organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Benzyl-3-(4-chloro­phen­yl)-2-iso­butyl­amino-5,6,7,8-tetra­hydro­pyrido[4′,3′:4,5]thieno[2,3-d]pyrimidin-4(3H)-one

aHubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, People's Republic of China, and bCollege of Chemistry and Life Science, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: chenhong3736@sina.com

(Received 8 January 2012; accepted 17 February 2012; online 24 February 2012)

In the title compound, C26H27ClN4OS, the thienopyrimidine fused-ring system is close to coplanar (r.m.s. deviation = 0.0089 Å), with a maximum deviation of 0.0283 (17) Å for the N atom adjacent to the benzene ring. This ring system forms dihedral angles of 83.51 (3) and 88.20 (5)° with the adjacent benzyl and phenyl rings, respectively. In the crystal, N—H⋯Cl inter­actions and C—H⋯O hydrogen bonds are observed.

Related literature

For the biological and pharmaceutical properties of compounds containing a fused thienopyrimidine system, see: Amr et al. (2010[Amr, A. E. G., Sherif, M. H., Assy, M. G., Al-Omar, M. A. & Ragab, I. (2010). Eur. J. Med. Chem. 45, 5935-5942.]); Huang et al. (2009[Huang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831-833.]); Jennings et al. (2005[Jennings, L. D., Kincaid, S. L. & Wang, Y. D. (2005). Bioorg. Med. Chem. Lett. 15, 4731-4735.]); Kikuchi et al. (2006[Kikuchi, H., Yamamoto, K., Horoiwa, S., Hirai, S., Kasahara, R., Hariguchi, N., Matsumoto, M. & Oshima, Y. (2006). J. Med. Chem. 49, 4698-4706.]); Mavrova et al. (2010[Mavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856-5861.]); Santagati et al. (2002[Santagati, N. A., Prezzavento, O., Bousquet, E., Ronsisvalle, G. & Spampinato, S. (2002). J. Pharm. Pharmacol. 54, 717-728.]). For similar crystal structures, see: Xie et al. (2008[Xie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.]); Chen et al. (2011[Chen, H., Hu, H.-J., Yan, K. & Dai, Q.-H. (2011). Acta Cryst. E67, o2228.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27ClN4OS

  • Mr = 479.03

  • Monoclinic, P 21 /c

  • a = 17.428 (13) Å

  • b = 9.391 (7) Å

  • c = 16.170 (13) Å

  • β = 111.995 (7)°

  • V = 2454 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.949

  • 25485 measured reflections

  • 5611 independent reflections

  • 3883 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.164

  • S = 1.06

  • 5611 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl1i 0.86 2.73 3.469 (3) 144
C8—H8B⋯O1ii 0.97 2.59 3.220 (4) 123
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of heterocycles containing the thienopyrimidine system have proved to show significant antifungal, antibacterical, anticonvulsant and angiotensin antagonistic activities (Amr et al. 2010; Huang et al. 2009; Jennings et al. 2005; Kikuchi et al. 2006; Mavrova et al. 2010; Santagati et al. 2002). Recently, we have focused on the synthesis of fused heterocyclic systems containing thienopyrimidine via aza-wittig reaction under mild conditions. Some X-ray crystal structures of fused pyrimidinone derivatives have been reported (Chen et al., 2011; Xie et al., 2008). The title compound has potential use as a precursor for obtaining bioactive molecules with fluorescence properties. Herein, we report its crystal structure (Fig. 1).

In the crystal structure of the title compound, C26H27ClN4OS, the thienopyrimidine fused-ring system is close to coplanar (r.m.s deviation = 0.0089 Å) with a maximum deviation of 0.0283 (17) Å for atom N(3). This ring system forms dihedral angles of 83.51 (3) and 88.20 (5)° with the adjacent 6-membered rings C1–C6 and C17–C22, respectively. Intermolecular N4—H4···Cl1i interactions, as well as intermolecular hydrogen bonds (C8—H8B···O1ii), help to stablize the crystal structure (Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x + 1, -y + 2, -z + 1) (Table 1).

Related literature top

For the biological and pharmaceutical properties of compounds containing a fused thienopyrimidine system, see: Amr et al. (2010); Huang et al. (2009); Jennings et al. (2005); Kikuchi et al. (2006); Mavrova et al. (2010); Santagati et al. (2002). For similar crystal structures, see: Xie et al. (2008); Chen et al. (2011).

Experimental top

1-Chloro-4-isocyanatobenzene (2 mmol) under nitrogen atmosphere was added to a solution of iminophosphorane (1.15 g, 2 mmol) in anhydrous dichloromethane (10 ml) at room temperature. When the reaction mixture was left unstirred for 12 h at 273–278 K, iminophosphorane was consumed (TLC monitored). The solvent was removed under reduced pressure and ether/petroleum ether (volume ratio 1:2, 20 ml) was added to precipitate triphenylphosphine oxide. Removal of the solvent gave carbodiimide, which was used directly without further purification. Iso-butylamine (2 mmol) was added to the solution of carbodiimide in anhydrous dichloromethane (10 ml). After the reaction mixture was left unstirred for 5–6 h, the solvent was removed and the residual was recrystallized from ethanol and dichloromethane to give the expected title compound in white crystals. Yield: 87%, m.p. 461–462 K. IR (KBr) cm-1 3341 (N—H), 1675 (CO), 1541, 1433, 1223, 691; 1H NMR (CDCl3, 600 MHz) δ (p.p.m.): 7.55–7.22 (m, 9H, Ar—H), 4.07 (br, 1H, NH), 3.72 (s, 2H, Ar—CH2), 3.60 (s, 2H, NCH2-thiophene), 3.18 (t, J = 6.3 Hz, 2H, NHCH2), 2.98 (t, J = 5.7 Hz, 2H, NCH2CH2), 2.83 (t, J = 5.7 Hz, 2H, NCH2CH2), 1.80–1.76 (m, J = 5.4 Hz, 1H, CH), 0.83 (s, 6H, 2 CH3); EI–MS (m/z, %): 480.06 (M+2+, 17), 478.01 (M+, 52), 387.02 (14), 358.96 (57), 303.01 (42), 152.03 (21), 91.09 (100), 44.02 (15). Anal. Calcd. (%) for C26H27ClN4OS: C, 65.19; H, 5.68; N, 11.70. Found (%): C, 65.47; H, 5.85; N, 11.89.

Refinement top

All H atoms were positioned geometrically [C—H = 0.93, 0.96, 0.97 Å and N—H = 0.86 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq of the C or N atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 50% probability displacement ellipsoids.
7-Benzyl-3-(4-chlorophenyl)-2-isobutylamino-5,6,7,8- tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one top
Crystal data top
C26H27ClN4OSF(000) = 1008
Mr = 479.03Dx = 1.297 Mg m3
Monoclinic, P21/cMelting point: 462 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 17.428 (13) ÅCell parameters from 4592 reflections
b = 9.391 (7) Åθ = 2.5–27.5°
c = 16.170 (13) ŵ = 0.27 mm1
β = 111.995 (7)°T = 296 K
V = 2454 (3) Å3Prism, colourless
Z = 40.26 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
5611 independent reflections
Radiation source: fine-focus sealed tube3883 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
CCD Profile fitting scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.934, Tmax = 0.949k = 1212
25485 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0535P)2 + 1.2122P]
where P = (Fo2 + 2Fc2)/3
5611 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C26H27ClN4OSV = 2454 (3) Å3
Mr = 479.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.428 (13) ŵ = 0.27 mm1
b = 9.391 (7) ÅT = 296 K
c = 16.170 (13) Å0.26 × 0.24 × 0.20 mm
β = 111.995 (7)°
Data collection top
Bruker SMART CCD
diffractometer
5611 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3883 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.949Rint = 0.090
25485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
5611 reflectionsΔρmin = 0.26 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63895 (6)1.09995 (13)0.09315 (7)0.0814 (3)
C10.0316 (2)1.1445 (5)0.6378 (3)0.0782 (11)
H10.01881.18310.63370.094*
C20.0970 (2)1.2321 (4)0.6461 (2)0.0695 (10)
H20.09131.33030.64800.083*
C30.1715 (2)1.1734 (4)0.6516 (2)0.0585 (8)
H30.21581.23330.65770.070*
C40.18193 (19)1.0276 (3)0.64841 (19)0.0482 (7)
C50.1159 (2)0.9416 (4)0.6414 (3)0.0692 (10)
H50.12150.84310.64040.083*
C60.0411 (2)1.0003 (5)0.6358 (3)0.0870 (13)
H60.00320.94080.63050.104*
C70.26265 (19)0.9681 (4)0.65007 (19)0.0517 (7)
H7A0.30771.00670.70090.062*
H7B0.26270.86540.65700.062*
C80.35672 (18)0.9495 (4)0.57200 (19)0.0515 (7)
H8A0.35580.84620.57080.062*
H8B0.39920.97940.62780.062*
C90.37759 (17)1.0049 (4)0.49451 (18)0.0509 (7)
H9A0.38941.10610.50200.061*
H9B0.42640.95670.49340.061*
C100.30634 (16)0.9793 (3)0.40863 (17)0.0399 (6)
C110.23083 (16)0.9471 (3)0.40872 (17)0.0404 (6)
C120.20962 (17)0.9400 (3)0.49018 (18)0.0470 (7)
H12A0.15830.99080.47940.056*
H12B0.20160.84150.50300.056*
C130.30607 (15)0.9815 (3)0.31940 (17)0.0394 (6)
C140.23034 (16)0.9494 (3)0.25440 (18)0.0407 (6)
C150.27191 (17)0.9691 (3)0.13904 (18)0.0416 (6)
C160.37323 (17)1.0126 (3)0.29188 (18)0.0429 (6)
C170.41915 (16)1.0218 (3)0.16662 (17)0.0406 (6)
C180.43494 (19)1.1580 (3)0.1439 (2)0.0519 (7)
H180.40051.23320.14450.062*
C190.50245 (19)1.1807 (4)0.1202 (2)0.0549 (8)
H190.51411.27170.10540.066*
C200.55211 (18)1.0682 (4)0.11873 (19)0.0511 (7)
C210.53581 (18)0.9314 (4)0.1390 (2)0.0522 (8)
H210.56900.85580.13560.063*
C220.46907 (18)0.9086 (3)0.16437 (19)0.0474 (7)
H220.45800.81770.17980.057*
C230.17702 (19)0.9558 (3)0.01924 (19)0.0538 (8)
H23A0.14110.90490.00410.065*
H23B0.18080.90030.06820.065*
C240.1383 (2)1.0970 (4)0.0548 (2)0.0699 (10)
H240.13881.15520.00430.084*
C250.1863 (3)1.1749 (5)0.1013 (3)0.1069 (17)
H25A0.24081.19600.05910.160*
H25B0.15831.26200.12610.160*
H25C0.19031.11620.14810.160*
C260.0481 (3)1.0733 (6)0.1165 (3)0.1126 (18)
H26A0.02311.16310.14010.169*
H26B0.01851.03010.08350.169*
H26C0.04611.01180.16470.169*
N10.27599 (14)1.0031 (3)0.56719 (14)0.0423 (5)
N20.21063 (14)0.9434 (3)0.16459 (15)0.0438 (6)
N30.35216 (13)0.9995 (3)0.19807 (14)0.0419 (5)
N40.25971 (15)0.9662 (3)0.05109 (15)0.0527 (6)
H40.30200.97070.03600.079*
S10.15757 (4)0.91648 (9)0.30144 (5)0.0500 (2)
O10.44421 (12)1.0478 (3)0.33911 (13)0.0578 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0590 (5)0.1216 (9)0.0769 (6)0.0133 (5)0.0407 (5)0.0021 (6)
C10.064 (2)0.086 (3)0.100 (3)0.006 (2)0.048 (2)0.002 (2)
C20.071 (2)0.064 (2)0.084 (3)0.0060 (18)0.042 (2)0.0009 (19)
C30.0549 (19)0.060 (2)0.064 (2)0.0091 (15)0.0263 (17)0.0018 (16)
C40.0508 (17)0.059 (2)0.0379 (15)0.0035 (14)0.0198 (14)0.0015 (13)
C50.070 (2)0.062 (2)0.084 (3)0.0081 (18)0.039 (2)0.0008 (18)
C60.062 (2)0.086 (3)0.126 (4)0.018 (2)0.051 (3)0.003 (3)
C70.0520 (18)0.062 (2)0.0397 (16)0.0025 (14)0.0156 (14)0.0039 (13)
C80.0393 (16)0.070 (2)0.0397 (15)0.0056 (14)0.0086 (13)0.0014 (14)
C90.0308 (14)0.079 (2)0.0394 (15)0.0008 (14)0.0087 (12)0.0056 (14)
C100.0313 (13)0.0452 (16)0.0382 (14)0.0002 (11)0.0074 (11)0.0034 (11)
C110.0371 (14)0.0460 (17)0.0352 (13)0.0030 (11)0.0102 (12)0.0041 (11)
C120.0397 (15)0.0570 (19)0.0441 (16)0.0074 (13)0.0154 (13)0.0044 (13)
C130.0301 (13)0.0477 (17)0.0371 (14)0.0011 (11)0.0087 (11)0.0014 (11)
C140.0328 (14)0.0461 (17)0.0394 (14)0.0035 (11)0.0091 (12)0.0007 (11)
C150.0379 (14)0.0441 (17)0.0376 (14)0.0008 (11)0.0082 (12)0.0002 (11)
C160.0364 (14)0.0502 (18)0.0376 (14)0.0011 (12)0.0087 (12)0.0021 (12)
C170.0358 (14)0.0475 (17)0.0365 (14)0.0018 (12)0.0111 (12)0.0013 (11)
C180.0524 (18)0.0488 (19)0.0556 (18)0.0061 (14)0.0216 (15)0.0053 (14)
C190.0542 (18)0.056 (2)0.0566 (18)0.0067 (15)0.0230 (16)0.0079 (14)
C200.0418 (16)0.070 (2)0.0422 (16)0.0064 (14)0.0162 (14)0.0015 (14)
C210.0429 (16)0.063 (2)0.0484 (17)0.0054 (14)0.0140 (14)0.0098 (14)
C220.0459 (16)0.0445 (17)0.0498 (16)0.0005 (13)0.0158 (14)0.0005 (13)
C230.0480 (17)0.066 (2)0.0369 (15)0.0093 (14)0.0037 (14)0.0019 (13)
C240.065 (2)0.066 (2)0.059 (2)0.0075 (18)0.0009 (18)0.0100 (17)
C250.109 (4)0.074 (3)0.102 (3)0.022 (3)0.001 (3)0.032 (3)
C260.068 (3)0.124 (4)0.104 (4)0.014 (3)0.015 (3)0.004 (3)
N10.0377 (12)0.0533 (15)0.0338 (11)0.0022 (10)0.0107 (10)0.0011 (10)
N20.0344 (12)0.0553 (16)0.0363 (12)0.0041 (10)0.0071 (10)0.0018 (10)
N30.0338 (12)0.0507 (15)0.0380 (12)0.0038 (10)0.0098 (10)0.0003 (10)
N40.0385 (13)0.0814 (19)0.0333 (12)0.0024 (12)0.0079 (11)0.0015 (11)
S10.0332 (4)0.0741 (6)0.0398 (4)0.0117 (3)0.0102 (3)0.0071 (3)
O10.0337 (10)0.0945 (18)0.0403 (11)0.0104 (10)0.0081 (9)0.0057 (10)
Geometric parameters (Å, º) top
Cl1—C201.738 (3)C14—N21.362 (4)
C1—C61.366 (6)C14—S11.734 (3)
C1—C21.371 (5)C15—N21.304 (3)
C1—H10.9300C15—N41.357 (4)
C2—C31.382 (5)C15—N31.396 (3)
C2—H20.9300C16—O11.231 (3)
C3—C41.384 (5)C16—N31.426 (4)
C3—H30.9300C17—C221.383 (4)
C4—C51.375 (5)C17—C181.386 (4)
C4—C71.505 (4)C17—N31.453 (3)
C5—C61.388 (5)C18—C191.383 (4)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—C201.372 (4)
C7—N11.481 (4)C19—H190.9300
C7—H7A0.9700C20—C211.381 (4)
C7—H7B0.9700C21—C221.387 (4)
C8—N11.469 (4)C21—H210.9300
C8—C91.521 (4)C22—H220.9300
C8—H8A0.9700C23—N41.467 (4)
C8—H8B0.9700C23—C241.501 (5)
C9—C101.495 (4)C23—H23A0.9700
C9—H9A0.9700C23—H23B0.9700
C9—H9B0.9700C24—C251.507 (6)
C10—C111.351 (4)C24—C261.530 (5)
C10—C131.441 (4)C24—H240.9800
C11—C121.497 (4)C25—H25A0.9600
C11—S11.750 (3)C25—H25B0.9600
C12—N11.470 (3)C25—H25C0.9600
C12—H12A0.9700C26—H26A0.9600
C12—H12B0.9700C26—H26B0.9600
C13—C141.378 (4)C26—H26C0.9600
C13—C161.429 (4)N4—H40.8600
C6—C1—C2119.6 (4)O1—C16—N3118.8 (3)
C6—C1—H1120.2O1—C16—C13127.7 (3)
C2—C1—H1120.2N3—C16—C13113.5 (2)
C1—C2—C3119.6 (4)C22—C17—C18120.8 (3)
C1—C2—H2120.2C22—C17—N3119.6 (3)
C3—C2—H2120.2C18—C17—N3119.4 (3)
C2—C3—C4121.7 (3)C19—C18—C17119.3 (3)
C2—C3—H3119.2C19—C18—H18120.3
C4—C3—H3119.2C17—C18—H18120.3
C5—C4—C3117.8 (3)C20—C19—C18119.6 (3)
C5—C4—C7122.1 (3)C20—C19—H19120.2
C3—C4—C7120.1 (3)C18—C19—H19120.2
C4—C5—C6120.6 (4)C19—C20—C21121.7 (3)
C4—C5—H5119.7C19—C20—Cl1118.9 (3)
C6—C5—H5119.7C21—C20—Cl1119.4 (2)
C1—C6—C5120.7 (4)C20—C21—C22118.9 (3)
C1—C6—H6119.6C20—C21—H21120.6
C5—C6—H6119.6C22—C21—H21120.6
N1—C7—C4111.3 (2)C17—C22—C21119.7 (3)
N1—C7—H7A109.4C17—C22—H22120.2
C4—C7—H7A109.4C21—C22—H22120.2
N1—C7—H7B109.4N4—C23—C24114.1 (3)
C4—C7—H7B109.4N4—C23—H23A108.7
H7A—C7—H7B108.0C24—C23—H23A108.7
N1—C8—C9111.0 (2)N4—C23—H23B108.7
N1—C8—H8A109.4C24—C23—H23B108.7
C9—C8—H8A109.4H23A—C23—H23B107.6
N1—C8—H8B109.4C23—C24—C25111.4 (3)
C9—C8—H8B109.4C23—C24—C26109.0 (3)
H8A—C8—H8B108.0C25—C24—C26111.8 (4)
C10—C9—C8109.8 (2)C23—C24—H24108.2
C10—C9—H9A109.7C25—C24—H24108.2
C8—C9—H9A109.7C26—C24—H24108.2
C10—C9—H9B109.7C24—C25—H25A109.5
C8—C9—H9B109.7C24—C25—H25B109.5
H9A—C9—H9B108.2H25A—C25—H25B109.5
C11—C10—C13111.5 (2)C24—C25—H25C109.5
C11—C10—C9120.4 (2)H25A—C25—H25C109.5
C13—C10—C9128.1 (2)H25B—C25—H25C109.5
C10—C11—C12124.9 (2)C24—C26—H26A109.5
C10—C11—S1112.7 (2)C24—C26—H26B109.5
C12—C11—S1122.4 (2)H26A—C26—H26B109.5
N1—C12—C11110.6 (2)C24—C26—H26C109.5
N1—C12—H12A109.5H26A—C26—H26C109.5
C11—C12—H12A109.5H26B—C26—H26C109.5
N1—C12—H12B109.5C12—N1—C8109.9 (2)
C11—C12—H12B109.5C12—N1—C7109.7 (2)
H12A—C12—H12B108.1C8—N1—C7110.4 (2)
C14—C13—C16118.0 (2)C15—N2—C14114.9 (2)
C14—C13—C10113.8 (2)C15—N3—C16122.5 (2)
C16—C13—C10128.2 (2)C15—N3—C17121.4 (2)
N2—C14—C13127.5 (3)C16—N3—C17116.1 (2)
N2—C14—S1121.8 (2)C15—N4—C23122.5 (3)
C13—C14—S1110.7 (2)C15—N4—H4118.8
N2—C15—N4120.2 (2)C23—N4—H4118.8
N2—C15—N3123.4 (2)C14—S1—C1191.35 (14)
N4—C15—N3116.4 (2)
C6—C1—C2—C30.4 (6)C19—C20—C21—C222.2 (5)
C1—C2—C3—C40.5 (5)Cl1—C20—C21—C22176.3 (2)
C2—C3—C4—C51.4 (5)C18—C17—C22—C210.0 (4)
C2—C3—C4—C7177.0 (3)N3—C17—C22—C21176.5 (3)
C3—C4—C5—C61.4 (5)C20—C21—C22—C171.7 (4)
C7—C4—C5—C6176.9 (4)N4—C23—C24—C2564.8 (4)
C2—C1—C6—C50.4 (7)N4—C23—C24—C26171.4 (3)
C4—C5—C6—C10.5 (7)C11—C12—N1—C846.5 (3)
C5—C4—C7—N1110.2 (3)C11—C12—N1—C7168.0 (2)
C3—C4—C7—N168.1 (4)C9—C8—N1—C1268.1 (3)
N1—C8—C9—C1050.3 (3)C9—C8—N1—C7170.8 (3)
C8—C9—C10—C1115.6 (4)C4—C7—N1—C1261.3 (3)
C8—C9—C10—C13163.2 (3)C4—C7—N1—C8177.5 (3)
C13—C10—C11—C12178.3 (3)N4—C15—N2—C14180.0 (3)
C9—C10—C11—C122.7 (4)N3—C15—N2—C140.5 (4)
C13—C10—C11—S10.7 (3)C13—C14—N2—C151.3 (4)
C9—C10—C11—S1178.3 (2)S1—C14—N2—C15179.3 (2)
C10—C11—C12—N112.6 (4)N2—C15—N3—C163.5 (4)
S1—C11—C12—N1166.3 (2)N4—C15—N3—C16177.0 (3)
C11—C10—C13—C140.7 (4)N2—C15—N3—C17177.5 (3)
C9—C10—C13—C14178.2 (3)N4—C15—N3—C172.0 (4)
C11—C10—C13—C16179.2 (3)O1—C16—N3—C15175.8 (3)
C9—C10—C13—C161.9 (5)C13—C16—N3—C154.3 (4)
C16—C13—C14—N20.1 (5)O1—C16—N3—C173.3 (4)
C10—C13—C14—N2179.8 (3)C13—C16—N3—C17176.6 (2)
C16—C13—C14—S1179.6 (2)C22—C17—N3—C1593.6 (3)
C10—C13—C14—S10.3 (3)C18—C17—N3—C1589.9 (3)
C14—C13—C16—O1177.5 (3)C22—C17—N3—C1687.3 (3)
C10—C13—C16—O12.3 (5)C18—C17—N3—C1689.2 (3)
C14—C13—C16—N32.6 (4)N2—C15—N4—C239.3 (4)
C10—C13—C16—N3177.6 (3)N3—C15—N4—C23171.2 (3)
C22—C17—C18—C191.2 (4)C24—C23—N4—C1592.6 (4)
N3—C17—C18—C19175.3 (3)N2—C14—S1—C11179.4 (2)
C17—C18—C19—C200.7 (5)C13—C14—S1—C110.1 (2)
C18—C19—C20—C211.0 (5)C10—C11—S1—C140.5 (2)
C18—C19—C20—Cl1177.5 (2)C12—C11—S1—C14178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.862.733.469 (3)144
C8—H8B···O1ii0.972.593.220 (4)123
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC26H27ClN4OS
Mr479.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.428 (13), 9.391 (7), 16.170 (13)
β (°) 111.995 (7)
V3)2454 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
25485, 5611, 3883
Rint0.090
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.164, 1.06
No. of reflections5611
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.862.733.469 (3)144.4
C8—H8B···O1ii0.972.593.220 (4)122.8
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Project No. 21102084), the Key Project of Hubei Provincial Department of Education (Project No. D20091301) and the Doctoral Startup Foundation of China Three Gorges University (Project No. KJ2009B004).

References

First citationAmr, A. E. G., Sherif, M. H., Assy, M. G., Al-Omar, M. A. & Ragab, I. (2010). Eur. J. Med. Chem. 45, 5935–5942.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H., Hu, H.-J., Yan, K. & Dai, Q.-H. (2011). Acta Cryst. E67, o2228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831–833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJennings, L. D., Kincaid, S. L. & Wang, Y. D. (2005). Bioorg. Med. Chem. Lett. 15, 4731–4735.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKikuchi, H., Yamamoto, K., Horoiwa, S., Hirai, S., Kasahara, R., Hariguchi, N., Matsumoto, M. & Oshima, Y. (2006). J. Med. Chem. 49, 4698–4706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856–5861.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSantagati, N. A., Prezzavento, O., Bousquet, E., Ronsisvalle, G. & Spampinato, S. (2002). J. Pharm. Pharmacol. 54, 717–728.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds