organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,3,3-Tetra­ethyl­isoindolin-2-ium chloride

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 15 January 2012; accepted 2 February 2012; online 10 February 2012)

In the title compound, C16H26N+·Cl, the cations and anions form discrete centrosymetric cyclic dimers through N—H⋯Cl hydrogen-bonding associations with graph-set R42(8).

Related literature

For the structures of related isoindoline and isoindolinium compounds, see: Fairhurst et al. (1996[Fairhurst, S. A., Gillies, D. G., Smith, G. W., Sutcliffe, L. H. & Wu, X. (1996). J. Mol. Struct. 375, 105-115.]); Micallef et al. (1999[Micallef, A. S., Bott, R. C., Bottle, S. E., Smith, G., White, J. M., Matsuda, K. & Iwamura, H. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 65-71.]). For the synthesis of alkyl-substituted isoindolines, see: Tönjes et al. (1964[Tönjes, H., Heidenbluth, K. & Scheffler, R. (1964). J. Prakt. Chem. 26, 218-224.]); Griffiths et al. (1983[Griffiths, P. G., Moad, G., Rizzardo, E. & Solomon, D. H. (1983). Aust. J. Chem. 36, 397-401.]). For graph-set anlysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26N+·Cl

  • Mr = 267.83

  • Orthorhombic, P b c a

  • a = 12.7282 (4) Å

  • b = 14.0676 (4) Å

  • c = 17.0771 (5) Å

  • V = 3057.74 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 200 K

  • 0.45 × 0.12 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini-S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.980, Tmax = 0.990

  • 9765 measured reflections

  • 3007 independent reflections

  • 2126 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 0.91

  • 3007 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1A⋯Cl1i 0.906 (18) 2.322 (18) 3.2054 (15) 165.0 (15)
N2—H1B⋯Cl1 0.915 (17) 2.306 (17) 3.1669 (14) 156.8 (14)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The 1,1,3,3-tetraalkyl-substituted isoindolines have been useful intermediates for the synthesis of nitroxide free-radical scavengers (Griffiths et al., 1983). However, few structures of these compounds are found in the crystallographic literature, e.g. 5-nitro-1,1,3,3-tetramethylisoindoline (Fairhurst et al., 1996) and the salt hydrate 1,1,3,3-tetramethylisoindolinium bromide dihydrate (Micallef et al., 1999). The analogous anhydrous 1,1,3,3-tetraethyl-substituted salt C16H26N+ Cl-, the title compound, has been synthesized and the structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The cations and the chloride anions form discrete centrosymetric cyclic dimers through N—H···Cl hydrogen-bonding associations [graph set R24(8) (Etter et al., 1990)] (Table 1, Fig. 2). The ethyl substituent groups of the molecule adopt various conformations [torsion angles N2—C1—C11—C12, 174.22 (14)°; N2—C1—C13—C14, -69.14 (18)°; N2—C3—C31—C32, 66.66 (17)°; N2—C3—C33—C34, 71.03 (18)°].

Related literature top

For the structures of related isoindoline and isoindolinium compounds, see: Fairhurst et al. (1996); Micallef et al. (1999). For the synthesis of alkyl-substituted isoindolines, see: Tönjes et al. (1964); Griffiths et al. (1983). For graph-set anlysis, see: Etter et al. (1990).

Experimental top

The title compound was synthesized using a modification of the method of Tönjes et al. (1964) for the synthesis of the 1,1,3,3-tetramethyl analogue (Griffiths et al., 1983). The modification involved the use of ethylmagnesium iodide in the reaction with N-benzylphthalimide followed by hydrogenation and conversion to the chloride salt. Colourless needles were obtained from a solution in glacial acetic acid and a specimen was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located in a difference Fourier and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions [C–H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq (aromatic or methylene C) or 1.5Ueq(methyl C)], using a riding-model approximation.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. The inter-species hydrogen bond is shown as a dashed line and displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A perspective view of the hydrogen-bonded dimeric structure in the unit cell, showing the centrosymmetric cyclic R24(8) hydrogen-bonding motif. For symmetry code (i), see Table 1.
1,1,3,3-Tetraethylisoindolin-2-ium chloride top
Crystal data top
C16H26N+·ClF(000) = 1168
Mr = 267.83Dx = 1.164 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4071 reflections
a = 12.7282 (4) Åθ = 3.2–28.8°
b = 14.0676 (4) ŵ = 0.24 mm1
c = 17.0771 (5) ÅT = 200 K
V = 3057.74 (16) Å3Needle, colourless
Z = 80.45 × 0.12 × 0.08 mm
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
3007 independent reflections
Radiation source: Enhance (Mo) X-ray source2126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 1415
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1716
Tmin = 0.980, Tmax = 0.990l = 921
9765 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
3007 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C16H26N+·ClV = 3057.74 (16) Å3
Mr = 267.83Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.7282 (4) ŵ = 0.24 mm1
b = 14.0676 (4) ÅT = 200 K
c = 17.0771 (5) Å0.45 × 0.12 × 0.08 mm
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
3007 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2126 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.028
9765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.25 e Å3
3007 reflectionsΔρmin = 0.15 e Å3
171 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.57440 (10)0.11256 (10)0.59705 (8)0.0215 (4)
C10.53181 (12)0.11091 (11)0.68132 (9)0.0231 (5)
C30.66601 (12)0.18396 (10)0.58973 (9)0.0228 (5)
C40.71046 (12)0.31935 (11)0.68650 (9)0.0265 (5)
C50.68541 (13)0.36369 (11)0.75667 (10)0.0294 (5)
C60.60529 (13)0.32973 (11)0.80353 (9)0.0281 (5)
C70.55023 (12)0.24882 (11)0.78244 (9)0.0262 (5)
C80.57612 (12)0.20269 (10)0.71300 (9)0.0213 (5)
C90.65433 (11)0.23876 (10)0.66514 (9)0.0210 (5)
C110.58119 (13)0.02388 (11)0.72323 (9)0.0296 (5)
C120.55776 (16)0.01439 (14)0.81002 (10)0.0443 (7)
C130.41208 (12)0.10409 (12)0.68007 (10)0.0306 (5)
C140.35314 (13)0.19029 (12)0.65082 (11)0.0391 (6)
C310.65211 (13)0.24731 (12)0.51751 (9)0.0313 (6)
C320.55947 (15)0.31571 (13)0.51940 (11)0.0406 (6)
C330.77174 (12)0.13089 (12)0.58608 (11)0.0338 (6)
C340.79401 (15)0.07602 (14)0.51062 (12)0.0484 (7)
Cl10.41410 (3)0.10600 (3)0.45532 (2)0.0300 (1)
H1A0.5909 (13)0.0523 (13)0.5829 (11)0.038 (5)*
H1B0.5243 (13)0.1283 (11)0.5609 (10)0.025 (4)*
H40.763500.343000.654600.0320*
H50.723100.417000.772400.0350*
H60.588200.361500.849600.0340*
H70.496700.225600.814200.0310*
H11A0.556900.033300.697100.0350*
H11B0.656800.026900.716600.0350*
H12A0.591600.041500.830100.0660*
H12B0.483300.009300.817700.0660*
H12C0.583600.069400.837200.0660*
H13A0.392700.050300.647600.0370*
H13B0.388300.090500.732800.0370*
H14A0.279000.177900.652300.0590*
H14B0.374000.203900.598000.0590*
H14C0.368900.243900.683600.0590*
H31A0.715900.284100.510500.0370*
H31B0.644600.206600.472000.0370*
H32A0.558000.352000.471800.0610*
H32B0.566700.357900.563200.0610*
H32C0.495300.280300.524400.0610*
H33A0.827700.176800.593700.0410*
H33B0.774600.086500.629500.0410*
H34A0.861400.045700.514400.0730*
H34B0.794100.119200.467100.0730*
H34C0.740600.028800.503000.0730*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0211 (7)0.0257 (7)0.0177 (7)0.0002 (6)0.0007 (6)0.0027 (6)
C10.0233 (8)0.0279 (8)0.0181 (8)0.0014 (7)0.0032 (6)0.0008 (7)
C30.0205 (8)0.0284 (8)0.0196 (8)0.0049 (7)0.0027 (6)0.0033 (7)
C40.0260 (9)0.0310 (9)0.0226 (9)0.0042 (7)0.0025 (7)0.0020 (7)
C50.0354 (10)0.0260 (8)0.0269 (9)0.0036 (7)0.0052 (7)0.0031 (7)
C60.0367 (10)0.0283 (9)0.0194 (8)0.0081 (7)0.0007 (7)0.0042 (7)
C70.0277 (9)0.0314 (9)0.0195 (8)0.0033 (7)0.0047 (6)0.0037 (7)
C80.0206 (8)0.0250 (8)0.0182 (8)0.0022 (6)0.0002 (6)0.0010 (7)
C90.0195 (8)0.0262 (8)0.0173 (8)0.0028 (7)0.0007 (6)0.0006 (7)
C110.0345 (10)0.0274 (9)0.0269 (9)0.0008 (8)0.0001 (8)0.0027 (7)
C120.0594 (13)0.0461 (11)0.0274 (10)0.0057 (10)0.0009 (9)0.0078 (9)
C130.0241 (8)0.0378 (9)0.0298 (9)0.0025 (8)0.0038 (7)0.0009 (8)
C140.0277 (10)0.0511 (11)0.0384 (11)0.0086 (9)0.0028 (8)0.0024 (9)
C310.0369 (10)0.0400 (10)0.0169 (9)0.0107 (8)0.0024 (7)0.0002 (8)
C320.0508 (12)0.0372 (10)0.0338 (10)0.0044 (9)0.0092 (8)0.0118 (9)
C330.0225 (9)0.0419 (10)0.0370 (11)0.0001 (8)0.0066 (7)0.0069 (8)
C340.0368 (11)0.0508 (12)0.0576 (14)0.0053 (9)0.0198 (10)0.0192 (11)
Cl10.0298 (2)0.0341 (2)0.0260 (2)0.0029 (2)0.0059 (2)0.0047 (2)
Geometric parameters (Å, º) top
N2—C11.538 (2)C6—H60.9300
N2—C31.544 (2)C7—H70.9300
N2—H1A0.906 (18)C11—H11A0.9700
N2—H1B0.915 (17)C11—H11B0.9700
C1—C81.509 (2)C12—H12A0.9600
C1—C131.527 (2)C12—H12B0.9600
C1—C111.551 (2)C12—H12C0.9600
C3—C311.532 (2)C13—H13A0.9700
C3—C331.540 (2)C13—H13B0.9700
C3—C91.508 (2)C14—H14A0.9600
C4—C51.388 (2)C14—H14B0.9600
C4—C91.389 (2)C14—H14C0.9600
C5—C61.382 (2)C31—H31A0.9700
C6—C71.384 (2)C31—H31B0.9700
C7—C81.391 (2)C32—H32A0.9600
C8—C91.384 (2)C32—H32B0.9600
C11—C121.518 (2)C32—H32C0.9600
C13—C141.511 (2)C33—H33A0.9700
C31—C321.522 (3)C33—H33B0.9700
C33—C341.529 (3)C34—H34A0.9600
C4—H40.9300C34—H34B0.9600
C5—H50.9300C34—H34C0.9600
C1—N2—C3110.59 (12)C12—C11—H11A108.00
H1A—N2—H1B102.0 (15)C12—C11—H11B108.00
C1—N2—H1A108.5 (12)H11A—C11—H11B107.00
C1—N2—H1B112.9 (11)C11—C12—H12A109.00
C3—N2—H1A114.3 (11)C11—C12—H12B110.00
C3—N2—H1B108.3 (10)C11—C12—H12C109.00
N2—C1—C13109.85 (12)H12A—C12—H12B109.00
C8—C1—C11111.00 (12)H12A—C12—H12C109.00
N2—C1—C11107.51 (12)H12B—C12—H12C109.00
N2—C1—C8101.00 (12)C1—C13—H13A108.00
C11—C1—C13111.17 (13)C1—C13—H13B108.00
C8—C1—C13115.57 (13)C14—C13—H13A108.00
C9—C3—C33111.62 (13)C14—C13—H13B108.00
C9—C3—C31112.25 (12)H13A—C13—H13B107.00
N2—C3—C9100.89 (12)C13—C14—H14A109.00
N2—C3—C31110.88 (12)C13—C14—H14B109.00
N2—C3—C33110.35 (12)C13—C14—H14C110.00
C31—C3—C33110.51 (13)H14A—C14—H14B109.00
C5—C4—C9118.39 (14)H14A—C14—H14C109.00
C4—C5—C6120.95 (15)H14B—C14—H14C109.00
C5—C6—C7120.49 (14)C3—C31—H31A108.00
C6—C7—C8119.03 (14)C3—C31—H31B108.00
C1—C8—C9111.76 (13)C32—C31—H31A108.00
C7—C8—C9120.17 (14)C32—C31—H31B108.00
C1—C8—C7128.03 (14)H31A—C31—H31B107.00
C3—C9—C8112.81 (13)C31—C32—H32A109.00
C4—C9—C8120.94 (14)C31—C32—H32B109.00
C3—C9—C4126.21 (13)C31—C32—H32C109.00
C1—C11—C12116.13 (14)H32A—C32—H32B109.00
C1—C13—C14116.72 (14)H32A—C32—H32C110.00
C3—C31—C32116.11 (14)H32B—C32—H32C109.00
C3—C33—C34116.16 (14)C3—C33—H33A108.00
C5—C4—H4121.00C3—C33—H33B108.00
C9—C4—H4121.00C34—C33—H33A108.00
C4—C5—H5120.00C34—C33—H33B108.00
C6—C5—H5119.00H33A—C33—H33B107.00
C5—C6—H6120.00C33—C34—H34A109.00
C7—C6—H6120.00C33—C34—H34B109.00
C6—C7—H7121.00C33—C34—H34C109.00
C8—C7—H7120.00H34A—C34—H34B109.00
C1—C11—H11A108.00H34A—C34—H34C110.00
C1—C11—H11B108.00H34B—C34—H34C110.00
C3—N2—C1—C817.41 (15)C31—C3—C9—C8122.53 (14)
C3—N2—C1—C1198.96 (14)C33—C3—C9—C469.65 (19)
C3—N2—C1—C13139.94 (13)C33—C3—C9—C8112.77 (15)
C1—N2—C3—C33104.26 (14)N2—C3—C31—C3266.66 (17)
C1—N2—C3—C913.87 (15)C9—C3—C31—C3245.33 (19)
C1—N2—C3—C31132.96 (13)C33—C3—C31—C32170.65 (14)
N2—C1—C8—C914.63 (16)N2—C3—C33—C3471.03 (18)
C13—C1—C8—C749.6 (2)C9—C3—C33—C34177.64 (14)
C11—C1—C8—C778.24 (19)C31—C3—C33—C3451.97 (18)
C11—C1—C8—C999.12 (15)C9—C4—C5—C61.2 (2)
N2—C1—C8—C7168.01 (15)C5—C4—C9—C3176.62 (14)
C13—C1—C11—C1265.51 (18)C5—C4—C9—C80.8 (2)
N2—C1—C13—C1469.14 (18)C4—C5—C6—C71.9 (2)
C8—C1—C13—C1444.3 (2)C5—C6—C7—C80.6 (2)
C11—C1—C13—C14171.99 (14)C6—C7—C8—C1175.77 (15)
C13—C1—C8—C9133.09 (14)C6—C7—C8—C91.4 (2)
N2—C1—C11—C12174.22 (14)C1—C8—C9—C36.78 (18)
C8—C1—C11—C1264.62 (18)C1—C8—C9—C4175.50 (14)
N2—C3—C9—C4173.14 (14)C7—C8—C9—C3175.63 (13)
N2—C3—C9—C84.44 (16)C7—C8—C9—C42.1 (2)
C31—C3—C9—C455.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1A···Cl1i0.906 (18)2.322 (18)3.2054 (15)165.0 (15)
N2—H1B···Cl10.915 (17)2.306 (17)3.1669 (14)156.8 (14)
C4—H4···Cl1ii0.932.783.6995 (16)172
C11—H11A···Cl1i0.972.823.5551 (16)133
C34—H34C···Cl1i0.962.823.730 (2)158
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H26N+·Cl
Mr267.83
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)12.7282 (4), 14.0676 (4), 17.0771 (5)
V3)3057.74 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.45 × 0.12 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini-S CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
9765, 3007, 2126
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 0.91
No. of reflections3007
No. of parameters171
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1A···Cl1i0.906 (18)2.322 (18)3.2054 (15)165.0 (15)
N2—H1B···Cl10.915 (17)2.306 (17)3.1669 (14)156.8 (14)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, and the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFairhurst, S. A., Gillies, D. G., Smith, G. W., Sutcliffe, L. H. & Wu, X. (1996). J. Mol. Struct. 375, 105–115.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGriffiths, P. G., Moad, G., Rizzardo, E. & Solomon, D. H. (1983). Aust. J. Chem. 36, 397–401.  CrossRef CAS Google Scholar
First citationMicallef, A. S., Bott, R. C., Bottle, S. E., Smith, G., White, J. M., Matsuda, K. & Iwamura, H. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 65–71.  CSD CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTönjes, H., Heidenbluth, K. & Scheffler, R. (1964). J. Prakt. Chem. 26, 218–224.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds