organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­hydro-1H-cyclo­penta­[b]naph­tha­len-1-ol

aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, cSakarya University, Faculty of Arts and Sciences, Department of Chemistry, 54187 Adapazarı, Turkey, dGaziosmanpaşa University, Faculty of Arts and Sciences, Department of Chemistry, 60240 Tokat, Turkey, and eDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 3 February 2012; accepted 6 February 2012; online 10 February 2012)

In the title compound, C13H12O, the cyclo­pentene ring fused with the naphthalene group adopts an envelope conformation. The cyclo­pentene torsion angle, with the fusion bond at the centre, has a magnitude of 1.16 (16)°. In the crystal, neigh­bouring mol­ecules are connected through O—H⋯O hydrogen bonds into an R44(8) ring motif. The crystal packing also features weak ππ stacking inter­actions [centroid–centroid distance = 3.8981 (8) Å] and C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Carpino & Lin (1990[Carpino, L. A. & Lin, Y.-Z. (1990). J. Org. Chem. 55, 247-250.]). For the crystal structure of a similar compound, see: Çelik et al. (2009[Çelik, Í., Akkurt, M., Şenocak, A., Çakmak, O., Torre-Fernández, L. & García-Granda, S. (2009). Acta Cryst. E65, o1376.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12O

  • Mr = 184.23

  • Tetragonal, I 41 /a

  • a = 25.3105 (4) Å

  • c = 6.0995 (2) Å

  • V = 3907.47 (18) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 299 K

  • 0.46 × 0.17 × 0.11 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.884, Tmax = 0.936

  • 5702 measured reflections

  • 1791 independent reflections

  • 1580 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.04

  • 1791 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is a centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O1i 0.93 (2) 1.78 (2) 2.7113 (15) 174.4 (18)
C3—H3⋯Cg2ii 0.93 2.71 3.633 (2) 171
C11—H11ACg2iii 0.97 2.89 3.706 (2) 142
Symmetry codes: (i) [-y+{\script{1\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}]; (ii) [-y-{\script{1\over 4}}, x-{\script{1\over 4}}, -z-{\script{1\over 4}}]; (iii) -x, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The treatment of benz[f]indanone with sodium borohydride in THF/MeOH for 2 h afforded the corresponding benz[f]indan-1-ol in an 89% yield (Carpino & Lin, 1990). Two signal groups, aliphatic and aromatic were observed in 1H-NMR spectra. The H2 and H3 protons exhibited a AA'BB' splitting pattern. H1 appeared at lower magnetic field than the 2,3 H atoms. This is due to the electronegativity of oxygen atom attached to C-1. The signal observed at δ 5.39 as a broad singlet could be attributed to OH group. Moreover a thirteen line 13C-NMR spectrum supports the proposed structure. The exact configuration of the molecule was established by X-ray diffraction.

The molecular structure of the title compound (I) is shown in Fig. 1. All bond lengths and angles in the title compound (I) show normal values (Allen et al., 1987; Çelik et al., 2009). The cyclopentene ring (C8–C9/C11–C13) fused with the naphthalene group (C1–C10) adopts an envelope conformation [puckering parameters: Q(2) = 0.2503 (18) Å, ϕ(2) = 110.1 (4)°; (Cremer & Pople, 1975)] with atom C12 deviating from the ring plane. The naphthalene group is essentially planar with a maximum deviation of -0.013 (1) Å for C8. The torsion angles C9–C8–C13–O1 and C7–C8– C13–O1 are -141.52 (12) and 38.33 (19) °, respectively.

In the crystal, neighbouring molecules are linked with intermolecular O—H···O hydrogen bonds, forming R44(8) ring motifs (Bernstein et al., 1995). A weak π -π stacking interaction [Cg3···Cg3iii = 3.8981 (8) Å (symmetry code: (iii) = -x, -y, -z)] between the C5–C10 benzene rings and two C—H···π interactions contribute to the stabilization of the crystal packing.

Related literature top

For the synthesis of the title compound, see: Carpino & Lin (1990). For the crystal structure of a similar compound, see: Çelik et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For graph-set analysis, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

To an ice-cold, stirred solution of benz[f]indanone (4.0 g, 22 mmol) in THF/MeOH (30/20 ml) mixture was added NaBH4 (0.34 g, 8.8 mmol). The reaction mixture was allowed to warm to room temperature. After the completion of the reaction, 2 h, water was added to the reaction mixture which was extracted with diethyl ether (3×50 ml), dried over MgSO4 and concentrated in vacuo affording benz[f]indan-1-ol which was crystallized from hexane/chloroform as yellow needles (3.6 g, 89%). 1H-NMR (400 MHz, CDCl3): δ 2.0–2.09 (m, 2H, H2), 2.54–2.60 (m, 1H, H3), 2.94–3.02 (m, 1H, H3'), 3.18–3.26 (m, 1H, H1), 5.39 (brs, 1H, OH), 7.43–7.49 (m, 2H, ArH), 7.70 (brs, 1H, ArH), 7.80–7.85 (brs, 2H, ArH), 7.87 (brs, 1H, ArH); 13C-NMR (100 MHz, CDCl3): δ 29.3, 36.6, 75.9, 122.7, 122.9, 125.2, 125.8, 127.6, 128.2, 132.9, 133.9, 141.5, 144.3.

Refinement top

The H atom of the hydroxyl group was located in a difference Fourier map and refined freely. Carbon-bound H-atoms were placed in calculated positions and refined with constrained C—H bond lengths of 0.93 Å for aromatic, 0.97 Å for methylene and 0.98 Å for methine H atoms, and Uiso(H) = 1.2 Ueq(C) allowing them to ride on the parent C atom. The (6 6 0), (-6 12 0) and (-2 6 0) reflections were omitted owing to bad disagreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title compound, viewing down the c axis. H atoms not involved in hydrogen bonding have been omitted.
2,3-Dihydro-1H-cyclopenta[b]naphthalen-1-ol top
Crystal data top
C13H12ODx = 1.253 Mg m3
Mr = 184.23Cu Kα radiation, λ = 1.5418 Å
Tetragonal, I41/aCell parameters from 2801 reflections
Hall symbol: -I 4adθ = 3.5–68.0°
a = 25.3105 (4) ŵ = 0.61 mm1
c = 6.0995 (2) ÅT = 299 K
V = 3907.47 (18) Å3Needle, colourless
Z = 160.46 × 0.17 × 0.11 mm
F(000) = 1568
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
1791 independent reflections
Radiation source: Enhance (Cu) X-ray Source1580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.2673 pixels mm-1θmax = 68.2°, θmin = 3.5°
ω scansh = 3018
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2528
Tmin = 0.884, Tmax = 0.936l = 76
5702 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.8441P]
where P = (Fo2 + 2Fc2)/3
1791 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H12OZ = 16
Mr = 184.23Cu Kα radiation
Tetragonal, I41/aµ = 0.61 mm1
a = 25.3105 (4) ÅT = 299 K
c = 6.0995 (2) Å0.46 × 0.17 × 0.11 mm
V = 3907.47 (18) Å3
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
1791 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1580 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.936Rint = 0.026
5702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.10 e Å3
1791 reflectionsΔρmin = 0.17 e Å3
131 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18860 (4)0.01236 (4)0.19317 (19)0.0630 (4)
C10.03049 (6)0.12900 (6)0.2324 (3)0.0625 (5)
C20.00864 (7)0.16213 (7)0.1633 (3)0.0760 (6)
C30.03313 (7)0.15412 (8)0.0393 (4)0.0800 (7)
C40.01801 (6)0.11348 (7)0.1700 (3)0.0717 (6)
C50.02266 (5)0.07803 (6)0.1061 (2)0.0550 (4)
C60.04727 (5)0.08598 (5)0.1014 (2)0.0505 (4)
C70.08716 (5)0.05063 (5)0.1706 (2)0.0494 (4)
C80.10205 (5)0.00984 (5)0.0392 (2)0.0487 (4)
C90.07840 (6)0.00232 (5)0.1682 (2)0.0566 (4)
C100.03969 (6)0.03549 (6)0.2388 (2)0.0615 (5)
C110.10340 (8)0.04480 (6)0.2785 (3)0.0755 (6)
C120.15329 (8)0.05519 (7)0.1448 (3)0.0794 (6)
C130.14311 (6)0.03180 (5)0.0832 (2)0.0570 (4)
H10.046400.134800.367800.0750*
H1O0.2035 (8)0.0143 (8)0.108 (3)0.084 (6)*
H20.019100.190200.251600.0910*
H30.059900.176800.084700.0960*
H40.034700.108700.304500.0860*
H70.103300.055300.306300.0590*
H100.024300.030200.375500.0740*
H11A0.079900.075100.274600.0910*
H11B0.112100.036900.429900.0910*
H12A0.160100.092800.134400.0950*
H12B0.183600.038300.212600.0950*
H130.127100.059300.174800.0680*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0583 (6)0.0621 (6)0.0686 (7)0.0038 (4)0.0021 (5)0.0055 (5)
C10.0597 (8)0.0665 (8)0.0614 (9)0.0024 (6)0.0036 (7)0.0065 (7)
C20.0656 (9)0.0701 (9)0.0924 (13)0.0087 (7)0.0122 (9)0.0013 (9)
C30.0583 (9)0.0830 (11)0.0987 (14)0.0093 (8)0.0023 (9)0.0230 (10)
C40.0569 (8)0.0917 (11)0.0666 (10)0.0124 (7)0.0110 (7)0.0251 (9)
C50.0505 (7)0.0668 (8)0.0476 (7)0.0136 (6)0.0029 (5)0.0088 (6)
C60.0464 (6)0.0588 (7)0.0464 (7)0.0077 (5)0.0019 (5)0.0000 (5)
C70.0496 (6)0.0603 (7)0.0384 (6)0.0049 (5)0.0036 (5)0.0053 (5)
C80.0510 (7)0.0548 (7)0.0402 (6)0.0094 (5)0.0042 (5)0.0032 (5)
C90.0703 (8)0.0599 (8)0.0396 (7)0.0203 (6)0.0043 (6)0.0058 (6)
C100.0687 (9)0.0767 (9)0.0391 (7)0.0237 (7)0.0097 (6)0.0025 (6)
C110.1115 (14)0.0666 (9)0.0485 (8)0.0158 (9)0.0098 (8)0.0158 (7)
C120.0947 (12)0.0727 (10)0.0707 (11)0.0038 (9)0.0191 (9)0.0210 (8)
C130.0636 (8)0.0532 (7)0.0541 (8)0.0046 (6)0.0085 (6)0.0034 (6)
Geometric parameters (Å, º) top
O1—C131.4205 (18)C9—C111.508 (2)
O1—H1O0.93 (2)C11—C121.526 (3)
C1—C61.416 (2)C12—C131.533 (2)
C1—C21.364 (2)C1—H10.9300
C2—C31.397 (3)C2—H20.9300
C3—C41.357 (3)C3—H30.9300
C4—C51.420 (2)C4—H40.9300
C5—C101.414 (2)C7—H70.9300
C5—C61.4249 (17)C10—H100.9300
C6—C71.4135 (18)C11—H11A0.9700
C7—C81.3603 (18)C11—H11B0.9700
C8—C131.5043 (19)C12—H12A0.9700
C8—C91.4124 (18)C12—H12B0.9700
C9—C101.360 (2)C13—H130.9800
C13—O1—H1O108.4 (12)C6—C1—H1120.00
C2—C1—C6121.07 (16)C1—C2—H2120.00
C1—C2—C3120.40 (17)C3—C2—H2120.00
C2—C3—C4120.31 (17)C2—C3—H3120.00
C3—C4—C5121.49 (16)C4—C3—H3120.00
C4—C5—C6118.13 (13)C3—C4—H4119.00
C6—C5—C10118.86 (12)C5—C4—H4119.00
C4—C5—C10123.02 (13)C6—C7—H7120.00
C1—C6—C5118.61 (12)C8—C7—H7120.00
C5—C6—C7119.22 (12)C5—C10—H10120.00
C1—C6—C7122.18 (12)C9—C10—H10120.00
C6—C7—C8120.16 (11)C9—C11—H11A111.00
C7—C8—C9120.84 (12)C9—C11—H11B111.00
C7—C8—C13128.17 (11)C12—C11—H11A111.00
C9—C8—C13110.99 (11)C12—C11—H11B111.00
C8—C9—C10120.37 (12)H11A—C11—H11B109.00
C8—C9—C11109.16 (13)C11—C12—H12A111.00
C10—C9—C11130.46 (13)C11—C12—H12B111.00
C5—C10—C9120.55 (12)C13—C12—H12A110.00
C9—C11—C12104.18 (14)C13—C12—H12B110.00
C11—C12—C13106.21 (15)H12A—C12—H12B109.00
O1—C13—C12115.20 (13)O1—C13—H13108.00
C8—C13—C12102.99 (11)C8—C13—H13108.00
O1—C13—C8113.68 (10)C12—C13—H13108.00
C2—C1—H1119.00
C6—C1—C2—C30.1 (3)C6—C7—C8—C13179.66 (12)
C2—C1—C6—C50.4 (2)C7—C8—C9—C100.9 (2)
C2—C1—C6—C7179.04 (14)C7—C8—C9—C11178.70 (13)
C1—C2—C3—C40.4 (3)C13—C8—C9—C10179.25 (13)
C2—C3—C4—C50.1 (3)C13—C8—C9—C111.16 (16)
C3—C4—C5—C60.4 (2)C7—C8—C13—O138.33 (19)
C3—C4—C5—C10179.53 (16)C7—C8—C13—C12163.67 (14)
C4—C5—C6—C10.7 (2)C9—C8—C13—O1141.52 (12)
C4—C5—C6—C7178.80 (13)C9—C8—C13—C1216.18 (15)
C10—C5—C6—C1179.26 (13)C8—C9—C10—C50.2 (2)
C10—C5—C6—C71.25 (19)C11—C9—C10—C5179.32 (15)
C4—C5—C10—C9179.17 (14)C8—C9—C11—C1214.52 (17)
C6—C5—C10—C90.9 (2)C10—C9—C11—C12165.02 (16)
C1—C6—C7—C8179.97 (13)C9—C11—C12—C1324.27 (17)
C5—C6—C7—C80.57 (19)C11—C12—C13—O1148.97 (12)
C6—C7—C8—C90.50 (19)C11—C12—C13—C824.64 (16)
Hydrogen-bond geometry (Å, º) top
Cg2 is a centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1i0.93 (2)1.78 (2)2.7113 (15)174.4 (18)
C3—H3···Cg2ii0.932.713.633 (2)171
C11—H11A···Cg2iii0.972.893.706 (2)142
Symmetry codes: (i) y+1/4, x1/4, z1/4; (ii) y1/4, x1/4, z1/4; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC13H12O
Mr184.23
Crystal system, space groupTetragonal, I41/a
Temperature (K)299
a, c (Å)25.3105 (4), 6.0995 (2)
V3)3907.47 (18)
Z16
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.46 × 0.17 × 0.11
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.884, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
5702, 1791, 1580
Rint0.026
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.04
No. of reflections1791
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.10, 0.17

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is a centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1i0.93 (2)1.78 (2)2.7113 (15)174.4 (18)
C3—H3···Cg2ii0.932.713.633 (2)171
C11—H11A···Cg2iii0.972.893.706 (2)142
Symmetry codes: (i) y+1/4, x1/4, z1/4; (ii) y1/4, x1/4, z1/4; (iii) x, y, z.
 

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCarpino, L. A. & Lin, Y.-Z. (1990). J. Org. Chem. 55, 247–250.  CrossRef CAS Web of Science Google Scholar
First citationÇelik, Í., Akkurt, M., Şenocak, A., Çakmak, O., Torre-Fernández, L. & García-Granda, S. (2009). Acta Cryst. E65, o1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds