organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-{(E)-10-[(2,6-Diiso­propyl­phen­yl)­imino]-9,10-di­hydro­phenanthren-9-yl­­idene}-2,6-di­methyl­aniline

aDepartment of Blood Transfusion, China–Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
*Correspondence e-mail: liutiemeishuxue@163.com

(Received 7 January 2012; accepted 28 January 2012; online 4 February 2012)

The title compound, C34H34N2, adopts a Z,E configuration with respect to the N=C—C=N backbone, with an N—C—C—N torsion angle of 41.1 (4)° The dihedral angle between the benzene rings in the 9,10-dihydro­phenanthrene moiety is 18.0 (1)°.

Related literature

For the synthesis and applications of related α-diimines in catalysis and coordination chemistry, see: Li, Gomes et al. (2009[Li, L., Gomes, C. S. B., Gomes, P. T., Veiros, L. F. & Kim, S. Y. (2009). Arkivoc, pp. 95-111]); Li, Jeon et al. (2009[Li, L., Jeon, M. & Kim, S. Y. (2009). J. Mol. Catal. A Chem. 303, 110-116.]); Gao et al. (2011[Gao, B., Su, Q., Gao, W. & Mu, Y. (2011). Acta Cryst. E67, m1374.]); Bochkarev et al. (2010[Bochkarev, M. N., Fagin, A. A., Druzhkov, N. O., Cherkasov, V. K., Katkova, M. A., Fukin, G. K. & Kurskii, Y. A. (2010). J. Organomet. Chem. 695, 2774-2780.]); Belzen et al. (1996[Belzen, R., Klein, R. A., Smeets, W. J. J., Spek, A. L., Benedix, R. & Elsevier, C. J. (1996). Recl. Trav. Chim. Pays-Bas, 115, 275-285.]). For standard bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-25.]).

[Scheme 1]

Experimental

Crystal data
  • C34H34N2

  • Mr = 470.63

  • Monoclinic, P 21 /c

  • a = 9.5495 (7) Å

  • b = 16.4294 (12) Å

  • c = 17.7237 (13) Å

  • β = 104.579 (1)°

  • V = 2691.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 185 K

  • 0.23 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.985, Tmax = 0.990

  • 14490 measured reflections

  • 5304 independent reflections

  • 4587 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.161

  • S = 1.27

  • 5304 reflections

  • 331 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

α-diimines and their metal complexes have been attracted considerable interest due to their applications in catalysis and coordination chemistry. (Li, Gomes et al., 2009; Li, Jeon et al., 2009; Gao et al., 2011; Bochkarev et al., 2010; Belzen et al., 1996). In recent years, we have been interested in the development of high-performance catalyst systems based on diimine ligands and therefore synthesized a series of bis-(arylimino)acenaphthene ligands. Herein, we report the preparation and crystal structure of new phenanthrenequinone-based diimine compound, (I).

The title molecule, Fig. 1, is present as the Z, E configurational isomer. The C1—C14 distance is 1.507 (3) Å, indicative of no conjugation between the two imine bonds or between the phenyl groups of the phenanthrene backbone. The dihedral angle between the benzene rings of the phenanthrene moiet is 18.0 (1)°. The torsion angle of N1—C1—C14—N2 is 41.1 (4)°. Both lengths and angles in the title compound are in normal ranges (Allen et al., 1987) and are comparable to those of the known phenanthrenequinone-based diimine compounds (Belzen et al., 1996).

Related literature top

For the synthesis and applications of related α-diimines in catalysis and coordination chemistry, see: Li, Gomes et al. (2009); Li, Jeon et al. (2009); Gao et al. (2011); Bochkarev et al. (2010); Belzen et al. (1996). For standard bond distances, see: Allen et al. (1987).

Experimental top

To a solution of 2,6-diisopropylaniline (1.08 g, 7.2 mmol) and Dabco (2.49 g, 21.6 mmol) in toluene (30 ml) was added dropwise 7.2 ml of the 1.0 M solution of TiCl4 in toluene over 30 min at 363 k, followed by addition of a suspension of (E)-10-(2,6-dimethylphenylimino)phenanthren-9(10H)-one (Gao et al., 2011) (1.5 g, 4.80 mmol) in 10 ml of toluene. The reaction mixture was heated to 413 k for 8 h. The precipitate was removed by hot filtration. The filtrate was evaporated in vacuo. The deep red crystalline solid was isolated by silica gel column chromatography (hexane/ethyl acetate, 8:1). (1.08 g, yield: 48%) 1H NMR (300 MHz, CDCl3, 298 K) δ (p.p.m.): 0.60 (d, JH—H= 9.0 Hz, 3.6H, CH(CH3)2), 0.80 (d, JH—H= 6.0 Hz, 3.6H, CH(CH3)2), 1.01 (d, JH—H = 6.0 Hz, 2.4H, CH(CH3)2), 1.17 (d, JH—H= 9.0 Hz, 2.4H, CH(CH3)2), 1.35 (s, 2.4H, CH3), 1.79 (m, 1.2H, CH(CH3)2), 2.06 (s, 3.6H, CH3), 2.83 (m, 0.8, CH(CH3)2), 6.65–7.01 (m, 8H), 7.38 (m, 1H), 7.52 (m, 1H), 7.66 (m, 1H), 7.93 (m, 2H), 8.43 (m, 1H). 13C NMR (75 MHz, CDCl3, 298 K) δ (p.p.m.): 17.42, 18.62, 22.75, 22.97, 23.63, 24.25, 27.55, 28.90, 122.66, 122.77, 123.16, 123.26, 123.54, 123.60, 124.31, 124.73, 125.17, 127.20, 127.33, 127.46, 127.57, 127.86, 128.01, 128.91, 129.18, 131.35, 131.45, 131.92, 132.06, 133.64, 134.20, 134.60, 135.35, 135.50, 135.73, 145.40, 149.13, 156.77, 158.01, 159.37, 159.94 p.p.m..

Refinement top

The H atoms were positioned geometrically with C—H = 0.95 (aromatic carbon), 0.99 (methylene) and 0.98 (methyl) Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound.. Displacement ellipsoids are drawn at the 30% probability level.
(Z)-N-{(E)-10-[(2,6-Diisopropylphenyl)imino]-9,10- dihydrophenanthren-9-ylidene}-2,6-dimethylaniline top
Crystal data top
C34H34N2F(000) = 1008
Mr = 470.63Dx = 1.162 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3054 reflections
a = 9.5495 (7) Åθ = 2.4–26.0°
b = 16.4294 (12) ŵ = 0.07 mm1
c = 17.7237 (13) ÅT = 185 K
β = 104.579 (1)°Block, red
V = 2691.2 (3) Å30.23 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5304 independent reflections
Radiation source: fine-focus sealed tube4587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
phi and ω scanθmax = 26.1°, θmin = 1.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 611
Tmin = 0.985, Tmax = 0.990k = 2020
14490 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0304P)2 + 2.1478P]
where P = (Fo2 + 2Fc2)/3
5304 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C34H34N2V = 2691.2 (3) Å3
Mr = 470.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5495 (7) ŵ = 0.07 mm1
b = 16.4294 (12) ÅT = 185 K
c = 17.7237 (13) Å0.23 × 0.20 × 0.15 mm
β = 104.579 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5304 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4587 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.990Rint = 0.038
14490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.27Δρmax = 0.21 e Å3
5304 reflectionsΔρmin = 0.24 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3180 (2)0.67770 (13)0.09099 (13)0.0284 (5)
N20.5846 (2)0.75349 (12)0.18313 (12)0.0242 (5)
C10.4448 (3)0.64761 (15)0.11007 (14)0.0243 (5)
C20.4616 (3)0.55816 (15)0.11074 (14)0.0252 (5)
C30.3482 (3)0.50826 (16)0.11938 (15)0.0292 (6)
H30.26070.53150.12190.035*
C40.3650 (3)0.42518 (17)0.12425 (16)0.0346 (7)
H40.28890.39230.12990.042*
C50.4951 (4)0.39055 (17)0.12071 (17)0.0392 (7)
H50.50700.33440.12450.047*
C60.6079 (3)0.43939 (17)0.11159 (17)0.0370 (7)
H60.69500.41550.10930.044*
C70.5933 (3)0.52341 (16)0.10582 (14)0.0276 (6)
C80.7101 (3)0.57685 (16)0.09295 (14)0.0268 (6)
C90.8246 (3)0.54597 (18)0.06549 (16)0.0338 (6)
H90.82800.49060.05540.041*
C100.9324 (3)0.59620 (19)0.05315 (17)0.0374 (7)
H101.00810.57430.03540.045*
C110.9286 (3)0.6783 (2)0.06693 (16)0.0374 (7)
H111.00050.71210.05760.045*
C120.8174 (3)0.71061 (18)0.09474 (15)0.0314 (6)
H120.81600.76610.10480.038*
C130.7073 (3)0.66092 (16)0.10781 (14)0.0258 (6)
C140.5844 (3)0.69431 (15)0.13656 (14)0.0232 (5)
C150.2838 (3)0.76208 (16)0.09064 (16)0.0279 (6)
C160.2400 (3)0.79411 (18)0.15418 (17)0.0359 (7)
C170.1844 (4)0.8721 (2)0.1478 (2)0.0496 (9)
H170.15480.89440.18950.060*
C180.1717 (4)0.9179 (2)0.0808 (2)0.0542 (9)
H180.13340.97020.07760.065*
C190.2160 (4)0.88567 (18)0.01948 (19)0.0444 (8)
H190.20770.91670.02530.053*
C200.2733 (3)0.80749 (17)0.02270 (16)0.0322 (6)
C210.2522 (4)0.7434 (2)0.22597 (19)0.0509 (9)
H21A0.20890.77190.26170.076*
H21B0.35240.73320.25040.076*
H21C0.20300.69250.21180.076*
C220.3218 (4)0.77238 (19)0.04485 (17)0.0437 (8)
H22A0.27040.72270.06140.066*
H22B0.42380.76150.02910.066*
H22C0.30220.81060.08720.066*
C230.7117 (3)0.79637 (16)0.22119 (15)0.0258 (6)
C240.8176 (3)0.75988 (17)0.28037 (15)0.0293 (6)
C250.9359 (3)0.8071 (2)0.31794 (18)0.0397 (7)
H251.00740.78400.35770.048*
C260.9493 (3)0.88710 (19)0.29748 (19)0.0421 (8)
H261.03080.91690.32200.051*
C270.8415 (3)0.92263 (18)0.24066 (18)0.0379 (7)
H270.85090.97680.22740.045*
C280.7196 (3)0.87959 (17)0.20282 (15)0.0306 (6)
C290.5983 (4)0.91871 (17)0.14141 (17)0.0383 (7)
H290.50960.88860.14130.046*
C300.6225 (5)0.9105 (2)0.06026 (18)0.0586 (10)
H30A0.71070.93760.05850.088*
H30B0.54290.93490.02290.088*
H30C0.62910.85400.04810.088*
C310.5708 (5)1.0078 (2)0.1589 (2)0.0602 (10)
H31A0.65281.04020.15560.090*
H31B0.55631.01200.21040.090*
H31C0.48621.02710.12160.090*
C320.8049 (3)0.67254 (17)0.30739 (16)0.0349 (7)
H320.71800.64880.27280.042*
C330.9338 (4)0.6197 (2)0.3016 (2)0.0543 (9)
H33A0.94570.62210.24940.082*
H33B0.91670.56440.31430.082*
H33C1.01990.63950.33740.082*
C340.7840 (5)0.6712 (2)0.3902 (2)0.0620 (11)
H34A0.86840.69310.42580.093*
H34B0.76920.61610.40470.093*
H34C0.70110.70350.39210.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0223 (11)0.0285 (12)0.0348 (12)0.0014 (10)0.0080 (10)0.0008 (10)
N20.0220 (11)0.0227 (11)0.0268 (11)0.0005 (9)0.0040 (9)0.0001 (9)
C10.0245 (13)0.0280 (13)0.0216 (12)0.0009 (11)0.0079 (11)0.0022 (10)
C20.0276 (14)0.0259 (13)0.0208 (12)0.0028 (11)0.0037 (11)0.0034 (10)
C30.0276 (14)0.0309 (15)0.0286 (13)0.0015 (12)0.0060 (12)0.0030 (11)
C40.0404 (17)0.0307 (15)0.0335 (15)0.0092 (13)0.0108 (13)0.0011 (12)
C50.0532 (19)0.0202 (14)0.0457 (17)0.0000 (13)0.0149 (16)0.0009 (12)
C60.0336 (16)0.0306 (15)0.0465 (17)0.0071 (13)0.0094 (14)0.0010 (13)
C70.0257 (13)0.0328 (15)0.0228 (12)0.0030 (11)0.0033 (11)0.0012 (11)
C80.0230 (13)0.0343 (15)0.0208 (12)0.0017 (11)0.0011 (11)0.0008 (11)
C90.0311 (15)0.0378 (16)0.0313 (14)0.0078 (13)0.0054 (12)0.0028 (12)
C100.0252 (14)0.0514 (19)0.0371 (16)0.0052 (13)0.0104 (13)0.0059 (14)
C110.0242 (14)0.0549 (19)0.0343 (15)0.0090 (14)0.0095 (12)0.0029 (14)
C120.0270 (14)0.0360 (15)0.0306 (14)0.0057 (12)0.0061 (12)0.0038 (12)
C130.0222 (13)0.0337 (15)0.0200 (12)0.0020 (11)0.0025 (10)0.0010 (11)
C140.0236 (13)0.0220 (12)0.0234 (12)0.0026 (10)0.0049 (10)0.0029 (10)
C150.0179 (12)0.0255 (14)0.0390 (15)0.0013 (10)0.0048 (11)0.0042 (11)
C160.0280 (15)0.0394 (17)0.0421 (16)0.0012 (13)0.0124 (13)0.0076 (13)
C170.048 (2)0.047 (2)0.059 (2)0.0048 (16)0.0225 (17)0.0158 (17)
C180.057 (2)0.0331 (18)0.071 (2)0.0147 (16)0.0117 (19)0.0088 (17)
C190.0490 (19)0.0307 (16)0.0497 (18)0.0041 (14)0.0054 (16)0.0028 (14)
C200.0246 (14)0.0329 (15)0.0365 (15)0.0009 (12)0.0030 (12)0.0052 (12)
C210.051 (2)0.061 (2)0.0476 (19)0.0000 (17)0.0258 (17)0.0034 (17)
C220.052 (2)0.0426 (18)0.0359 (16)0.0019 (15)0.0105 (15)0.0037 (13)
C230.0237 (13)0.0288 (14)0.0266 (13)0.0023 (11)0.0097 (11)0.0050 (11)
C240.0242 (14)0.0349 (15)0.0288 (13)0.0026 (12)0.0068 (11)0.0052 (12)
C250.0236 (14)0.0531 (19)0.0388 (16)0.0065 (14)0.0015 (13)0.0102 (14)
C260.0279 (15)0.0450 (18)0.0525 (19)0.0115 (14)0.0085 (14)0.0197 (15)
C270.0385 (17)0.0306 (15)0.0485 (17)0.0128 (13)0.0184 (15)0.0076 (13)
C280.0333 (15)0.0348 (15)0.0255 (13)0.0027 (12)0.0108 (12)0.0036 (11)
C290.0500 (19)0.0285 (15)0.0358 (15)0.0028 (14)0.0098 (14)0.0040 (12)
C300.085 (3)0.051 (2)0.0367 (17)0.007 (2)0.0093 (19)0.0064 (15)
C310.081 (3)0.045 (2)0.050 (2)0.0152 (19)0.007 (2)0.0005 (16)
C320.0347 (16)0.0362 (16)0.0306 (14)0.0080 (13)0.0024 (13)0.0027 (12)
C330.058 (2)0.047 (2)0.058 (2)0.0203 (18)0.0152 (19)0.0099 (17)
C340.089 (3)0.052 (2)0.054 (2)0.007 (2)0.033 (2)0.0065 (17)
Geometric parameters (Å, º) top
N1—C11.272 (3)C19—H190.9300
N1—C151.424 (3)C20—C221.503 (4)
N2—C141.275 (3)C21—H21A0.9600
N2—C231.418 (3)C21—H21B0.9600
C1—C21.478 (3)C21—H21C0.9600
C1—C141.507 (3)C22—H22A0.9600
C2—C31.397 (4)C22—H22B0.9600
C2—C71.404 (4)C22—H22C0.9600
C3—C41.374 (4)C23—C241.396 (4)
C3—H30.9300C23—C281.412 (4)
C4—C51.383 (4)C24—C251.393 (4)
C4—H40.9300C24—C321.527 (4)
C5—C61.384 (4)C25—C261.379 (4)
C5—H50.9300C25—H250.9300
C6—C71.389 (4)C26—C271.376 (4)
C6—H60.9300C26—H260.9300
C7—C81.481 (4)C27—C281.383 (4)
C8—C91.399 (4)C27—H270.9300
C8—C131.408 (4)C28—C291.518 (4)
C9—C101.380 (4)C29—C301.519 (4)
C9—H90.9300C29—C311.532 (4)
C10—C111.373 (4)C29—H290.9800
C10—H100.9300C30—H30A0.9600
C11—C121.384 (4)C30—H30B0.9600
C11—H110.9300C30—H30C0.9600
C12—C131.396 (4)C31—H31A0.9600
C12—H120.9300C31—H31B0.9600
C13—C141.496 (3)C31—H31C0.9600
C15—C201.398 (4)C32—C341.530 (4)
C15—C161.399 (4)C32—C331.531 (4)
C16—C171.380 (4)C32—H320.9800
C16—C211.501 (4)C33—H33A0.9600
C17—C181.386 (5)C33—H33B0.9600
C17—H170.9300C33—H33C0.9600
C18—C191.369 (5)C34—H34A0.9600
C18—H180.9300C34—H34B0.9600
C19—C201.391 (4)C34—H34C0.9600
C1—N1—C15125.5 (2)H21A—C21—H21B109.5
C14—N2—C23123.3 (2)C16—C21—H21C109.5
N1—C1—C2118.8 (2)H21A—C21—H21C109.5
N1—C1—C14126.4 (2)H21B—C21—H21C109.5
C2—C1—C14114.7 (2)C20—C22—H22A109.5
C3—C2—C7120.0 (2)C20—C22—H22B109.5
C3—C2—C1119.9 (2)H22A—C22—H22B109.5
C7—C2—C1120.1 (2)C20—C22—H22C109.5
C4—C3—C2120.6 (3)H22A—C22—H22C109.5
C4—C3—H3119.7H22B—C22—H22C109.5
C2—C3—H3119.7C24—C23—C28121.2 (2)
C3—C4—C5119.8 (3)C24—C23—N2121.0 (2)
C3—C4—H4120.1C28—C23—N2117.4 (2)
C5—C4—H4120.1C25—C24—C23117.8 (3)
C4—C5—C6120.1 (3)C25—C24—C32119.5 (3)
C4—C5—H5120.0C23—C24—C32122.6 (2)
C6—C5—H5120.0C26—C25—C24121.5 (3)
C5—C6—C7121.2 (3)C26—C25—H25119.2
C5—C6—H6119.4C24—C25—H25119.2
C7—C6—H6119.4C27—C26—C25119.7 (3)
C6—C7—C2118.3 (3)C27—C26—H26120.2
C6—C7—C8122.4 (2)C25—C26—H26120.2
C2—C7—C8119.3 (2)C26—C27—C28121.4 (3)
C9—C8—C13118.3 (2)C26—C27—H27119.3
C9—C8—C7121.5 (2)C28—C27—H27119.3
C13—C8—C7120.2 (2)C27—C28—C23118.1 (3)
C10—C9—C8121.2 (3)C27—C28—C29121.9 (3)
C10—C9—H9119.4C23—C28—C29120.0 (2)
C8—C9—H9119.4C28—C29—C30111.8 (3)
C11—C10—C9120.3 (3)C28—C29—C31113.4 (3)
C11—C10—H10119.8C30—C29—C31110.5 (3)
C9—C10—H10119.8C28—C29—H29106.9
C10—C11—C12119.8 (3)C30—C29—H29106.9
C10—C11—H11120.1C31—C29—H29106.9
C12—C11—H11120.1C29—C30—H30A109.5
C11—C12—C13120.8 (3)C29—C30—H30B109.5
C11—C12—H12119.6H30A—C30—H30B109.5
C13—C12—H12119.6C29—C30—H30C109.5
C12—C13—C8119.5 (2)H30A—C30—H30C109.5
C12—C13—C14122.0 (2)H30B—C30—H30C109.5
C8—C13—C14118.5 (2)C29—C31—H31A109.5
N2—C14—C13128.8 (2)C29—C31—H31B109.5
N2—C14—C1116.6 (2)H31A—C31—H31B109.5
C13—C14—C1114.5 (2)C29—C31—H31C109.5
C20—C15—C16121.4 (3)H31A—C31—H31C109.5
C20—C15—N1119.3 (2)H31B—C31—H31C109.5
C16—C15—N1118.5 (2)C24—C32—C34110.8 (2)
C17—C16—C15118.1 (3)C24—C32—C33112.5 (3)
C17—C16—C21122.0 (3)C34—C32—C33111.0 (3)
C15—C16—C21119.9 (3)C24—C32—H32107.5
C16—C17—C18121.5 (3)C34—C32—H32107.5
C16—C17—H17119.2C33—C32—H32107.5
C18—C17—H17119.2C32—C33—H33A109.5
C19—C18—C17119.5 (3)C32—C33—H33B109.5
C19—C18—H18120.2H33A—C33—H33B109.5
C17—C18—H18120.2C32—C33—H33C109.5
C18—C19—C20121.4 (3)H33A—C33—H33C109.5
C18—C19—H19119.3H33B—C33—H33C109.5
C20—C19—H19119.3C32—C34—H34A109.5
C19—C20—C15118.0 (3)C32—C34—H34B109.5
C19—C20—C22121.2 (3)H34A—C34—H34B109.5
C15—C20—C22120.7 (3)C32—C34—H34C109.5
C16—C21—H21A109.5H34A—C34—H34C109.5
C16—C21—H21B109.5H34B—C34—H34C109.5
C15—N1—C1—C2177.2 (2)C2—C1—C14—C1340.5 (3)
C15—N1—C1—C140.4 (4)C1—N1—C15—C2090.7 (3)
N1—C1—C2—C323.6 (4)C1—N1—C15—C1699.0 (3)
C14—C1—C2—C3153.6 (2)C20—C15—C16—C170.6 (4)
N1—C1—C2—C7158.9 (2)N1—C15—C16—C17169.5 (3)
C14—C1—C2—C723.8 (3)C20—C15—C16—C21179.6 (3)
C7—C2—C3—C40.9 (4)N1—C15—C16—C219.6 (4)
C1—C2—C3—C4176.5 (2)C15—C16—C17—C180.0 (5)
C2—C3—C4—C50.1 (4)C21—C16—C17—C18179.0 (3)
C3—C4—C5—C60.6 (4)C16—C17—C18—C190.4 (5)
C4—C5—C6—C70.0 (5)C17—C18—C19—C200.2 (5)
C5—C6—C7—C21.0 (4)C18—C19—C20—C150.3 (5)
C5—C6—C7—C8177.5 (3)C18—C19—C20—C22180.0 (3)
C3—C2—C7—C61.5 (4)C16—C15—C20—C190.8 (4)
C1—C2—C7—C6176.0 (2)N1—C15—C20—C19169.2 (3)
C3—C2—C7—C8177.1 (2)C16—C15—C20—C22179.6 (3)
C1—C2—C7—C85.4 (4)N1—C15—C20—C2210.5 (4)
C6—C7—C8—C917.3 (4)C14—N2—C23—C2470.3 (3)
C2—C7—C8—C9161.3 (2)C14—N2—C23—C28116.2 (3)
C6—C7—C8—C13163.2 (3)C28—C23—C24—C253.5 (4)
C2—C7—C8—C1318.3 (4)N2—C23—C24—C25176.7 (2)
C13—C8—C9—C100.0 (4)C28—C23—C24—C32173.6 (2)
C7—C8—C9—C10179.6 (3)N2—C23—C24—C320.5 (4)
C8—C9—C10—C110.7 (4)C23—C24—C25—C260.4 (4)
C9—C10—C11—C121.2 (4)C32—C24—C25—C26177.6 (3)
C10—C11—C12—C131.1 (4)C24—C25—C26—C272.4 (4)
C11—C12—C13—C80.4 (4)C25—C26—C27—C280.5 (4)
C11—C12—C13—C14179.0 (2)C26—C27—C28—C233.2 (4)
C9—C8—C13—C120.1 (4)C26—C27—C28—C29178.5 (3)
C7—C8—C13—C12179.4 (2)C24—C23—C28—C275.3 (4)
C9—C8—C13—C14179.5 (2)N2—C23—C28—C27178.7 (2)
C7—C8—C13—C140.1 (3)C24—C23—C28—C29176.4 (2)
C23—N2—C14—C134.4 (4)N2—C23—C28—C293.0 (4)
C23—N2—C14—C1171.4 (2)C27—C28—C29—C3089.9 (3)
C12—C13—C14—N233.8 (4)C23—C28—C29—C3088.4 (3)
C8—C13—C14—N2146.8 (3)C27—C28—C29—C3135.9 (4)
C12—C13—C14—C1150.3 (2)C23—C28—C29—C31145.9 (3)
C8—C13—C14—C129.0 (3)C25—C24—C32—C3465.4 (4)
N1—C1—C14—N241.1 (4)C23—C24—C32—C34111.7 (3)
C2—C1—C14—N2135.9 (2)C25—C24—C32—C3359.4 (3)
N1—C1—C14—C13142.5 (3)C23—C24—C32—C33123.5 (3)

Experimental details

Crystal data
Chemical formulaC34H34N2
Mr470.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)185
a, b, c (Å)9.5495 (7), 16.4294 (12), 17.7237 (13)
β (°) 104.579 (1)
V3)2691.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.23 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.985, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
14490, 5304, 4587
Rint0.038
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.161, 1.27
No. of reflections5304
No. of parameters331
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the Department of Jilin Province Technology, China (grant No. 201015186), for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–25.  CrossRef Google Scholar
First citationBelzen, R., Klein, R. A., Smeets, W. J. J., Spek, A. L., Benedix, R. & Elsevier, C. J. (1996). Recl. Trav. Chim. Pays-Bas, 115, 275–285.  Google Scholar
First citationBochkarev, M. N., Fagin, A. A., Druzhkov, N. O., Cherkasov, V. K., Katkova, M. A., Fukin, G. K. & Kurskii, Y. A. (2010). J. Organomet. Chem. 695, 2774–2780.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, B., Su, Q., Gao, W. & Mu, Y. (2011). Acta Cryst. E67, m1374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, L., Gomes, C. S. B., Gomes, P. T., Veiros, L. F. & Kim, S. Y. (2009). Arkivoc, pp. 95–111  CrossRef Google Scholar
First citationLi, L., Jeon, M. & Kim, S. Y. (2009). J. Mol. Catal. A Chem. 303, 110–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds