organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(1H-Indol-3-yl)-2-(3,4,5-tri­meth­oxy­phen­yl)acrylo­nitrile

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: pacrooks@uams.edu

(Received 4 November 2011; accepted 9 February 2012; online 17 February 2012)

In the title compound, C20H18N2O3, the C=C bond of the acrylonitrile group that links the indole and the 3,4,5-trimeth­oxy­phenyl rings has Z geometry, with dihedral angles between the plane of the acrylonitrile unit and the planes of the benzene and indole ring systems of 21.96 (5) and 38.94 (7)°, respectively. The acrylonitrile group is planar (r.m.s. deviation from planarity = 0.037 Å). Mol­ecules are linked into head-to-tail chains that propagate along the b-axis direction by bifurcated N—H⋯O inter­molecular hydrogen bonds, which form an R12(5) motif between the indole NH group and the two meth­oxy O atoms furthest from the nitrile group.

Related literature

For biological activity of similar acrylonitriles, see: Naruto et al. (1983[Naruto, S., Mizuta, H., Yoshida, T. & Uno, H. (1983). Chem. Pharm. Bull. 31, 3022-3032.]); Ohsumi et al. (1998[Ohsumi, K., Nakagawa, R., Fukuda, Y. & Hatanaka, T. (1998). J. Med. Chem. 41, 3022-3032.]); Saczewski et al. (2004[Saczewski, F., Reszka, P., Gdaniec, M., Grunert, R. & Bednarski, P. I. (2004). J. Med. Chem. 47, 3438-3449.]). For the mol­ecular structures of (E)-3-(benzo[b]thio­phen-2-yl)-2-(3,4,5-trimeth­oxy­phen­yl)acrylonitrile and (Z)-3-(benzo[b]thio­phen-2-yl)-2-(3,4-dimeth­oxy­phen­yl)acrylonitrile, see: Sonar et al. (2007[Sonar, V. N., Parkin, S. & Crooks, P. A. (2007). Acta Cryst. C63, o743-o745.]). For the structure of (Z)-4-[3-(2,5-dioxo­imi­dazol­idin-4-ylidenemeth­yl)-1H-indol-1-ylmeth­yl]benzo­nitrile, see: Penthala et al. (2008[Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2008). Acta Cryst. E64, o2122.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O3

  • Mr = 334.36

  • Monoclinic, P 21 /c

  • a = 11.3384 (4) Å

  • b = 21.1383 (8) Å

  • c = 6.9570 (3) Å

  • β = 93.610 (2)°

  • V = 1664.11 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 90 K

  • 0.24 × 0.07 × 0.02 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.843, Tmax = 0.929

  • 20812 measured reflections

  • 2979 independent reflections

  • 2679 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.07

  • 2979 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.851 (18) 2.075 (18) 2.8635 (15) 153.8 (16)
N1—H1N⋯O3i 0.851 (18) 2.301 (17) 2.9476 (15) 133.0 (15)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

A number of 2,3-diarylacrylonitrile analogs have been found to possess interesting biological properties such as spasmolytic (Naruto et al., 1983), and cytotoxic activities (Ohsumi et al., 1998 and Saczewski et al., 2004). Previously, we have reported on the crystallographic data of benzothiophene acrylonitrile analogs (Sonar et al., 2007). In continuation of the synthesis of structurally related analogs and to compare the structure–activity relationships of different substituted acrylonitrile analogs, we have now prepared the title compound, (I), by the reaction of indole-3-carbaldehyde with (3,4,5-trimethoxyphenyl)acetonitrile in methanolic sodium methoxide at reflux temperature. Recrystallization from methanol afforded yellow needles of (I) that were suitable for X-ray analysis. The X-ray studies revealed that the title compound is the Z isomer. The olefinic bond linking the indole ring and the 3,4,5-trimethoxyphenyl units has a planar atomic arrangement. The r.m.s. deviation from the mean plane passing through atoms of C1–C2–C3–C8–N1 is 0.0133 Å. The acrylonitrile group is planar (r.m.s. deviation from planarity is 0.037 Å). In the trimethoxyphenyl group, one methyl is essentially in the plane of the benzene ring and the three O atoms [deviation = 0.0253 (18) Å]. The middle methyl has the largest [deviation = 1.0600 (17) Å], while the methyl that is on the same side as the nitrile group is in between [0.3788 (19)Å out of plane]. Significant deviations from the ideal bond-angle geometry around the Csp2 atoms of the double bond are observed. The C1–C2–C3 and C1–C2–C9, C4–C3–C2 and C8–C3–C2 bond angles [105.88 (12)°, 127.93 (13)°, 134.18 (13)°, 106.90 (12)°, respectively] are distorted owing to steric hindrance around the double bond linking the two ring systems. Neither the indole ring nor the benzene ring of the 3,4,5-trimethoxyphenyl group is coplanar with the vinyl double bond, making dihedral angles of 38.94 (7)° and 21.96 (5)° respectively. Molecules are linked into head-to-tail chains that propagate along the b axis direction by bifurcated N—H···O intermolecular hydrogen bonds that form an R21(5) motif between the indole NH and the two methoxy O atoms furthest from the nitrile group, as shown in Figure 2.

Related literature top

For biological activity of similar acrylonitriles, see: Naruto et al. (1983); Ohsumi et al. (1998); Saczewski et al. (2004). For the molecular structures of (E)-3-(benzo[b]thiophen-2-yl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile and (Z)-3-(benzo[b]thiophen-2-yl)-2- (3,4-dimethoxyphenyl)acrylonitrile, see: Sonar et al. (2007). For the structure of (Z)-4-[3-(2,5-dioxoimidazolidin-4-ylidenemethyl) -1H-indol-1-ylmethyl]benzonitrile, see: Penthala et al. (2008).

Experimental top

A mixture of indole-3-carbaldehyde (0.3 g, 2.06 mmol), and 2-(3,4,5-trimethoxyphenyl)acetonitrile (0.45 g, 2.17 mmol) were refluxed in methanolic 5% sodium methoxide solution for 5 hrs. The reaction mixture was cooled to room temperature and added to ice–cold water to afford a yellow crude solid, which was collected by filtration, washed with a 1:1 mixture of cold water and methanol, and suction–dried to afford the crude product. Crystallization during slow evaporation of methanol gave a yellow crystalline product of (Z)-3-(1H-indol-3-yl)-2- (3,4,5-trimethoxyphenyl)acrylonitrile that was suitable for X-ray crystallographic analysis. 1H NMR (CDCl3): δ 3.91 (s, 3H), 3.93 (s, 6H), 6.89 (s, 2H), 7.26–7.35 (m, 2H), 7.47–7.50 (d, 1H), 7.79 (s, 1H), 7.81 (s, 1H), 8.45–8.46 (d, 1H), 8.91 (bs, 1H, NH); 13C NMR (CDCl3): δ 56.57, 61.28, 102.92, 105.11, 106.03, 111.83, 112.91, 121.19, 121.75, 125.77, 127.47, 129.27, 130.94, 132.38, 138.19, 153.76.

Refinement top

H atoms were found in difference Fourier maps. H atoms attached to carbon were subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3) and 0.95 Å (Csp2H). The N—H hydrogen coordinates were freely refined, to a distance N—H = 0.851 (18) Å. Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Bifurcated N–H···O bonding interactions (dashed lines) in the crystal structure of (I)
(Z)-3-(1H-Indol-3-yl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile top
Crystal data top
C20H18N2O3F(000) = 704
Mr = 334.36Dx = 1.335 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9970 reflections
a = 11.3384 (4) Åθ = 3.9–68.1°
b = 21.1383 (8) ŵ = 0.74 mm1
c = 6.9570 (3) ÅT = 90 K
β = 93.610 (2)°Lath, yellow
V = 1664.11 (11) Å30.24 × 0.07 × 0.02 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2979 independent reflections
Radiation source: fine-focus rotating anode2679 reflections with I > 2σ(I)
Graded multilayer optics monochromatorRint = 0.053
Detector resolution: 5.6 pixels mm-1θmax = 68.1°, θmin = 3.9°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS in APEX2; Bruker, 2006)
k = 2525
Tmin = 0.843, Tmax = 0.929l = 78
20812 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.7731P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2979 reflectionsΔρmax = 0.26 e Å3
233 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0016 (3)
Crystal data top
C20H18N2O3V = 1664.11 (11) Å3
Mr = 334.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.3384 (4) ŵ = 0.74 mm1
b = 21.1383 (8) ÅT = 90 K
c = 6.9570 (3) Å0.24 × 0.07 × 0.02 mm
β = 93.610 (2)°
Data collection top
Bruker X8 Proteum
diffractometer
2979 independent reflections
Absorption correction: multi-scan
(SADABS in APEX2; Bruker, 2006)
2679 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.929Rint = 0.053
20812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.26 e Å3
2979 reflectionsΔρmin = 0.20 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.29609 (11)0.42543 (6)0.78546 (16)0.0203 (3)
H1N0.2929 (15)0.4617 (8)0.732 (2)0.024*
N20.68309 (12)0.37056 (6)0.89979 (17)0.0251 (3)
O10.91232 (9)0.14011 (4)1.03760 (14)0.0220 (2)
O20.79293 (9)0.03501 (4)0.91759 (13)0.0202 (2)
O30.56732 (8)0.03817 (4)0.81372 (14)0.0203 (2)
C10.38533 (13)0.38300 (6)0.77536 (19)0.0195 (3)
H10.45200.38830.70090.023*
C20.36515 (12)0.33101 (6)0.88911 (18)0.0177 (3)
C30.25524 (12)0.34334 (6)0.97547 (18)0.0172 (3)
C40.18967 (13)0.31113 (6)1.1088 (2)0.0206 (3)
H40.21510.27121.15850.025*
C50.08734 (14)0.33867 (7)1.1662 (2)0.0253 (3)
H50.04260.31741.25740.030*
C60.04772 (14)0.39732 (7)1.0932 (2)0.0266 (3)
H60.02410.41451.13350.032*
C70.11116 (13)0.43046 (7)0.9640 (2)0.0225 (3)
H70.08500.47040.91530.027*
C80.21522 (13)0.40300 (6)0.90769 (19)0.0188 (3)
C90.43611 (12)0.27458 (6)0.91389 (18)0.0175 (3)
H90.39470.23670.93890.021*
C100.55447 (13)0.26926 (6)0.90571 (18)0.0170 (3)
C110.61787 (12)0.20801 (6)0.91199 (18)0.0166 (3)
C120.73704 (12)0.20546 (6)0.97301 (18)0.0173 (3)
H120.77810.24311.01030.021*
C130.79597 (12)0.14770 (6)0.97940 (18)0.0173 (3)
C140.73641 (12)0.09257 (6)0.92416 (18)0.0166 (3)
C150.61699 (12)0.09519 (6)0.86363 (18)0.0166 (3)
C160.55781 (12)0.15264 (6)0.85555 (18)0.0163 (3)
H160.47680.15440.81180.020*
C170.62542 (13)0.32580 (6)0.89881 (18)0.0185 (3)
C180.96763 (14)0.19066 (7)1.1428 (2)0.0263 (3)
H18A0.97210.22771.05900.039*
H18B1.04760.17801.18920.039*
H18C0.92140.20121.25290.039*
C190.84428 (13)0.01136 (7)1.0993 (2)0.0242 (3)
H19A0.92560.02691.11960.036*
H19B0.84450.03501.09710.036*
H19C0.79760.02621.20420.036*
C200.44638 (13)0.03775 (7)0.7438 (2)0.0227 (3)
H20A0.39720.05380.84400.034*
H20B0.42250.00560.71000.034*
H20C0.43630.06480.62950.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0269 (7)0.0156 (6)0.0183 (6)0.0011 (5)0.0004 (5)0.0033 (5)
N20.0311 (7)0.0229 (7)0.0218 (6)0.0038 (5)0.0048 (5)0.0011 (5)
O10.0174 (5)0.0210 (5)0.0270 (5)0.0010 (4)0.0031 (4)0.0036 (4)
O20.0221 (5)0.0176 (5)0.0202 (5)0.0035 (4)0.0040 (4)0.0021 (4)
O30.0198 (5)0.0160 (5)0.0245 (5)0.0015 (4)0.0042 (4)0.0019 (4)
C10.0237 (8)0.0196 (7)0.0153 (6)0.0002 (6)0.0008 (6)0.0000 (5)
C20.0222 (7)0.0176 (7)0.0131 (6)0.0018 (5)0.0017 (5)0.0013 (5)
C30.0196 (7)0.0160 (7)0.0153 (6)0.0018 (5)0.0030 (5)0.0031 (5)
C40.0240 (8)0.0172 (7)0.0205 (7)0.0027 (6)0.0007 (6)0.0008 (5)
C50.0271 (8)0.0232 (7)0.0262 (8)0.0059 (6)0.0074 (6)0.0054 (6)
C60.0227 (8)0.0252 (8)0.0320 (8)0.0002 (6)0.0034 (6)0.0095 (6)
C70.0230 (8)0.0181 (7)0.0257 (7)0.0025 (6)0.0046 (6)0.0054 (5)
C80.0223 (7)0.0169 (7)0.0167 (6)0.0014 (5)0.0030 (6)0.0027 (5)
C90.0241 (8)0.0166 (7)0.0118 (6)0.0017 (5)0.0006 (5)0.0002 (5)
C100.0238 (8)0.0174 (7)0.0098 (6)0.0011 (5)0.0007 (5)0.0003 (5)
C110.0225 (7)0.0182 (7)0.0095 (6)0.0004 (5)0.0035 (5)0.0014 (5)
C120.0214 (7)0.0173 (7)0.0133 (6)0.0028 (5)0.0014 (5)0.0006 (5)
C130.0184 (7)0.0220 (7)0.0116 (6)0.0010 (5)0.0005 (5)0.0007 (5)
C140.0206 (7)0.0166 (7)0.0125 (6)0.0020 (5)0.0005 (5)0.0003 (5)
C150.0218 (7)0.0169 (7)0.0110 (6)0.0023 (5)0.0007 (5)0.0004 (5)
C160.0178 (7)0.0195 (7)0.0115 (6)0.0011 (5)0.0001 (5)0.0010 (5)
C170.0230 (7)0.0202 (7)0.0124 (6)0.0035 (6)0.0024 (5)0.0006 (5)
C180.0250 (8)0.0240 (8)0.0288 (8)0.0042 (6)0.0060 (6)0.0033 (6)
C190.0243 (8)0.0216 (7)0.0257 (7)0.0022 (6)0.0062 (6)0.0033 (6)
C200.0201 (8)0.0210 (7)0.0261 (7)0.0018 (6)0.0050 (6)0.0013 (6)
Geometric parameters (Å, º) top
N1—C11.3572 (19)C7—H70.9500
N1—C81.3737 (19)C9—C101.351 (2)
N1—H1N0.851 (18)C9—H90.9500
N2—C171.1499 (19)C10—C171.4433 (19)
O1—C131.3649 (17)C10—C111.4801 (18)
O1—C181.4188 (17)C11—C121.392 (2)
O2—C141.3773 (16)C11—C161.3980 (19)
O2—C191.4472 (17)C12—C131.3910 (19)
O3—C151.3661 (16)C12—H120.9500
O3—C201.4257 (17)C13—C141.3890 (19)
C1—C21.3818 (19)C14—C151.394 (2)
C1—H10.9500C15—C161.3868 (19)
C2—C31.4409 (19)C16—H160.9500
C2—C91.4430 (19)C18—H18A0.9800
C3—C41.4011 (19)C18—H18B0.9800
C3—C81.4113 (19)C18—H18C0.9800
C4—C51.380 (2)C19—H19A0.9800
C4—H40.9500C19—H19B0.9800
C5—C61.403 (2)C19—H19C0.9800
C5—H50.9500C20—H20A0.9800
C6—C71.377 (2)C20—H20B0.9800
C6—H60.9500C20—H20C0.9800
C7—C81.393 (2)
C1—N1—C8109.44 (12)C12—C11—C10120.23 (12)
C1—N1—H1N125.7 (11)C16—C11—C10119.80 (13)
C8—N1—H1N124.7 (11)C13—C12—C11119.93 (12)
C13—O1—C18116.87 (11)C13—C12—H12120.0
C14—O2—C19116.02 (10)C11—C12—H12120.0
C15—O3—C20117.67 (11)O1—C13—C14115.30 (12)
N1—C1—C2110.19 (12)O1—C13—C12124.47 (12)
N1—C1—H1124.9C14—C13—C12120.23 (13)
C2—C1—H1124.9O2—C14—C13122.10 (12)
C1—C2—C3105.88 (12)O2—C14—C15118.06 (12)
C1—C2—C9127.93 (13)C13—C14—C15119.76 (12)
C3—C2—C9126.16 (12)O3—C15—C16124.87 (13)
C4—C3—C8118.85 (13)O3—C15—C14114.77 (11)
C4—C3—C2134.18 (13)C16—C15—C14120.36 (12)
C8—C3—C2106.90 (12)C15—C16—C11119.73 (13)
C5—C4—C3118.52 (13)C15—C16—H16120.1
C5—C4—H4120.7C11—C16—H16120.1
C3—C4—H4120.7N2—C17—C10177.68 (14)
C4—C5—C6121.61 (13)O1—C18—H18A109.5
C4—C5—H5119.2O1—C18—H18B109.5
C6—C5—H5119.2H18A—C18—H18B109.5
C7—C6—C5121.15 (14)O1—C18—H18C109.5
C7—C6—H6119.4H18A—C18—H18C109.5
C5—C6—H6119.4H18B—C18—H18C109.5
C6—C7—C8117.25 (13)O2—C19—H19A109.5
C6—C7—H7121.4O2—C19—H19B109.5
C8—C7—H7121.4H19A—C19—H19B109.5
N1—C8—C7129.82 (13)O2—C19—H19C109.5
N1—C8—C3107.59 (12)H19A—C19—H19C109.5
C7—C8—C3122.59 (13)H19B—C19—H19C109.5
C10—C9—C2127.70 (13)O3—C20—H20A109.5
C10—C9—H9116.1O3—C20—H20B109.5
C2—C9—H9116.1H20A—C20—H20B109.5
C9—C10—C17119.30 (12)O3—C20—H20C109.5
C9—C10—C11123.60 (12)H20A—C20—H20C109.5
C17—C10—C11117.04 (12)H20B—C20—H20C109.5
C12—C11—C16119.97 (12)
C8—N1—C1—C20.67 (16)C9—C10—C11—C1623.89 (19)
N1—C1—C2—C30.36 (15)C17—C10—C11—C16158.85 (12)
N1—C1—C2—C9177.84 (13)C16—C11—C12—C130.58 (18)
C1—C2—C3—C4176.92 (15)C10—C11—C12—C13179.70 (11)
C9—C2—C3—C44.8 (2)C18—O1—C13—C14163.42 (12)
C1—C2—C3—C80.07 (15)C18—O1—C13—C1216.64 (18)
C9—C2—C3—C8178.31 (13)C11—C12—C13—O1179.74 (11)
C8—C3—C4—C51.0 (2)C11—C12—C13—C140.32 (19)
C2—C3—C4—C5177.59 (14)C19—O2—C14—C1362.90 (16)
C3—C4—C5—C60.6 (2)C19—O2—C14—C15120.39 (13)
C4—C5—C6—C71.5 (2)O1—C13—C14—O23.80 (18)
C5—C6—C7—C80.7 (2)C12—C13—C14—O2176.14 (11)
C1—N1—C8—C7179.00 (14)O1—C13—C14—C15179.55 (11)
C1—N1—C8—C30.69 (15)C12—C13—C14—C150.51 (19)
C6—C7—C8—N1178.69 (14)C20—O3—C15—C161.54 (18)
C6—C7—C8—C31.0 (2)C20—O3—C15—C14177.79 (11)
C4—C3—C8—N1177.88 (12)O2—C14—C15—O33.54 (17)
C2—C3—C8—N10.46 (15)C13—C14—C15—O3179.67 (11)
C4—C3—C8—C71.8 (2)O2—C14—C15—C16175.82 (11)
C2—C3—C8—C7179.26 (13)C13—C14—C15—C160.97 (19)
C1—C2—C9—C1031.1 (2)O3—C15—C16—C11179.48 (11)
C3—C2—C9—C10151.04 (14)C14—C15—C16—C111.22 (18)
C2—C9—C10—C179.7 (2)C12—C11—C16—C151.03 (18)
C2—C9—C10—C11173.07 (12)C10—C11—C16—C15179.25 (11)
C9—C10—C11—C12156.39 (13)C9—C10—C17—N2103 (4)
C17—C10—C11—C1220.87 (17)C11—C10—C17—N274 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.851 (18)2.075 (18)2.8635 (15)153.8 (16)
N1—H1N···O3i0.851 (18)2.301 (17)2.9476 (15)133.0 (15)
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H18N2O3
Mr334.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)11.3384 (4), 21.1383 (8), 6.9570 (3)
β (°) 93.610 (2)
V3)1664.11 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.74
Crystal size (mm)0.24 × 0.07 × 0.02
Data collection
DiffractometerBruker X8 Proteum
diffractometer
Absorption correctionMulti-scan
(SADABS in APEX2; Bruker, 2006)
Tmin, Tmax0.843, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
20812, 2979, 2679
Rint0.053
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.07
No. of reflections2979
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.851 (18)2.075 (18)2.8635 (15)153.8 (16)
N1—H1N···O3i0.851 (18)2.301 (17)2.9476 (15)133.0 (15)
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

This investigation was supported by NIH/National Cancer Institute grant RO1 CA140409.

References

First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNaruto, S., Mizuta, H., Yoshida, T. & Uno, H. (1983). Chem. Pharm. Bull. 31, 3022–3032.  Google Scholar
First citationOhsumi, K., Nakagawa, R., Fukuda, Y. & Hatanaka, T. (1998). J. Med. Chem. 41, 3022–3032.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2008). Acta Cryst. E64, o2122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaczewski, F., Reszka, P., Gdaniec, M., Grunert, R. & Bednarski, P. I. (2004). J. Med. Chem. 47, 3438–3449.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonar, V. N., Parkin, S. & Crooks, P. A. (2007). Acta Cryst. C63, o743–o745.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds