organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o698-o699

6,6′-Di­methyl-2,2′-[1,3-diazinane-1,3-diyl­bis­(methyl­ene)]diphenol

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 10 January 2012; accepted 6 February 2012; online 17 February 2012)

In the mol­ecule of the title compound, C20H26N2O2, the 1,3-diazinane ring adopts a slightly distorted chair conformation and the hy­droxy­benzyl substituents occupy equatorial positions on the N atoms of the heterocyclic ring. There are two intra­molecular O—H⋯N hydrogen bonds between the N atoms of the 1,3-diazinane ring and the hy­droxy groups of the aromatic rings, with an S(6) set-graph motif. However, the two observed intra­molecular hydrogen-bond distances were different. Considering that both N atoms experience the same chemical environment, it is surprising to see the difference in O⋯N distances [2.6771 (14) and 2.8123 (12) Å]. The crystal structure is further stabilized by a C—H⋯π interaction.

Related literature

For a previous determination of a related structure, see: Rivera et al. (2012[Rivera, A., González, D. M., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o191-o192.]). For a related di-Mannich base, see: Rivera et al. (2009[Rivera, A., Quiroga, D., Ríos-Motta, J., Carda, J. & Peris, G. (2009). J. Chem. Crystallogr. 39, 827-830.]). For the synthesis of the precursor, see: Rivera et al. (2010[Rivera, A., Ríos-Motta, J., Dušek, M. & Jarošová, M. (2010). Acta Cryst. C66, o222-o224.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For Cremer–Pople puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the background to hydrogen-bond energy in Mannich bases, see: Koll et al. (2006[Koll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55-64.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26N2O2

  • Mr = 326.4

  • Monoclinic, C 2/c

  • a = 31.2788 (5) Å

  • b = 9.7215 (1) Å

  • c = 12.4508 (2) Å

  • β = 107.936 (2)°

  • V = 3602.00 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 120 K

  • 0.3 × 0.14 × 0.07 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.615, Tmax = 1

  • 20724 measured reflections

  • 3210 independent reflections

  • 2750 reflections with I > 3σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 1.61

  • 3210 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C6–C11 aromatic ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.910 (18) 1.818 (19) 2.6771 (14) 156.3 (16)
O2—H2⋯N2 0.898 (16) 2.013 (18) 2.8123 (12) 147.6 (17)
C17—H17⋯Cg2i 0.96 2.73 3.5577 (14) 144
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Di-Mannich bases offer convenient models for studying the nature of hydrogen bonding and other weak noncovalent interactions, which play a key role in biological systems. If the OH groups are in appropriate positions relative to the nitrogen lone pairs, both intramolecular and intermolecular hydrogen bonds may be possible. As a rule, non-bonded forms are not observed in systems with phenolic acids that are able to form intramolecular hydrogen bonds, both in solution and in the gas phase (Koll et al. 2006).

The molecular structure and atom-numbering scheme are shown in Fig. 1. The C7—O1 and C15—O2 bond lengths [1.3704 (15) and 1.3701 (16) Å, respectively] were comparable with other previously reported C—O bond lengths for di-Mannich bases [C—O = 1.365 (2) Å] (Rivera et al., 2009) and [C—O = 1.3762 (11) Å] (Rivera et al., 2012). The C—C bond distances and angles of both aromatic rings were found to be normal (Allen et al., 1987). The CH2—N bond lengths, [1.4619 (16) Å and 1.4591 (13) Å] are comparable to the related structure [CH2—N = 1.478 (2) Å] (Rivera, et al. 2012) but were shorter than the observed lengths in related structure where the heterocyclic ring is the five members: [CH2—N = 1.485 (2) Å] (Rivera et al., 2009). In the title compound (I), the 1,3-diazinane ring adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ, and ϕ of 0.5815 (13) Å, 2.32 (13)°, and 91 (3)°, respectively. The molecular structure showed two intramolecular O—H···N hydrogen bonding interactions between the two N atoms and the hydroxyl groups with S(6) set graph motif. However, the two observed intramolecular hydrogen bond distances were different (Table 1). Considering that both nitrogen atoms experiencing the same chemical environment, it is then surprising to see the difference in O···N bond distances ([O1···N1 = 2.6771 (14) Å] and [O2···N2 = 2.8123 (12) Å]).

The hydroxybenzyl substituents occupy equatorial positions. However, the dihedral angles between the mean planes of the benzene rings and the mean plane of the heterocyclic ring were 77.80 (15)° and 80.03 (10)°. This observation indicates there was different spatial positioning, which is more evident with the dihedral angle between both phenyl rings. The angle between the two aromatic rings is 58.431 (38)°.

Related literature top

For a previous determination of a related structure, see: Rivera et al. (2012). For a related di-Mannich base, see: Rivera et al. (2009). For the synthesis of the precursor, see: Rivera et al. (2010). For bond-length data, see: Allen et al. (1987). For Cremer–Pople puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995). For the background to hydrogen-bond energy in Mannich bases, see: Koll et al. (2006).

Experimental top

A solution of 1,3,7,9,13,15,19,21-octaazapentacyclo[19.3.1.13,7.19,13.115,19] octacosane prepared according to a previous report (Rivera et al., 2010) (200 mg, 0.54 mmol) in 96% ethanol (5 ml) was added slowly to a stirred solution of 2-methylphenol (240 mg, 2.2 mmol) in 96% ethanol (5 ml) that was heated under reflux. Upon completion of the addition, the reaction mixture was stirred under reflux for 20 h. Next, the reflux was stopped, the solvent was removed on a rotary evaporator under vacuum, and the residue obtained was chromatographed on silica gel eluting with benzene/AcOEt (gradient elution with 5% to 20% AcOEt) to produce a solid which was recrystallized in 96% ethanol to provide high quality crystals of the title compound (I), (Yield 24.4%, m.p. 389–392 K)

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded C atoms were kept in ideal positions with C–H distance 0.96 Å during the refinement. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with thermal displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to to 1.2Ueq(C) for the CH– and CH2– groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate intramolecular hydrogen bonds.
6,6'-Dimethyl-2,2'-[1,3-diazinane-1,3-diylbis(methylene)]diphenol top
Crystal data top
C20H26N2O2F(000) = 1408
Mr = 326.4Dx = 1.204 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -C 2ycCell parameters from 10886 reflections
a = 31.2788 (5) Åθ = 3.0–67.0°
b = 9.7215 (1) ŵ = 0.62 mm1
c = 12.4508 (2) ÅT = 120 K
β = 107.936 (2)°Prism, colourless
V = 3602.00 (10) Å30.3 × 0.14 × 0.07 mm
Z = 8
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3210 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2750 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 3.0°
Rotation method data acquisition using ω scansh = 3637
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.615, Tmax = 1l = 1413
20724 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.100(Δ/σ)max = 0.003
S = 1.61Δρmax = 0.15 e Å3
3210 reflectionsΔρmin = 0.14 e Å3
224 parametersExtinction correction: B–C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 900 (300)
98 constraints
Crystal data top
C20H26N2O2V = 3602.00 (10) Å3
Mr = 326.4Z = 8
Monoclinic, C2/cCu Kα radiation
a = 31.2788 (5) ŵ = 0.62 mm1
b = 9.7215 (1) ÅT = 120 K
c = 12.4508 (2) Å0.3 × 0.14 × 0.07 mm
β = 107.936 (2)°
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3210 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2750 reflections with I > 3σ(I)
Tmin = 0.615, Tmax = 1Rint = 0.031
20724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.61Δρmax = 0.15 e Å3
3210 reflectionsΔρmin = 0.14 e Å3
224 parameters
Special details top

Experimental. CrysAlis PRO (Agilent Technologies, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06464 (3)0.07051 (9)0.66310 (8)0.0302 (3)
O20.22184 (3)0.05521 (9)0.85547 (8)0.0307 (3)
N10.09336 (3)0.12594 (9)0.55120 (8)0.0253 (3)
N20.17352 (3)0.14744 (9)0.63781 (8)0.0243 (3)
C10.13773 (4)0.09468 (12)0.54144 (10)0.0246 (4)
C20.08708 (4)0.27558 (12)0.55476 (12)0.0312 (4)
C30.12437 (4)0.33754 (12)0.65145 (12)0.0325 (4)
C40.17000 (4)0.29827 (12)0.64228 (11)0.0287 (4)
C50.05832 (4)0.06437 (12)0.45500 (11)0.0277 (4)
C60.05613 (4)0.08973 (12)0.46498 (10)0.0251 (4)
C70.05753 (4)0.14970 (12)0.56815 (10)0.0247 (4)
C80.05113 (4)0.29077 (12)0.57775 (11)0.0285 (4)
C90.04476 (4)0.37139 (13)0.48171 (12)0.0329 (4)
C100.04482 (4)0.31518 (13)0.37985 (12)0.0347 (4)
C110.05025 (4)0.17415 (13)0.37139 (11)0.0307 (4)
C120.05171 (5)0.35190 (14)0.68853 (13)0.0404 (5)
C130.21697 (4)0.10533 (12)0.62478 (10)0.0274 (4)
C140.25656 (4)0.14837 (11)0.72318 (10)0.0244 (4)
C150.25775 (4)0.11617 (11)0.83352 (10)0.0239 (4)
C160.29572 (4)0.14483 (11)0.92540 (10)0.0254 (4)
C170.33194 (4)0.20947 (11)0.90430 (11)0.0272 (4)
C180.33074 (4)0.24696 (13)0.79600 (11)0.0291 (4)
C190.29302 (4)0.21597 (12)0.70615 (11)0.0278 (4)
C200.29665 (5)0.10650 (14)1.04259 (11)0.0353 (5)
H1a0.1403830.1343470.4731670.0295*
H1b0.140950.0030830.5362670.0295*
H2a0.0877050.3155910.4847680.0374*
H2b0.0585480.2946080.5654530.0374*
H3a0.1214890.4358940.649720.039*
H3b0.1217580.305020.721960.039*
H4a0.1931160.332740.706730.0345*
H4b0.1736430.3376060.5749060.0345*
H5a0.0296350.1034890.450480.0332*
H5b0.0641480.0875480.3858630.0332*
H90.0401930.4685840.486370.0395*
H100.041140.373250.3152610.0416*
H110.0499410.1347350.300460.0368*
H12a0.0332340.2976210.7211320.0605*
H12b0.0819680.3531160.738630.0605*
H12c0.0402860.444190.6768620.0605*
H13a0.2173550.0073010.61580.0329*
H13b0.2199250.1437220.5563840.0329*
H170.3584240.2286170.9661950.0327*
H180.3557630.2938860.7833510.0349*
H190.2920990.2416540.6310230.0334*
H20a0.2726990.1527611.0609760.053*
H20b0.3249280.1333161.0951010.053*
H20c0.292920.0088311.0468160.053*
H10.0756 (5)0.0090 (18)0.6433 (14)0.0454*
H20.1987 (6)0.0618 (17)0.7916 (16)0.0461*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (5)0.0307 (5)0.0310 (5)0.0004 (3)0.0144 (4)0.0017 (3)
O20.0253 (4)0.0363 (5)0.0309 (5)0.0075 (3)0.0093 (4)0.0010 (4)
N10.0202 (5)0.0235 (5)0.0300 (6)0.0009 (4)0.0046 (4)0.0006 (4)
N20.0197 (5)0.0255 (5)0.0262 (5)0.0013 (3)0.0051 (4)0.0026 (4)
C10.0215 (6)0.0258 (6)0.0251 (6)0.0006 (4)0.0051 (5)0.0010 (4)
C20.0264 (6)0.0243 (6)0.0404 (7)0.0037 (4)0.0068 (5)0.0013 (5)
C30.0314 (7)0.0241 (6)0.0399 (8)0.0020 (5)0.0080 (5)0.0042 (5)
C40.0288 (6)0.0253 (6)0.0298 (7)0.0035 (4)0.0057 (5)0.0017 (5)
C50.0206 (6)0.0274 (6)0.0314 (7)0.0003 (4)0.0025 (5)0.0023 (5)
C60.0145 (5)0.0290 (6)0.0287 (6)0.0006 (4)0.0022 (4)0.0007 (5)
C70.0157 (5)0.0287 (6)0.0295 (7)0.0018 (4)0.0066 (5)0.0017 (5)
C80.0178 (6)0.0294 (6)0.0386 (7)0.0017 (4)0.0089 (5)0.0040 (5)
C90.0226 (6)0.0255 (6)0.0467 (8)0.0003 (4)0.0048 (5)0.0013 (5)
C100.0296 (7)0.0341 (7)0.0348 (7)0.0005 (5)0.0017 (5)0.0087 (5)
C110.0252 (6)0.0355 (7)0.0268 (7)0.0007 (5)0.0016 (5)0.0012 (5)
C120.0392 (8)0.0369 (7)0.0498 (9)0.0007 (5)0.0210 (6)0.0090 (6)
C130.0225 (6)0.0332 (6)0.0265 (6)0.0010 (5)0.0075 (5)0.0032 (5)
C140.0204 (6)0.0258 (6)0.0267 (6)0.0002 (4)0.0068 (5)0.0021 (4)
C150.0221 (6)0.0217 (5)0.0291 (6)0.0008 (4)0.0097 (5)0.0010 (4)
C160.0251 (6)0.0226 (6)0.0278 (6)0.0018 (4)0.0070 (5)0.0010 (4)
C170.0222 (6)0.0265 (6)0.0300 (7)0.0002 (4)0.0037 (5)0.0030 (5)
C180.0222 (6)0.0304 (6)0.0350 (7)0.0038 (5)0.0093 (5)0.0003 (5)
C190.0257 (6)0.0306 (6)0.0285 (7)0.0009 (4)0.0101 (5)0.0006 (5)
C200.0334 (7)0.0427 (7)0.0278 (7)0.0019 (5)0.0061 (5)0.0009 (5)
Geometric parameters (Å, º) top
O1—C71.3704 (15)C8—C91.3918 (19)
O1—H10.910 (18)C8—C121.497 (2)
O2—C151.3701 (16)C9—C101.382 (2)
O2—H20.898 (16)C9—H90.96
N1—C11.4619 (16)C10—C111.3895 (18)
N1—C21.4703 (15)C10—H100.96
N1—C51.4784 (14)C11—H110.96
N2—C11.4591 (13)C12—H12a0.96
N2—C41.4727 (15)C12—H12b0.96
N2—C131.4753 (16)C12—H12c0.96
C1—H1a0.96C13—C141.5084 (14)
C1—H1b0.96C13—H13a0.96
C2—C31.5191 (16)C13—H13b0.96
C2—H2a0.96C14—C151.3983 (18)
C2—H2b0.96C14—C191.3879 (18)
C3—C41.515 (2)C15—C161.4000 (14)
C3—H3a0.96C16—C171.3894 (18)
C3—H3b0.96C16—C201.4976 (19)
C4—H4a0.96C17—C181.3861 (19)
C4—H4b0.96C17—H170.96
C5—C61.5066 (16)C18—C191.3861 (15)
C5—H5a0.96C18—H180.96
C5—H5b0.96C19—H190.96
C6—C71.3990 (18)C20—H20a0.96
C6—C111.3903 (18)C20—H20b0.96
C7—C81.3964 (16)C20—H20c0.96
C7—O1—H1102.6 (11)C9—C8—C12121.73 (11)
C15—O2—H2106.3 (13)C8—C9—C10121.71 (12)
C1—N1—C2110.32 (9)C8—C9—H9119.1442
C1—N1—C5109.53 (10)C10—C9—H9119.1447
C2—N1—C5110.63 (8)C9—C10—C11119.64 (13)
C1—N2—C4109.49 (8)C9—C10—H10120.1785
C1—N2—C13108.15 (9)C11—C10—H10120.1783
C4—N2—C13111.25 (9)C6—C11—C10120.44 (13)
N1—C1—N2111.48 (10)C6—C11—H11119.78
N1—C1—H1a109.4714C10—C11—H11119.7804
N1—C1—H1b109.4721C8—C12—H12a109.4711
N2—C1—H1a109.4702C8—C12—H12b109.4722
N2—C1—H1b109.4711C8—C12—H12c109.4711
H1a—C1—H1b107.3846H12a—C12—H12b109.4712
N1—C2—C3109.82 (9)H12a—C12—H12c109.471
N1—C2—H2a109.471H12b—C12—H12c109.4707
N1—C2—H2b109.4726N2—C13—C14112.79 (10)
C3—C2—H2a109.4711N2—C13—H13a109.4717
C3—C2—H2b109.4718N2—C13—H13b109.4711
H2a—C2—H2b109.1181C14—C13—H13a109.4713
C2—C3—C4110.58 (11)C14—C13—H13b109.4711
C2—C3—H3a109.4709H13a—C13—H13b105.9345
C2—C3—H3b109.4706C13—C14—C15120.18 (11)
C4—C3—H3a109.4712C13—C14—C19121.00 (11)
C4—C3—H3b109.4715C15—C14—C19118.79 (10)
H3a—C3—H3b108.3382O2—C15—C14121.16 (9)
N2—C4—C3109.68 (10)O2—C15—C16117.68 (11)
N2—C4—H4a109.4709C14—C15—C16121.16 (11)
N2—C4—H4b109.4709C15—C16—C17118.13 (12)
C3—C4—H4a109.4718C15—C16—C20120.24 (11)
C3—C4—H4b109.4711C17—C16—C20121.63 (10)
H4a—C4—H4b109.2658C16—C17—C18121.56 (10)
N1—C5—C6112.15 (9)C16—C17—H17119.2196
N1—C5—H5a109.4713C18—C17—H17119.2211
N1—C5—H5b109.4705C17—C18—C19119.30 (12)
C6—C5—H5a109.4715C17—C18—H18120.3511
C6—C5—H5b109.4715C19—C18—H18120.3499
H5a—C5—H5b106.6581C14—C19—C18120.99 (12)
C5—C6—C7120.05 (11)C14—C19—H19119.5056
C5—C6—C11121.03 (11)C18—C19—H19119.5079
C7—C6—C11118.83 (11)C16—C20—H20a109.4711
O1—C7—C6120.60 (10)C16—C20—H20b109.4716
O1—C7—C8117.86 (11)C16—C20—H20c109.4707
C6—C7—C8121.54 (11)H20a—C20—H20b109.4715
C7—C8—C9117.77 (12)H20a—C20—H20c109.4703
C7—C8—C12120.50 (12)H20b—C20—H20c109.4722
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C11 aromatic ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.910 (18)1.818 (19)2.6771 (14)156.3 (16)
O2—H2···N20.898 (16)2.013 (18)2.8123 (12)147.6 (17)
C17—H17···Cg2i0.962.733.5577 (14)144
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H26N2O2
Mr326.4
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)31.2788 (5), 9.7215 (1), 12.4508 (2)
β (°) 107.936 (2)
V3)3602.00 (10)
Z8
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.3 × 0.14 × 0.07
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.615, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
20724, 3210, 2750
Rint0.031
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 1.61
No. of reflections3210
No. of parameters224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C11 aromatic ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.910 (18)1.818 (19)2.6771 (14)156.3 (16)
O2—H2···N20.898 (16)2.013 (18)2.8123 (12)147.6 (17)
C17—H17···Cg2i0.962.733.5577 (14)144
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DMG acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKoll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55–64.  Web of Science CrossRef CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar
First citationRivera, A., González, D. M., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o191–o192.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Carda, J. & Peris, G. (2009). J. Chem. Crystallogr. 39, 827–830.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Ríos-Motta, J., Dušek, M. & Jarošová, M. (2010). Acta Cryst. C66, o222–o224.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o698-o699
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds