metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(Ethane-1,2-di­yl)dipyridinium dichromate(VI)

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, bDepartment of Chemistry, Sabzevar Tarbiat Moallem University, Sabzevar, Iran, and cDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: gholizadeh_mostafa@yahoo.com

(Received 25 January 2012; accepted 7 February 2012; online 17 February 2012)

In the cation of the title salt, (C12H14N2)[Cr2O7], the two pyridinium moieties are in an anti orientation with respect to one another. The dihedral angle between the pyridine rings is 6.3 (2)°. The N—C—C—N torsion angle is 177.5 (2)°. In the dianion, the CrVI ions are in a slightly distorted tetra­hedral coordination environment and the bond angles at the independent CrVI ions are in the ranges 105.93 (10)–110.60 (11) and 107.35 (11)–111.07 (12)°. The Cr—O—Cr angle is 127.96 (12)°. The crystal used was an inversion twin with refined components of 0.510 (19) and 0.490 (19).

Related literature

For the crystal structures of the salts with formula [C5H5NCH2CH2NC5H5]2+·2X [X = IO3, IO4], the preparation of 1,1′-(ethane-1,2-di­yl)dipyridinium dibromide and the orientation of pyridine moieties, see: Gholizadeh, Maleki et al. (2011[Gholizadeh, M., Maleki, B., Pourayoubi, M., Kia, M. & Notash, B. (2011). Acta Cryst. E67, o1614-o1615.]); Gholizadeh, Hojati et al. (2011[Gholizadeh, M., Hojati, S. F., Pourayoubi, M., Maleki, B., Kia, M. & Notash, B. (2011). X-ray Struct. Anal. Online, 27, 47-48.]). For dichromate salts, see: Lennartson & Håkansson (2009[Lennartson, A. & Håkansson, M. (2009). Acta Cryst. C65, m182-m184.]); Averbuch-Pouchot et al. (1984[Averbuch-Pouchot, M. T., El-Horr, N. & Guitel, J. C. (1984). Acta Cryst. C40, 725-728.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H14N2)[Cr2O7]

  • Mr = 402.25

  • Monoclinic, P 21

  • a = 8.2882 (4) Å

  • b = 9.0722 (4) Å

  • c = 10.0179 (5) Å

  • β = 91.882 (1)°

  • V = 752.86 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 100 K

  • 0.22 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.737, Tmax = 0.808

  • 5446 measured reflections

  • 2628 independent reflections

  • 2546 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.067

  • S = 1.04

  • 2628 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1163 Friedel pairs

  • Flack parameter: 0.510 (19)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

In recently published papers, the structure determinations of [C5H5NCH2CH2NC5H5]2+.2X- [X- = IO3- (Gholizadeh, Maleki et al., 2011) and IO4- (Gholizadeh, Hojati et al., 2011)] have been investigated. Structure determination of the title salt, [C5H5NCH2CH2NC5H5]2+.Cr2O72- (Fig. 1), was performed as a part of a project on the synthesis of a new hybrid compound containing an organic cation and an inorganic oxidant anion.

In the dication, two pyridinium moieties are anti-oriented with respect to one another similar to those observed in the 1,1'-(ethane-1,2-diyl)dipyridinium salts with iodate and periodate counter ions (Gholizadeh, Maleki et al., 2011; Gholizadeh, Hojati et al., 2011). In the dianion, each CrVI ion is in a slightly distorted tetrahedral coordination environment. The two pyridinium fragments in the cation and the two CrO3 units in the anion are not symmetrically equivalent.

The Cr—O bonds (with lengths of 1.777 (2) & 1.790 (2) Å) in the Cr—O—Cr fragment are longer than the other Cr—O bonds (in the range of 1.611 (2) to 1.624 (2) Å). The bond lengths and angles in the dichromate anion are within the expected values in the reported dichromate salts (Lennartson & Håkansson, 2009; Averbuch-Pouchot et al., 1984).

Related literature top

For the crystal structures of the salts with formula [C5H5NCH2CH2NC5H5]2+.2X- [X- = IO3-, IO4-], the preparation of 1,1'-(ethane-1,2-diyl)dipyridinium dibromide and the orientation of pyridine moieties, see: Gholizadeh, Maleki et al. (2011); Gholizadeh, Hojati et al. (2011). For dichromate salts, see: Lennartson & Håkansson (2009); Averbuch-Pouchot et al. (1984).

Experimental top

1,1'-(ethane-1,2-diyl)dipyridinium dibromide was prepared according to the procedure reported by Gholizadeh, Maleki et al., 2011 and Gholizadeh, Hojati et al., 2011.

Preparation of title salt: To a solution of 1,1'-(ethane-1,2-diyl)dipyridinium dibromide (10 mmol) in H2O (25 ml), a solution of K2Cr2O7 (10 mmol) in H2O was added and stirred. After 1 h, the precipitate was filtered and washed with H2O. Orange crystals, suitable for X-ray crystallography, were obtained from a solution of the title salt in H2O at room temperature.

Refinement top

All H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.950 Å (CH) or 0.990 Å (CH2). Isotropic displacement parameters for these atoms were set to 1.20 times Ueq of the parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Ellipsoids are given at the 50% probability level.
1,1'-(Ethane-1,2-diyl)dipyridinium dichromate(VI) top
Crystal data top
(C12H14N2)[Cr2O7]F(000) = 408
Mr = 402.25Dx = 1.774 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3255 reflections
a = 8.2882 (4) Åθ = 2.5–26.5°
b = 9.0722 (4) ŵ = 1.48 mm1
c = 10.0179 (5) ÅT = 100 K
β = 91.882 (1)°Block, orange
V = 752.86 (6) Å30.22 × 0.15 × 0.15 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2628 independent reflections
Radiation source: fine-focus sealed tube2546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.737, Tmax = 0.808k = 1010
5446 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.2849P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2628 reflectionsΔρmax = 0.47 e Å3
209 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1163 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.510 (19)
Crystal data top
(C12H14N2)[Cr2O7]V = 752.86 (6) Å3
Mr = 402.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.2882 (4) ŵ = 1.48 mm1
b = 9.0722 (4) ÅT = 100 K
c = 10.0179 (5) Å0.22 × 0.15 × 0.15 mm
β = 91.882 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2628 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2546 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.808Rint = 0.025
5446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.47 e Å3
S = 1.04Δρmin = 0.21 e Å3
2628 reflectionsAbsolute structure: Flack (1983), 1163 Friedel pairs
209 parametersAbsolute structure parameter: 0.510 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.65538 (5)0.04259 (4)0.83530 (4)0.01584 (13)
Cr20.35152 (5)0.03987 (5)0.64354 (4)0.01691 (13)
O10.7936 (2)0.0097 (2)0.7300 (2)0.0250 (5)
O20.7001 (2)0.1896 (2)0.9204 (2)0.0230 (5)
O30.6343 (3)0.0968 (2)0.9351 (2)0.0241 (5)
O40.4684 (3)0.0804 (2)0.7502 (2)0.0255 (5)
O50.2177 (3)0.1216 (3)0.7304 (2)0.0312 (6)
O60.4687 (3)0.1613 (2)0.5775 (2)0.0251 (5)
O70.2677 (3)0.0602 (3)0.5277 (2)0.0294 (5)
N10.2884 (3)0.3914 (3)0.6933 (2)0.0177 (6)
N20.6566 (3)0.5863 (3)0.8330 (2)0.0165 (6)
C10.1985 (4)0.3157 (4)0.7779 (3)0.0207 (7)
H10.24480.28340.86080.025*
C20.0391 (4)0.2840 (3)0.7460 (3)0.0213 (7)
H20.02410.22910.80580.026*
C30.0274 (4)0.3334 (4)0.6255 (3)0.0218 (7)
H30.13670.31180.60150.026*
C40.0658 (4)0.4138 (4)0.5407 (3)0.0224 (7)
H40.02040.45030.45890.027*
C50.2256 (4)0.4412 (4)0.5753 (3)0.0208 (7)
H50.29130.49490.51640.025*
C60.4621 (4)0.4188 (3)0.7282 (3)0.0193 (7)
H6A0.52550.41600.64610.023*
H6B0.50330.34060.78910.023*
C70.4825 (3)0.5674 (4)0.7949 (3)0.0192 (7)
H7A0.44680.64670.73280.023*
H7B0.41640.57240.87530.023*
C80.7158 (3)0.5188 (3)0.9456 (3)0.0179 (6)
H80.64710.46050.99830.022*
C90.8761 (4)0.5360 (4)0.9823 (3)0.0217 (6)
H90.91890.49011.06110.026*
C100.9750 (4)0.6206 (4)0.9038 (3)0.0219 (7)
H101.08580.63280.92850.026*
C110.9116 (4)0.6876 (4)0.7886 (3)0.0197 (7)
H110.97830.74560.73390.024*
C120.7493 (4)0.6681 (4)0.7551 (3)0.0197 (7)
H120.70390.71290.67680.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0149 (2)0.0163 (3)0.0162 (2)0.0001 (2)0.00137 (17)0.0007 (2)
Cr20.0149 (2)0.0192 (3)0.0165 (2)0.0025 (2)0.00182 (17)0.0006 (2)
O10.0229 (11)0.0267 (13)0.0256 (11)0.0042 (9)0.0042 (9)0.0029 (10)
O20.0232 (12)0.0214 (12)0.0239 (13)0.0036 (9)0.0064 (9)0.0039 (10)
O30.0295 (12)0.0219 (12)0.0210 (11)0.0040 (10)0.0034 (9)0.0030 (10)
O40.0215 (11)0.0208 (12)0.0333 (13)0.0003 (9)0.0105 (9)0.0024 (10)
O50.0265 (13)0.0378 (15)0.0296 (13)0.0101 (11)0.0055 (10)0.0017 (11)
O60.0278 (12)0.0271 (13)0.0206 (11)0.0027 (10)0.0020 (9)0.0025 (10)
O70.0308 (12)0.0277 (13)0.0289 (11)0.0000 (10)0.0100 (9)0.0036 (11)
N10.0158 (13)0.0200 (14)0.0172 (12)0.0023 (11)0.0016 (10)0.0032 (11)
N20.0164 (13)0.0161 (14)0.0171 (12)0.0004 (10)0.0018 (10)0.0037 (11)
C10.0259 (17)0.0168 (16)0.0189 (15)0.0023 (14)0.0047 (12)0.0011 (14)
C20.0220 (16)0.0193 (16)0.0227 (16)0.0006 (13)0.0002 (12)0.0022 (14)
C30.0180 (16)0.0227 (17)0.0242 (16)0.0007 (13)0.0032 (12)0.0044 (14)
C40.0187 (16)0.0319 (19)0.0167 (14)0.0066 (14)0.0010 (12)0.0004 (14)
C50.0230 (16)0.0236 (18)0.0160 (14)0.0010 (14)0.0025 (11)0.0007 (14)
C60.0151 (14)0.0199 (16)0.0226 (15)0.0003 (12)0.0034 (12)0.0034 (13)
C70.0148 (15)0.0204 (16)0.0224 (15)0.0001 (13)0.0002 (11)0.0009 (14)
C80.0228 (15)0.0164 (16)0.0147 (14)0.0005 (13)0.0029 (11)0.0033 (12)
C90.0294 (16)0.0213 (16)0.0142 (13)0.0052 (15)0.0021 (11)0.0054 (14)
C100.0174 (15)0.0215 (17)0.0267 (17)0.0018 (14)0.0025 (12)0.0098 (15)
C110.0198 (15)0.0161 (15)0.0234 (17)0.0040 (12)0.0037 (12)0.0034 (13)
C120.0241 (17)0.0182 (16)0.0169 (15)0.0010 (14)0.0009 (12)0.0027 (13)
Geometric parameters (Å, º) top
Cr1—O11.611 (2)C3—H30.9500
Cr1—O21.620 (2)C4—C51.380 (4)
Cr1—O31.624 (2)C4—H40.9500
Cr1—O41.777 (2)C5—H50.9500
Cr2—O51.612 (2)C6—C71.511 (4)
Cr2—O71.613 (2)C6—H6A0.9900
Cr2—O61.624 (2)C6—H6B0.9900
Cr2—O41.790 (2)C7—H7A0.9900
N1—C11.337 (4)C7—H7B0.9900
N1—C51.353 (4)C8—C91.376 (4)
N1—C61.491 (4)C8—H80.9500
N2—C121.338 (4)C9—C101.386 (4)
N2—C81.361 (4)C9—H90.9500
N2—C71.491 (3)C10—C111.392 (4)
C1—C21.379 (4)C10—H100.9500
C1—H10.9500C11—C121.387 (4)
C2—C31.385 (4)C11—H110.9500
C2—H20.9500C12—H120.9500
C3—C41.376 (5)
O1—Cr1—O2110.01 (11)N1—C5—C4119.8 (3)
O1—Cr1—O3110.60 (11)N1—C5—H5120.1
O2—Cr1—O3110.15 (11)C4—C5—H5120.1
O1—Cr1—O4110.43 (11)N1—C6—C7110.2 (2)
O2—Cr1—O4105.93 (10)N1—C6—H6A109.6
O3—Cr1—O4109.62 (11)C7—C6—H6A109.6
O5—Cr2—O7111.07 (12)N1—C6—H6B109.6
O5—Cr2—O6109.80 (13)C7—C6—H6B109.6
O7—Cr2—O6109.78 (12)H6A—C6—H6B108.1
O5—Cr2—O4109.08 (11)N2—C7—C6108.0 (2)
O7—Cr2—O4107.35 (11)N2—C7—H7A110.1
O6—Cr2—O4109.72 (10)C6—C7—H7A110.1
Cr1—O4—Cr2127.96 (12)N2—C7—H7B110.1
C1—N1—C5121.2 (3)C6—C7—H7B110.1
C1—N1—C6119.4 (2)H7A—C7—H7B108.4
C5—N1—C6119.3 (3)N2—C8—C9119.3 (3)
C12—N2—C8122.4 (2)N2—C8—H8120.4
C12—N2—C7119.0 (2)C9—C8—H8120.4
C8—N2—C7118.7 (2)C8—C9—C10119.6 (3)
N1—C1—C2120.7 (3)C8—C9—H9120.2
N1—C1—H1119.7C10—C9—H9120.2
C2—C1—H1119.7C9—C10—C11119.9 (3)
C1—C2—C3119.0 (3)C9—C10—H10120.1
C1—C2—H2120.5C11—C10—H10120.1
C3—C2—H2120.5C12—C11—C10118.8 (3)
C4—C3—C2119.6 (3)C12—C11—H11120.6
C4—C3—H3120.2C10—C11—H11120.6
C2—C3—H3120.2N2—C12—C11120.0 (3)
C3—C4—C5119.6 (3)N2—C12—H12120.0
C3—C4—H4120.2C11—C12—H12120.0
C5—C4—H4120.2
O1—Cr1—O4—Cr262.94 (19)C1—N1—C6—C794.5 (3)
O2—Cr1—O4—Cr2177.98 (15)C5—N1—C6—C786.8 (3)
O3—Cr1—O4—Cr259.16 (19)C12—N2—C7—C6100.0 (3)
O5—Cr2—O4—Cr194.27 (18)C8—N2—C7—C679.6 (3)
O7—Cr2—O4—Cr1145.29 (16)N1—C6—C7—N2177.5 (2)
O6—Cr2—O4—Cr126.04 (19)C12—N2—C8—C90.7 (4)
C5—N1—C1—C21.1 (5)C7—N2—C8—C9179.7 (3)
C6—N1—C1—C2177.6 (3)N2—C8—C9—C100.5 (5)
N1—C1—C2—C30.8 (5)C8—C9—C10—C110.0 (5)
C1—C2—C3—C40.5 (5)C9—C10—C11—C120.2 (5)
C2—C3—C4—C51.6 (5)C8—N2—C12—C110.5 (5)
C1—N1—C5—C40.0 (5)C7—N2—C12—C11179.9 (3)
C6—N1—C5—C4178.7 (3)C10—C11—C12—N20.1 (5)
C3—C4—C5—N11.3 (5)

Experimental details

Crystal data
Chemical formula(C12H14N2)[Cr2O7]
Mr402.25
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.2882 (4), 9.0722 (4), 10.0179 (5)
β (°) 91.882 (1)
V3)752.86 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.22 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.737, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
5446, 2628, 2546
Rint0.025
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.04
No. of reflections2628
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.21
Absolute structureFlack (1983), 1163 Friedel pairs
Absolute structure parameter0.510 (19)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAverbuch-Pouchot, M. T., El-Horr, N. & Guitel, J. C. (1984). Acta Cryst. C40, 725–728.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGholizadeh, M., Hojati, S. F., Pourayoubi, M., Maleki, B., Kia, M. & Notash, B. (2011). X-ray Struct. Anal. Online, 27, 47–48.  CrossRef CAS Google Scholar
First citationGholizadeh, M., Maleki, B., Pourayoubi, M., Kia, M. & Notash, B. (2011). Acta Cryst. E67, o1614–o1615.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLennartson, A. & Håkansson, M. (2009). Acta Cryst. C65, m182–m184.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds