organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5-Tris(pyridin-3-yl)-2,4-di­aza­penta-1,4-diene

aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500, Tijuana, B.C., Mexico
*Correspondence e-mail: miguelhake@yahoo.com

(Received 5 December 2011; accepted 10 February 2012; online 17 February 2012)

In the solid state, the structure of the title compound, C18H15N5, is stabilized by weak C—H⋯N interactions. Mol­ecules are arranged in layers parallel to the bc plane forming an inter­esting supra­molecular structure.

Related literature

For coordination polymers and supra­molecular structures, see: Itoh et al. (2005[Itoh, M., Nakazawa, J., Maeda, K., Mizutani, T. & Kodera, M. (2005). Inorg. Chem. 44, 691-702.]); Albrechet (2001[Albrechet, M. (2001). Chem. Rev. 101, 3457-3498.]); Leininger et al. (2000[Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-908.]). For potential applications in catalysis, gas storage, chirality, optics, magnetism, nanotechnology and luminescence, see: James (2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Masaoka et al. (2001[Masaoka, S., Furukawa, S., Chang, H.-C., Mizutani, T. & Kitagawa, S. (2001). Angew. Chem. Int. Ed. 40, 3817-3819.]); Rarig et al. (2002[Rarig, R. S. Jr, Lam, R., Zavalij, P. Y., Ngala, J. K., LaDuca, R. L. Jr, Greedan, J. E. & Zubieta, J. (2002). Inorg. Chem. 41, 2124-2133.]); Yaghi et al. (2003[Yaghi, O. M. O., Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]); Wang et al. (2009[Wang, L., Gu, W., Deng, J.-X., Liu, M.-L., Xu, N. & Liu, X.-Z. (2009). Z. Anorg. Allg. Chem. 636, 1124-1128.]). For the preparation of this class of compound, see: Larter et al. (1998[Larter, M. L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). Tetrahedron Lett. 39, 4785-4788.]); Lozinskaya et al. (2003[Lozinskaya, N. A., Tsybezova, V. V., Proskurnina, M. V. & Zefirov, N. S. (2003). Russ. Chem. Bull. Int. Ed. 52, 674-678.]); Bessonov et al. (2005[Bessonov, I. V., Lozinskaya, N. A., Katachova, V. R., Proskurnina, M. V. & Zefirov, N. S. (2005). Russ. Chem. Bull. Int. Ed. 54, 211-214.]); Fernandes et al. (2007[Fernandes, C., Horn, A. Jr, Howie, R. A., Schripsema, J., Skakle, J. M. S. & Wardell, J. L. (2007). J. Mol. Struct. 837, 274-283.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15N5

  • Mr = 301.35

  • Monoclinic, P c

  • a = 5.7174 (11) Å

  • b = 8.0934 (10) Å

  • c = 16.972 (4) Å

  • β = 99.690 (18)°

  • V = 774.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.42 × 0.18 × 0.12 mm

Data collection
  • Bruker P4 diffractometer

  • 3235 measured reflections

  • 2874 independent reflections

  • 1159 reflections with I > 2σ(I)

  • Rint = 0.061

  • 3 standard reflections every 97 reflections intensity decay: 11.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.135

  • S = 0.98

  • 2874 reflections

  • 209 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯N1i 0.93 2.74 3.552 (7) 146
C17—H17A⋯N3ii 0.93 2.66 3.456 (7) 144
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXS97.

Supporting information


Comment top

The coordination chemistry of transition metals with polypyridyl ligands has progressed considerably during the last decades, and has been widely used for the construction of coordination polymers and other supramolecular structures (Itoh et al., 2005; Albrechet, 2001; Leininger et al., 2000). Such supramolecular architectures have attracted considerable attention due to potential applications in catalysis, gas storage, chirality, optical, magnetism, nanotechnology and luminescence (James, 2003; Kitagawa et al., 2004; Masaoka et al., 2001; Rarig et al., 2002; Yaghi et al., 2003; Wang et al., 2009). Also, there exists an increasing interest in the design and synthesis of luminescent compounds due to their potential applications as chemical sensors, photochemistry and electroluminescence. The development of chemosensors, is one of the main goals of supramolecular chemistry and an important area of vigorous investigation.

We are interested on the coordination chemistry of polypyridine ligands, which have fluorescent properties and could act as sensors for transition metals ions, and which can be used to construct different coordination polymers. Some of the ligands under study are: cis-(±)-2,4,5-tri(2-pyridyl)imidazoline, 2,4,6-tri(2-pyridyl)-1,3,5-triazinane, 2,4,5-tri(2-pyridyl)imidazole, trans-(±)-2,4,5-tri(4-pyridyl)imidazoline and 2,4,5-tri(4-pyridyl)imidazole.

As part of our ongoing research on the chemistry of polypyridine ligands, in our attempts to synthesize the ligand cis-(±)-3-(2,5-di(pyridin-3-yl)-4,5-dihydro-1H-imidazol-4-yl) pyridine, we have isolated the title compound, 1,3,5-tri(pyridin-3-yl)-2,4-diazapenta-1,4-diene. The 1,3,5-triaryl-2,4-diazapentadienes are known to form by the reaction of aromatic benzaldehydes with ammonia (Larter et al., 1998; Lozinskaya et al., 2003; Bessonov et al., 2005; Fernandes et al., 2007), which are analogues of the title compound. In the crystal structure adjacent networks are linked together via intermolecular hydrogen bond interactions (Table 1) (C18–H18···N1i (2.741Å), symmetry code: (i) x, 1-y, -1/2+z) in an array along the [0 0 1] and [C17–H17···N3ii (2.660Å), symmetry codes: (ii) x, 1+y, z] in an array along the [0 1 0]. The molecules are forming a layer structure parallel to the bc plane (Fig. 2).

Related literature top

For coordination polymers and supramolecular structures, see: Itoh et al. (2005); Albrechet (2001); Leininger et al. (2000). For potential applications in catalysis, gas storage, chirality, optics, magnetism, nanotechnology and luminescence, see: James (2003); Kitagawa et al. (2004); Masaoka et al. (2001); Rarig et al. (2002); Yaghi et al. (2003); Wang et al. (2009). For the preparation of this class of compound, see: Larter et al. (1998); Lozinskaya et al. (2003); Bessonov et al. (2005); Fernandes et al. (2007).

Experimental top

The synthesis of the title compound included reagent grade starting materials and solvents. A mixture of pyridine-3-carboxaldehyde (5 mL, 0.0531 mol) and ammonium hydroxide (15 mL, 0.3843 mol) was stirred at room temperature for 24 h. The mixture was filtered off and washed with water, then recrystallized by gas phase diffusion of diethyl ether into a concentrated solution of the product in dichloromethane, providing colorless crystals. Yield (3.5 g, 22%). M.p. = 388-390 K, (KBr) 3270, 3226, 3040, 2887, 1575, 1471, 1417, 1082, 1023, 868, 863, 808, 705 cm-1. 1H NMR (CDCl3): 8.98 (d, J = 1.8 Hz, 2H), 8.79 (d, J = 1.8 Hz, 1H), 8.69 (dd, J = 4.8, 1.8 Hz, 2H), 8.66 (s, 2H), 8.59 (dd, J = 4.8, 2.1 Hz, 1H), 8.26 (ddd, J = 7.8, 1.8, 1.8 Hz, 2H), 7.87 (ddd, J = 8.2, 2.1, 1.8 Hz, 1H), 7.39 (dd, J = 7.8, 4.8 Hz, 2H), 7.33 (dd, J = 8.2, 4.8 Hz, 1H), 6.08 (s, 1H). 13C NMR (CDCl3): 158.94, 152.21, 150.75, 149.53, 148.89, 136.61, 134.98, 134.83, 131.01, 123,73, 123.64, 90.28. EIMS (70 eV) m/e (int. rel.): M+ 301 (1%), M+-Py-CHN 196 (100%), 168 (13%), 122 (3%), 92 (10%).

Refinement top

Refinement for H atoms was carried out using a riding model, with distances constrained to: 0.93Å for aromatic C–H, 0.98Å for methine C–H with Uiso(H) = 1.2Ueq(C). The 621 Friedel pairs were merged during refinement.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with the atom numbering scheme. The displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The diagram showing the H-bonds. The molecules are forming an array along the [0 0 1] direction. H-bonds are indicated by broken lines.
1,3,5-Tris(pyridin-3-yl)-2,4-diazapenta-1,4-diene top
Crystal data top
C18H15N5F(000) = 316
Mr = 301.35Dx = 1.293 Mg m3
Monoclinic, PcMelting point = 388–390 K
Hall symbol: P -2ycMo Kα radiation, λ = 0.71073 Å
a = 5.7174 (11) ÅCell parameters from 33 reflections
b = 8.0934 (10) Åθ = 4.7–11.6°
c = 16.972 (4) ŵ = 0.08 mm1
β = 99.690 (18)°T = 298 K
V = 774.1 (3) Å3Neele, colourless
Z = 20.42 × 0.18 × 0.12 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.061
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.4°
Graphite monochromatorh = 18
2θ/ω–scansk = 111
3235 measured reflectionsl = 2323
2874 independent reflections3 standard reflections every 97 reflections
1159 reflections with I > 2σ(I) intensity decay: 11.5%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.070 w = 1/[σ2(Fo2) + (0.0352P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.17 e Å3
2874 reflectionsΔρmin = 0.17 e Å3
209 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.019 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier map
Crystal data top
C18H15N5V = 774.1 (3) Å3
Mr = 301.35Z = 2
Monoclinic, PcMo Kα radiation
a = 5.7174 (11) ŵ = 0.08 mm1
b = 8.0934 (10) ÅT = 298 K
c = 16.972 (4) Å0.42 × 0.18 × 0.12 mm
β = 99.690 (18)°
Data collection top
Bruker P4
diffractometer
Rint = 0.061
3235 measured reflections3 standard reflections every 97 reflections
2874 independent reflections intensity decay: 11.5%
1159 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0702 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 0.98Δρmax = 0.17 e Å3
2874 reflectionsΔρmin = 0.17 e Å3
209 parametersAbsolute structure: Flack (1983)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.3294 (7)0.4546 (5)0.0999 (2)0.0434 (11)
C41.0463 (12)0.2145 (8)0.4651 (3)0.0578 (18)
H4A1.09470.16660.51500.069*
N20.6027 (8)0.4678 (5)0.2201 (2)0.0408 (11)
C31.1993 (11)0.2058 (7)0.4105 (3)0.0588 (18)
H3B1.34740.15610.42350.071*
C70.5371 (9)0.5446 (6)0.1421 (3)0.0413 (14)
H7A0.66890.53670.11200.050*
C80.3369 (10)0.4143 (6)0.0281 (3)0.0436 (14)
H8A0.46840.44400.00570.052*
C160.2483 (11)0.9366 (7)0.1982 (3)0.0486 (15)
H16A0.12650.97140.22430.058*
N40.0186 (9)0.2211 (7)0.1527 (2)0.0604 (15)
C21.1242 (10)0.2739 (7)0.3358 (3)0.0481 (15)
H2B1.22220.27150.29730.058*
C130.1481 (10)0.2988 (7)0.1022 (3)0.0497 (16)
H13A0.27750.34100.12230.060*
C140.4741 (10)0.7230 (6)0.1524 (3)0.0402 (13)
C10.9022 (9)0.3453 (7)0.3190 (3)0.0404 (14)
C120.1994 (11)0.1565 (7)0.1222 (3)0.0587 (18)
H12A0.31740.10060.15640.070*
C60.8136 (10)0.4183 (7)0.2402 (3)0.0443 (15)
H6A0.91720.42830.20370.053*
N10.8360 (8)0.2859 (7)0.4515 (2)0.0638 (16)
C90.1421 (10)0.3216 (7)0.0208 (3)0.0411 (14)
C110.2194 (10)0.1688 (7)0.0427 (3)0.0555 (17)
H11A0.34650.12010.02380.067*
C100.0493 (10)0.2540 (7)0.0083 (3)0.0476 (15)
H10A0.06250.26620.06190.057*
C150.2938 (10)0.7702 (7)0.1923 (3)0.0482 (15)
H15A0.20520.69190.21450.058*
C180.5982 (12)0.8483 (7)0.1210 (3)0.0558 (16)
H18A0.71960.81740.09380.067*
C50.7697 (10)0.3477 (7)0.3793 (3)0.0495 (15)
H5A0.62070.39690.36830.059*
C170.3808 (11)1.0503 (8)0.1661 (3)0.0627 (18)
H17A0.34741.16170.17180.075*
N50.5548 (11)1.0099 (6)0.1272 (3)0.0731 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.051 (3)0.040 (3)0.039 (2)0.001 (3)0.008 (2)0.001 (2)
C40.063 (5)0.062 (5)0.042 (3)0.010 (4)0.008 (3)0.019 (3)
N20.050 (3)0.039 (3)0.033 (2)0.000 (3)0.005 (2)0.001 (2)
C30.046 (4)0.055 (4)0.069 (4)0.001 (4)0.008 (3)0.007 (3)
C70.043 (4)0.044 (3)0.038 (3)0.002 (3)0.010 (3)0.002 (3)
C80.049 (4)0.041 (3)0.041 (3)0.001 (3)0.010 (3)0.003 (3)
C160.060 (4)0.041 (4)0.049 (3)0.002 (4)0.019 (3)0.006 (3)
N40.061 (4)0.073 (4)0.044 (3)0.011 (4)0.000 (3)0.013 (3)
C20.042 (4)0.057 (4)0.046 (3)0.002 (4)0.010 (3)0.006 (3)
C130.050 (4)0.060 (4)0.038 (3)0.014 (4)0.006 (3)0.000 (3)
C140.048 (4)0.040 (3)0.032 (3)0.006 (4)0.004 (3)0.004 (3)
C10.039 (4)0.043 (3)0.037 (3)0.003 (3)0.002 (3)0.001 (3)
C120.059 (5)0.054 (4)0.057 (4)0.006 (4)0.006 (3)0.016 (3)
C60.050 (4)0.042 (3)0.043 (3)0.002 (3)0.012 (3)0.005 (3)
N10.050 (4)0.089 (4)0.049 (3)0.004 (4)0.001 (3)0.015 (3)
C90.048 (4)0.037 (3)0.038 (3)0.009 (3)0.007 (3)0.001 (3)
C110.051 (4)0.057 (4)0.058 (4)0.002 (4)0.009 (3)0.009 (3)
C100.057 (4)0.047 (4)0.039 (3)0.008 (4)0.007 (3)0.003 (3)
C150.056 (4)0.048 (4)0.042 (3)0.017 (4)0.014 (3)0.002 (3)
C180.058 (4)0.054 (4)0.061 (3)0.001 (4)0.028 (3)0.005 (3)
C50.041 (4)0.059 (4)0.048 (3)0.000 (4)0.007 (3)0.004 (3)
C170.089 (6)0.043 (4)0.061 (3)0.001 (4)0.026 (4)0.002 (3)
N50.101 (5)0.050 (4)0.080 (3)0.001 (4)0.051 (4)0.010 (3)
Geometric parameters (Å, º) top
N3—C81.269 (5)C13—C91.401 (6)
N3—C71.472 (6)C13—H13A0.9300
C4—N11.319 (7)C14—C151.378 (7)
C4—C31.380 (8)C14—C181.394 (7)
C4—H4A0.9300C1—C51.372 (7)
N2—C61.262 (6)C1—C61.473 (7)
N2—C71.454 (6)C12—C111.376 (7)
C3—C21.383 (7)C12—H12A0.9300
C3—H3B0.9300C6—H6A0.9300
C7—C141.506 (6)N1—C51.319 (6)
C7—H7A0.9800C9—C101.387 (7)
C8—C91.476 (7)C11—C101.374 (7)
C8—H8A0.9300C11—H11A0.9300
C16—C171.363 (7)C10—H10A0.9300
C16—C151.378 (7)C15—H15A0.9300
C16—H16A0.9300C18—N51.339 (7)
N4—C131.327 (7)C18—H18A0.9300
N4—C121.338 (8)C5—H5A0.9300
C2—C11.380 (7)C17—N51.324 (7)
C2—H2B0.9300C17—H17A0.9300
C8—N3—C7116.0 (4)C5—C1—C6121.5 (5)
N1—C4—C3124.5 (5)C2—C1—C6121.3 (5)
N1—C4—H4A117.7N4—C12—C11123.2 (6)
C3—C4—H4A117.7N4—C12—H12A118.4
C6—N2—C7118.0 (4)C11—C12—H12A118.4
C4—C3—C2117.5 (6)N2—C6—C1122.6 (5)
C4—C3—H3B121.2N2—C6—H6A118.7
C2—C3—H3B121.2C1—C6—H6A118.7
N2—C7—N3107.1 (4)C5—N1—C4116.1 (5)
N2—C7—C14109.5 (4)C10—C9—C13116.8 (5)
N3—C7—C14110.0 (4)C10—C9—C8124.5 (5)
N2—C7—H7A110.1C13—C9—C8118.7 (5)
N3—C7—H7A110.1C12—C11—C10119.2 (6)
C14—C7—H7A110.1C12—C11—H11A120.4
N3—C8—C9121.7 (5)C10—C11—H11A120.4
N3—C8—H8A119.1C11—C10—C9119.4 (5)
C9—C8—H8A119.1C11—C10—H10A120.3
C17—C16—C15120.4 (6)C9—C10—H10A120.3
C17—C16—H16A119.8C16—C15—C14118.2 (5)
C15—C16—H16A119.8C16—C15—H15A120.9
C13—N4—C12117.0 (5)C14—C15—H15A120.9
C1—C2—C3119.2 (5)N5—C18—C14124.5 (6)
C1—C2—H2B120.4N5—C18—H18A117.7
C3—C2—H2B120.4C14—C18—H18A117.7
N4—C13—C9124.4 (5)N1—C5—C1125.4 (6)
N4—C13—H13A117.8N1—C5—H5A117.3
C9—C13—H13A117.8C1—C5—H5A117.3
C15—C14—C18117.2 (5)N5—C17—C16123.2 (6)
C15—C14—C7122.4 (5)N5—C17—H17A118.4
C18—C14—C7120.3 (5)C16—C17—H17A118.4
C5—C1—C2117.2 (5)C17—N5—C18116.4 (6)
N1—C4—C3—C21.4 (9)N4—C13—C9—C101.6 (8)
C6—N2—C7—N3125.7 (5)N4—C13—C9—C8178.4 (5)
C6—N2—C7—C14115.1 (5)N3—C8—C9—C107.8 (8)
C8—N3—C7—N2133.5 (5)N3—C8—C9—C13172.3 (5)
C8—N3—C7—C14107.6 (5)N4—C12—C11—C101.3 (9)
C7—N3—C8—C9179.1 (4)C12—C11—C10—C91.8 (8)
C4—C3—C2—C10.5 (8)C13—C9—C10—C110.4 (7)
C12—N4—C13—C92.2 (8)C8—C9—C10—C11179.5 (5)
N2—C7—C14—C1559.2 (6)C17—C16—C15—C140.7 (8)
N3—C7—C14—C1558.3 (6)C18—C14—C15—C160.1 (7)
N2—C7—C14—C18121.2 (5)C7—C14—C15—C16179.6 (5)
N3—C7—C14—C18121.4 (5)C15—C14—C18—N50.3 (9)
C3—C2—C1—C51.5 (8)C7—C14—C18—N5180.0 (6)
C3—C2—C1—C6179.6 (5)C4—N1—C5—C11.1 (9)
C13—N4—C12—C110.6 (9)C2—C1—C5—N10.7 (9)
C7—N2—C6—C1177.3 (4)C6—C1—C5—N1179.7 (6)
C5—C1—C6—N29.1 (8)C15—C16—C17—N50.9 (9)
C2—C1—C6—N2171.9 (6)C16—C17—N5—C180.5 (9)
C3—C4—N1—C52.2 (9)C14—C18—N5—C170.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···N1i0.932.743.552 (7)146
C17—H17A···N3ii0.932.663.456 (7)144
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H15N5
Mr301.35
Crystal system, space groupMonoclinic, Pc
Temperature (K)298
a, b, c (Å)5.7174 (11), 8.0934 (10), 16.972 (4)
β (°) 99.690 (18)
V3)774.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.18 × 0.12
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3235, 2874, 1159
Rint0.061
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.135, 0.98
No. of reflections2874
No. of parameters209
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17
Absolute structureFlack (1983)

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···N1i0.932.743.552 (7)146.2
C17—H17A···N3ii0.932.663.456 (7)144.0
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by Dirección General de Educación Superior Tecnológica (DGEST) (grant No. 2785.09-P). Support from Consejo Nacional de Ciencia y Tecnología (CONACyT) in the form of a graduate scholarship for CMQM is gratefully acknowledged.

References

First citationAlbrechet, M. (2001). Chem. Rev. 101, 3457–3498.  Web of Science PubMed Google Scholar
First citationBessonov, I. V., Lozinskaya, N. A., Katachova, V. R., Proskurnina, M. V. & Zefirov, N. S. (2005). Russ. Chem. Bull. Int. Ed. 54, 211–214.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernandes, C., Horn, A. Jr, Howie, R. A., Schripsema, J., Skakle, J. M. S. & Wardell, J. L. (2007). J. Mol. Struct. 837, 274–283.  Web of Science CSD CrossRef CAS Google Scholar
First citationItoh, M., Nakazawa, J., Maeda, K., Mizutani, T. & Kodera, M. (2005). Inorg. Chem. 44, 691–702.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLarter, M. L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). Tetrahedron Lett. 39, 4785–4788.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853–908.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLozinskaya, N. A., Tsybezova, V. V., Proskurnina, M. V. & Zefirov, N. S. (2003). Russ. Chem. Bull. Int. Ed. 52, 674–678.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMasaoka, S., Furukawa, S., Chang, H.-C., Mizutani, T. & Kitagawa, S. (2001). Angew. Chem. Int. Ed. 40, 3817–3819.  Web of Science CrossRef CAS Google Scholar
First citationRarig, R. S. Jr, Lam, R., Zavalij, P. Y., Ngala, J. K., LaDuca, R. L. Jr, Greedan, J. E. & Zubieta, J. (2002). Inorg. Chem. 41, 2124–2133.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, L., Gu, W., Deng, J.-X., Liu, M.-L., Xu, N. & Liu, X.-Z. (2009). Z. Anorg. Allg. Chem. 636, 1124–1128.  CrossRef Google Scholar
First citationYaghi, O. M. O., Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds