum's acid (15 mmol) in ethanol (30 ml), with piperidine (0.1 mmol) used as catalyst, was added dropwise and the solution was stirred at room temperature for 2 h. Nitenpyram (2.75 g, 10 mmol) was added to the reaction mixture, heated to 65 °C for 6 h and then cooled to room temperature. The reaction mixture was concentrated under reduced pressure and treated with 20 ml of water whereby the solution was extracted three times with CH2Cl2, and the combined extracts were dried over MgSO4. The organic phase was evaporated under reduced pressure and the crude product was subjected to flash chromatography on silica gel, eluting with ethyl acetate /petroleum ether to afford pure yellow crystals (yield 81%). Anal. calcd. for C20H20ClFN4O3 C 57.33, H 4.80, N 13.36% found, C 57.35, H 4.81, N 13.38%.

Refinement top

All H atoms bonded to C were positioned geometrically [C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96Å (methyl)] and refined in the riding mode with [Uiso(H) = 1.2Ueq(aromatic and methylene C) and 1.5Ueq(methyl C)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing of the title compound, (I), viewed along the a axis. Weak C2—H2···O3, C8—H8C···O1 and C6—H6A···O3 intermolecular interactions are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
6-[(2-Chloropyridin-5-ylmethyl)(ethyl)azanyl]-4-(2-fluorophenyl)- 1-methyl-5-nitro-1,2,3,4-tetrahydropyridin-2-one top
Crystal data top
C20H20ClFN4O3Z = 2
Mr = 418.85F(000) = 436
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.750 (2) ÅCell parameters from 906 reflections
b = 8.262 (3) Åθ = 2.3–19.9°
c = 17.853 (6) ŵ = 0.24 mm1
α = 94.981 (6)°T = 298 K
β = 91.302 (7)°Block, yellow
γ = 100.593 (7)°0.23 × 0.20 × 0.20 mm
V = 974.2 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3391 independent reflections
Radiation source: fine-focus sealed tube1943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 78
Tmin = 0.938, Tmax = 0.954k = 99
5691 measured reflectionsl = 2116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0497P)2]
where P = (Fo2 + 2Fc2)/3
3391 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H20ClFN4O3γ = 100.593 (7)°
Mr = 418.85V = 974.2 (6) Å3
Triclinic, P1Z = 2
a = 6.750 (2) ÅMo Kα radiation
b = 8.262 (3) ŵ = 0.24 mm1
c = 17.853 (6) ÅT = 298 K
α = 94.981 (6)°0.23 × 0.20 × 0.20 mm
β = 91.302 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3391 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1943 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.954Rint = 0.073
5691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 0.96Δρmax = 0.23 e Å3
3391 reflectionsΔρmin = 0.25 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0482 (2)0.19595 (18)1.06337 (7)0.0963 (5)
F10.0556 (4)0.3141 (3)0.57751 (14)0.0768 (8)
O10.1183 (4)0.3810 (3)0.70839 (17)0.0579 (8)
O20.0164 (4)0.1954 (4)0.61628 (17)0.0745 (10)
O30.4797 (4)0.1603 (3)0.82425 (15)0.0613 (8)
N10.0698 (5)0.3252 (5)0.9407 (2)0.0677 (11)
N20.5075 (4)0.3694 (3)0.76441 (15)0.0358 (7)
N30.5073 (4)0.0931 (3)0.78309 (15)0.0367 (7)
N40.1287 (5)0.2474 (4)0.67181 (19)0.0457 (8)
C10.1333 (7)0.2582 (5)0.9985 (2)0.0579 (12)
C20.3272 (8)0.2367 (5)1.0112 (2)0.0620 (13)
H20.36320.18661.05280.074*
C30.2101 (7)0.3769 (5)0.8917 (2)0.0595 (12)
H30.16900.42450.85010.071*
C40.4110 (6)0.3647 (4)0.8982 (2)0.0431 (10)
C50.4664 (6)0.2921 (5)0.9599 (2)0.0539 (11)
H50.59980.28040.96690.065*
C60.5569 (6)0.4366 (4)0.8427 (2)0.0475 (11)
H6A0.56310.55530.84610.057*
H6B0.68990.41760.85670.057*
C70.5241 (6)0.4907 (4)0.7083 (2)0.0468 (10)
H7A0.42910.56380.71900.056*
H7B0.48830.43310.65880.056*
C80.7339 (6)0.5922 (5)0.7079 (3)0.0664 (13)
H8A0.76820.65240.75630.100*
H8B0.73880.66860.67010.100*
H8C0.82830.52040.69700.100*
C90.4199 (5)0.2097 (4)0.74628 (18)0.0333 (9)
C100.2653 (5)0.1481 (4)0.6955 (2)0.0360 (9)
C110.2062 (5)0.0340 (4)0.6735 (2)0.0387 (9)
H110.06740.05500.65270.046*
C120.2044 (5)0.1165 (4)0.7469 (2)0.0444 (10)
H12A0.09990.08430.77820.053*
H12B0.17380.23570.73590.053*
C130.4050 (6)0.0674 (5)0.78885 (19)0.0401 (9)
C140.7233 (5)0.1245 (5)0.8024 (2)0.0539 (11)
H14A0.74420.14570.85600.081*
H14B0.78870.21900.77870.081*
H14C0.77890.02970.78520.081*
C150.3356 (5)0.1057 (4)0.6151 (2)0.0371 (9)
C160.2525 (6)0.2468 (5)0.5697 (2)0.0491 (11)
C170.3578 (7)0.3229 (5)0.5167 (2)0.0621 (13)
H170.29580.41750.48700.074*
C180.5569 (7)0.2557 (5)0.5088 (2)0.0590 (12)
H180.63230.30600.47400.071*
C190.6450 (6)0.1144 (5)0.5521 (2)0.0500 (11)
H190.77960.06850.54620.060*
C200.5345 (6)0.0401 (5)0.6044 (2)0.0418 (10)
H200.59570.05630.63300.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1069 (11)0.1166 (12)0.0622 (9)0.0018 (9)0.0239 (8)0.0258 (8)
F10.0722 (17)0.0626 (16)0.0813 (18)0.0162 (13)0.0080 (14)0.0141 (14)
O10.0526 (17)0.0505 (18)0.077 (2)0.0280 (15)0.0045 (15)0.0027 (16)
O20.074 (2)0.072 (2)0.077 (2)0.0232 (17)0.0420 (18)0.0028 (17)
O30.087 (2)0.0429 (17)0.0585 (19)0.0198 (16)0.0108 (16)0.0156 (15)
N10.062 (2)0.098 (3)0.044 (2)0.014 (2)0.0000 (19)0.013 (2)
N20.0406 (18)0.0324 (17)0.0344 (17)0.0059 (14)0.0014 (14)0.0049 (14)
N30.0360 (17)0.0358 (17)0.0382 (18)0.0071 (14)0.0067 (14)0.0046 (14)
N40.0395 (19)0.045 (2)0.054 (2)0.0081 (16)0.0040 (17)0.0101 (17)
C10.073 (3)0.059 (3)0.038 (3)0.006 (2)0.003 (2)0.001 (2)
C20.089 (4)0.059 (3)0.038 (3)0.010 (3)0.007 (2)0.010 (2)
C30.067 (3)0.077 (3)0.037 (2)0.015 (3)0.002 (2)0.013 (2)
C40.050 (3)0.040 (2)0.036 (2)0.008 (2)0.0077 (19)0.0111 (18)
C50.064 (3)0.056 (3)0.042 (3)0.015 (2)0.012 (2)0.004 (2)
C60.055 (3)0.037 (2)0.046 (2)0.0004 (19)0.008 (2)0.0034 (18)
C70.056 (3)0.037 (2)0.050 (2)0.0093 (19)0.004 (2)0.0132 (19)
C80.059 (3)0.054 (3)0.089 (4)0.007 (2)0.017 (3)0.028 (3)
C90.036 (2)0.035 (2)0.031 (2)0.0089 (17)0.0030 (17)0.0075 (16)
C100.033 (2)0.035 (2)0.041 (2)0.0104 (17)0.0037 (17)0.0038 (17)
C110.032 (2)0.040 (2)0.042 (2)0.0021 (17)0.0060 (17)0.0020 (18)
C120.046 (2)0.040 (2)0.045 (2)0.0019 (18)0.0107 (19)0.0051 (18)
C130.056 (3)0.039 (2)0.026 (2)0.012 (2)0.0009 (18)0.0049 (17)
C140.043 (2)0.052 (3)0.068 (3)0.014 (2)0.010 (2)0.003 (2)
C150.042 (2)0.035 (2)0.035 (2)0.0100 (18)0.0018 (17)0.0062 (17)
C160.054 (3)0.041 (2)0.048 (3)0.003 (2)0.001 (2)0.006 (2)
C170.089 (4)0.046 (3)0.049 (3)0.013 (3)0.011 (3)0.006 (2)
C180.076 (3)0.065 (3)0.044 (3)0.031 (3)0.009 (2)0.010 (2)
C190.054 (3)0.064 (3)0.037 (2)0.022 (2)0.001 (2)0.009 (2)
C200.049 (2)0.046 (2)0.032 (2)0.011 (2)0.0010 (18)0.0057 (18)
Geometric parameters (Å, º) top
Cl1—C11.744 (4)C7—H7B0.9700
F1—C161.358 (4)C8—H8A0.9600
O1—N41.247 (4)C8—H8B0.9600
O2—N41.231 (4)C8—H8C0.9600
O3—C131.206 (4)C9—C101.360 (4)
N1—C11.312 (5)C10—C111.499 (5)
N1—C31.342 (5)C11—C151.526 (5)
N2—C91.352 (4)C11—C121.527 (5)
N2—C61.467 (4)C11—H110.9800
N2—C71.469 (4)C12—C131.503 (5)
N3—C131.391 (4)C12—H12A0.9700
N3—C91.417 (4)C12—H12B0.9700
N3—C141.461 (4)C14—H14A0.9600
N4—C101.422 (4)C14—H14B0.9600
C1—C21.370 (6)C14—H14C0.9600
C2—C51.373 (5)C15—C201.376 (5)
C2—H20.9300C15—C161.381 (5)
C3—C41.381 (5)C16—C171.373 (5)
C3—H30.9300C17—C181.372 (5)
C4—C51.374 (5)C17—H170.9300
C4—C61.495 (5)C18—C191.371 (5)
C5—H50.9300C18—H180.9300
C6—H6A0.9700C19—C201.381 (5)
C6—H6B0.9700C19—H190.9300
C7—C81.508 (5)C20—H200.9300
C7—H7A0.9700
C1—N1—C3115.8 (4)N2—C9—N3115.0 (3)
C9—N2—C6121.8 (3)C10—C9—N3116.8 (3)
C9—N2—C7121.2 (3)C9—C10—N4121.7 (3)
C6—N2—C7116.1 (3)C9—C10—C11121.2 (3)
C13—N3—C9122.3 (3)N4—C10—C11116.0 (3)
C13—N3—C14115.9 (3)C10—C11—C15115.7 (3)
C9—N3—C14120.6 (3)C10—C11—C12105.8 (3)
O2—N4—O1121.0 (3)C15—C11—C12112.4 (3)
O2—N4—C10118.5 (3)C10—C11—H11107.5
O1—N4—C10120.4 (3)C15—C11—H11107.5
N1—C1—C2125.1 (4)C12—C11—H11107.5
N1—C1—Cl1115.6 (4)C13—C12—C11110.8 (3)
C2—C1—Cl1119.3 (4)C13—C12—H12A109.5
C1—C2—C5117.3 (4)C11—C12—H12A109.5
C1—C2—H2121.4C13—C12—H12B109.5
C5—C2—H2121.4C11—C12—H12B109.5
N1—C3—C4125.0 (4)H12A—C12—H12B108.1
N1—C3—H3117.5O3—C13—N3120.4 (3)
C4—C3—H3117.5O3—C13—C12123.4 (3)
C5—C4—C3116.0 (4)N3—C13—C12116.2 (3)
C5—C4—C6123.5 (4)N3—C14—H14A109.5
C3—C4—C6120.3 (4)N3—C14—H14B109.5
C2—C5—C4120.8 (4)H14A—C14—H14B109.5
C2—C5—H5119.6N3—C14—H14C109.5
C4—C5—H5119.6H14A—C14—H14C109.5
N2—C6—C4114.6 (3)H14B—C14—H14C109.5
N2—C6—H6A108.6C20—C15—C16116.4 (4)
C4—C6—H6A108.6C20—C15—C11124.4 (3)
N2—C6—H6B108.6C16—C15—C11119.2 (3)
C4—C6—H6B108.6F1—C16—C17118.1 (4)
H6A—C6—H6B107.6F1—C16—C15118.4 (4)
N2—C7—C8112.1 (3)C17—C16—C15123.6 (4)
N2—C7—H7A109.2C18—C17—C16118.3 (4)
C8—C7—H7A109.2C18—C17—H17120.9
N2—C7—H7B109.2C16—C17—H17120.9
C8—C7—H7B109.2C19—C18—C17120.1 (4)
H7A—C7—H7B107.9C19—C18—H18119.9
C7—C8—H8A109.5C17—C18—H18119.9
C7—C8—H8B109.5C18—C19—C20120.2 (4)
H8A—C8—H8B109.5C18—C19—H19119.9
C7—C8—H8C109.5C20—C19—H19119.9
H8A—C8—H8C109.5C15—C20—C19121.4 (4)
H8B—C8—H8C109.5C15—C20—H20119.3
N2—C9—C10128.1 (3)C19—C20—H20119.3
C3—N1—C1—C20.7 (7)O2—N4—C10—C1124.8 (5)
C3—N1—C1—Cl1178.5 (3)O1—N4—C10—C11152.5 (3)
N1—C1—C2—C51.1 (7)C9—C10—C11—C1580.5 (4)
Cl1—C1—C2—C5178.1 (3)N4—C10—C11—C15111.0 (3)
C1—N1—C3—C40.2 (7)C9—C10—C11—C1244.6 (4)
N1—C3—C4—C50.7 (6)N4—C10—C11—C12123.9 (3)
N1—C3—C4—C6175.9 (4)C10—C11—C12—C1356.2 (4)
C1—C2—C5—C40.5 (6)C15—C11—C12—C1370.9 (4)
C3—C4—C5—C20.3 (6)C9—N3—C13—O3175.8 (3)
C6—C4—C5—C2176.2 (3)C14—N3—C13—O317.0 (5)
C9—N2—C6—C434.4 (5)C9—N3—C13—C126.1 (5)
C7—N2—C6—C4134.8 (3)C14—N3—C13—C12161.1 (3)
C5—C4—C6—N2124.5 (4)C11—C12—C13—O3143.5 (4)
C3—C4—C6—N259.1 (5)C11—C12—C13—N334.5 (4)
C9—N2—C7—C8131.8 (4)C10—C11—C15—C2027.1 (5)
C6—N2—C7—C858.8 (4)C12—C11—C15—C2094.5 (4)
C6—N2—C9—C10136.3 (4)C10—C11—C15—C16153.7 (3)
C7—N2—C9—C1032.4 (5)C12—C11—C15—C1684.6 (4)
C6—N2—C9—N346.4 (4)C20—C15—C16—F1179.0 (3)
C7—N2—C9—N3144.8 (3)C11—C15—C16—F11.8 (5)
C13—N3—C9—N2160.7 (3)C20—C15—C16—C170.9 (6)
C14—N3—C9—N232.6 (4)C11—C15—C16—C17178.4 (4)
C13—N3—C9—C1021.8 (5)F1—C16—C17—C18179.8 (4)
C14—N3—C9—C10144.9 (3)C15—C16—C17—C180.4 (6)
N2—C9—C10—N421.6 (6)C16—C17—C18—C191.2 (6)
N3—C9—C10—N4161.2 (3)C17—C18—C19—C200.7 (6)
N2—C9—C10—C11170.6 (3)C16—C15—C20—C191.4 (5)
N3—C9—C10—C116.6 (5)C11—C15—C20—C19177.8 (3)
O2—N4—C10—C9166.7 (3)C18—C19—C20—C150.7 (5)
O1—N4—C10—C916.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O1i0.962.463.383 (5)161
C6—H6A···O3ii0.972.573.506 (5)161
C3—H3···O10.932.533.320 (5)143
C2—H2···O3iii0.932.463.344 (5)159
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H20ClFN4O3
Mr418.85
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.750 (2), 8.262 (3), 17.853 (6)
α, β, γ (°)94.981 (6), 91.302 (7), 100.593 (7)
V3)974.2 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.938, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
5691, 3391, 1943
Rint0.073
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.151, 0.96
No. of reflections3391
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O1i0.962.463.383 (5)161
C6—H6A···O3ii0.972.573.506 (5)161
C3—H3···O10.932.533.320 (5)143
C2—H2···O3iii0.932.463.344 (5)159
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y, z+2.
 

Acknowledgements

This work was supported mostly by the National Natural Science Foundation of China (grant Nos 21042010, 21102092 and 30870560).

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJeschke, P. & Nauen, R. (2008). Pest Manage. Sci. 64, 1084–1098.  Web of Science CrossRef CAS Google Scholar
First citationKagabu, S. & Matsuno, H. (1997). J. Agric. Food Chem. 45, 276–281.  CrossRef CAS Web of Science Google Scholar
First citationOhno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476–482.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShao, X. S., Zhang, W. W., Peng, Y. Q., Li, Z., Tian, Z. Z. & Qian, X. H. (2008). Bioorg. Med. Chem. Lett. 18, 6513–6516.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food Chem. 55, 2288–2292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTomizawa, M. & Casida, J. E. (2009). Acc. Chem. Res. 42, 260–269.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, W. W., Yang, X. B., Chen, W. D., Xu, X. Y., Li, L., Zhai, H. B. & Li, Z. (2010). J. Agric. Food Chem. 58, 2741–2745.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds