organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o904-o905

(E)-4-[(4-Di­ethyl­amino-2-hy­dr­oxy­benzyl­­idene)amino]­benzo­nitrile

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 20 February 2012; accepted 23 February 2012; online 29 February 2012)

The title compound, C18H19N3O, displays an E conformation with respect to the C=N double bond. The dihedral angle between the mean planes of the two benzene rings is 24.49 (3)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked by nonclassical inter­molecular C—H⋯O hydrogen bonds to form an infinite one-dimensional chain along [010], generating a C(8) motif.

Related literature

For the preparation of the title compound, see: Shirinian et al. (2010[Shirinian, V. Z., Shimkin, A. A., Mailian, A. K., Tsyganov, D. V., Popov, L. D. & Krayushkin, M. M. (2010). Dyes Pigm. 84, 19-24.]). For the applications of proton transfer dyes, see: Chen & Pang (2010[Chen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914-1918.]); Chuang et al. (2011[Chuang, W.-T., Hsieh, C.-C., Lai, C.-H., Lai, C.-H., Shih, C.-W., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Org. Chem. 76, 8189-8202.]); Han et al. (2010[Han, D. Y., Kim, J. M., Kim, J., Jung, H. S., Lee, Y. H., Zhang, J. F. & Kim, J. S. (2010). Tetrahedron Lett. 51, 1947-1951.]); Helal et al. (2010[Helal, A., Lee, S. H., Kim, S. H. & Kim, H.-S. (2010). Tetrahedron Lett. 51, 3531-3535.]); Ikeda et al. (2010[Ikeda, S., Toganoh, M., Easwaramoorthi, S., Lim, J. M., Kim, D. & Furuta, H. (2010). J. Org. Chem. 75, 8637-8649.]); Ito et al. (2011[Ito, Y., Amimoto, K. & Kawato, T. (2011). Dyes Pigm. 89, 319-323.]); Lim et al. (2011[Lim, C.-K., Seo, J., Kim, S., Kwon, I. C., Ahn, C.-H. & Park, S. Y. (2011). Dyes Pigm. 90, 284-289.]); Lins et al. (2010[Lins, G. O. W., Campo, L. F., Rodembusch, F. S. & Stefani, V. (2010). Dyes Pigm. 84, 114-120.]); Maupin et al. (2011[Maupin, C. M., Castillo, N., Taraphder, S., Tu, C., McKenna, R., Silverman, D. N. & Voth, G. A. (2011). J. Am. Chem. Soc. 133, 6223-6234.]); Santos et al. (2011[Santos, R. C., Silva Faleiro, N. V., Campo, L. F., Scroferneker, M. L., Corbellini, V. A., Rodembusch, F. S. & Stefani, V. (2011). Tetrahedron Lett. 52, 3048-3053.]); Tang et al. (2011[Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738-17745.]). For related structures, see: Blagus & Kaitner (2011[Blagus, A. & Kaitner, B. (2011). Acta Cryst. E67, o1423.]); Chen et al. (2011[Chen, K.-Y., Fang, T.-C., Chang, M.-J., Tsai, H.-Y. & Luo, M.-H. (2011). Acta Cryst. E67, o2862.]); Guo (2010[Guo, J.-B. (2010). Acta Cryst. E66, o2689.]); Manvizhi et al. (2011[Manvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500.]); Wang et al. (2010[Wang, X.-C., Xu, H. & Qian, K. (2010). Acta Cryst. E66, o528.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N3O

  • Mr = 293.36

  • Monoclinic, P 21 /c

  • a = 15.361 (3) Å

  • b = 12.118 (2) Å

  • c = 8.7317 (14) Å

  • β = 100.717 (4)°

  • V = 1597.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.42 × 0.35 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.436, Tmax = 1.000

  • 8867 measured reflections

  • 3136 independent reflections

  • 1405 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.171

  • S = 1.02

  • 3136 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H0A⋯N2 0.82 1.84 2.572 (3) 148
C4—H4A⋯Oi 0.93 2.60 3.334 (3) 137
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The excited-state intramolecular proton transfer (ESIPT) reaction of N-(2-hydroxybenzylidene)aniline derivatives has been investigated, which incorporates transfer of a hydroxy proton to the imine nitrogen through an intramolecular six-membered-ring hydrogen-bonding system. The proton transfer dyes have found many important applications. Prototypical examples are probes for solvation dynamics (Chen & Pang, 2010; Lins et al., 2010) and biological environments (Lim et al., 2011; Maupin et al., 2011), photochromic materials (Ito et al., 2011), near-infrared fluorescent dyes (Ikeda et al., 2010), fluorescence microscopy imaging (Santos et al., 2011), chemosensors (Han et al., 2010; Helal et al., 2010) and recent application in the field of organic light emitting devices (Chuang et al., 2011; Tang et al., 2011).

The molecular structure of the title compound is shown in Fig. 1. The molecule displays a trans configuration about the central CN imine double bond (Blagus & Kaitner, 2011; Guo, 2010; Manvizhi et al., 2011). The dihedral angle between the mean plane of two benzene rings is 24.49 (3)° (Wang et al., 2010) and an intramolecular O–H···N hydrogen bond (Table 1) generates an S(6) ring (Chen et al., 2011). In the crystal (Fig. 2), molecules are linked by non-classical intermolecular C–H···O hydrogen bonds (Table 1) to form an infinite one-dimensional chain along [0 1 0], generating a C(8) motif.

Related literature top

For the preparation of the title compound, see: Shirinian et al. (2010). For the applications of proton transfer dyes, see: Chen & Pang (2010); Chuang et al. (2011); Han et al. (2010); Helal et al. (2010); Ikeda et al. (2010); Ito et al. (2011); Lim et al. (2011); Lins et al. (2010); Maupin et al. (2011); Santos et al. (2011); Tang et al. (2011). For related structures, see: Blagus & Kaitner (2011); Chen et al. (2011); Guo (2010); Manvizhi et al. (2011); Wang et al. (2010).

Experimental top

The title compound was synthesized by the condensation reaction of 4-(diethylamino)-2-hydroxybenzaldehyde and 4-aminobenzonitrile according to the literature (Shirinian et al., 2010). Yellow parallelepiped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a chloroform solution.

Refinement top

H atoms bonded to O and C atoms were located in a difference electron density map. The hydroxy H atom was freely refined, and other H atoms positioned geometrically and refined using a riding model, with C–H = 0.93Å-0.97Å and Uiso(H) = 1.2(1.5)Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and the intramolecular O–H···N hydrogen bond (red dashed line). Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed along the a axis. Green dashed lines denote the non-classical intermolecular C4–H4A···O hydrogen bonds.
(E)-4-[(4-Diethylamino-2-hydroxybenzylidene)amino]benzonitrile top
Crystal data top
C18H19N3OF(000) = 624
Mr = 293.36Dx = 1.220 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1646 reflections
a = 15.361 (3) Åθ = 2.2–22.6°
b = 12.118 (2) ŵ = 0.08 mm1
c = 8.7317 (14) ÅT = 295 K
β = 100.717 (4)°Parallelepiped, yellow
V = 1597.0 (5) Å30.42 × 0.35 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3136 independent reflections
Radiation source: fine-focus sealed tube1405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker 2001)
h = 1818
Tmin = 0.436, Tmax = 1.000k = 1414
8867 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
3136 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H19N3OV = 1597.0 (5) Å3
Mr = 293.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.361 (3) ŵ = 0.08 mm1
b = 12.118 (2) ÅT = 295 K
c = 8.7317 (14) Å0.42 × 0.35 × 0.10 mm
β = 100.717 (4)°
Data collection top
Bruker SMART CCD
diffractometer
3136 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2001)
1405 reflections with I > 2σ(I)
Tmin = 0.436, Tmax = 1.000Rint = 0.054
8867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
3136 reflectionsΔρmin = 0.22 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.12526 (16)0.02917 (13)0.1327 (2)0.0914 (6)
H0A0.07560.01620.18270.137 (16)*
N10.3699 (2)0.1233 (3)0.8181 (4)0.1306 (11)
N20.01778 (14)0.08093 (15)0.2272 (3)0.0735 (6)
N30.34058 (17)0.11544 (19)0.2774 (3)0.0937 (6)
C10.3116 (2)0.1190 (2)0.7158 (4)0.0969 (9)
C20.23844 (18)0.1117 (2)0.5869 (3)0.0811 (7)
C30.20738 (19)0.2036 (2)0.4999 (4)0.0871 (8)
H3A0.23510.27140.52330.105*
C40.13636 (18)0.1961 (2)0.3796 (3)0.0810 (8)
H4A0.11610.25900.32300.097*
C50.09401 (18)0.09504 (19)0.3410 (3)0.0702 (7)
C60.1265 (2)0.0040 (2)0.4290 (3)0.0865 (8)
H6A0.09920.06410.40610.104*
C70.1975 (2)0.0111 (2)0.5485 (3)0.0896 (8)
H7A0.21850.05180.60430.107*
C80.00756 (15)0.14955 (19)0.1149 (3)0.0701 (5)
H8A0.02920.20830.10140.084*
C90.08947 (16)0.13804 (18)0.0117 (3)0.0701 (5)
C100.11940 (19)0.21569 (19)0.1058 (3)0.0776 (8)
H10A0.08250.27440.11870.093*
C110.1997 (2)0.2089 (2)0.2014 (3)0.0807 (8)
H11A0.21590.26200.27840.097*
C120.25904 (18)0.1226 (2)0.1858 (3)0.0749 (7)
C130.23028 (19)0.04469 (19)0.0681 (3)0.0778 (7)
H13A0.26810.01270.05350.093*
C140.14852 (19)0.05040 (18)0.0257 (3)0.0706 (7)
C150.3678 (2)0.1867 (3)0.4140 (3)0.1043 (10)
H15A0.40510.14490.49560.125*
H15B0.31560.21010.45320.125*
C160.4175 (2)0.2868 (3)0.3755 (4)0.1351 (13)
H16A0.43370.33160.46700.203*
H16B0.38050.32870.29540.203*
H16C0.47000.26390.33940.203*
C170.40588 (19)0.0308 (2)0.2501 (3)0.0937 (6)
H17A0.46540.05860.28640.112*
H17B0.39900.01670.13920.112*
C180.3941 (3)0.0743 (3)0.3325 (5)0.1237 (12)
H18A0.33710.10520.29050.164 (17)*
H18B0.39790.05980.44170.20 (2)*
H18C0.43960.12550.31850.187 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.1181 (17)0.0591 (11)0.0989 (14)0.0112 (10)0.0253 (13)0.0149 (10)
N10.110 (2)0.132 (3)0.143 (3)0.0031 (19)0.005 (2)0.009 (2)
N20.0928 (16)0.0518 (12)0.0824 (15)0.0057 (11)0.0329 (13)0.0054 (11)
N30.1002 (14)0.0906 (14)0.0938 (13)0.0076 (10)0.0270 (11)0.0048 (11)
C10.089 (2)0.091 (2)0.115 (3)0.0063 (19)0.030 (2)0.008 (2)
C20.0857 (19)0.0719 (18)0.093 (2)0.0088 (16)0.0367 (16)0.0002 (16)
C30.097 (2)0.0649 (17)0.104 (2)0.0063 (15)0.0315 (18)0.0012 (16)
C40.099 (2)0.0546 (15)0.094 (2)0.0036 (14)0.0300 (18)0.0045 (14)
C50.0879 (18)0.0504 (15)0.0823 (18)0.0087 (13)0.0416 (15)0.0015 (13)
C60.113 (2)0.0522 (16)0.099 (2)0.0024 (15)0.0320 (19)0.0009 (15)
C70.114 (2)0.0623 (18)0.097 (2)0.0123 (16)0.031 (2)0.0082 (15)
C80.0912 (13)0.0506 (9)0.0793 (14)0.0041 (10)0.0439 (10)0.0043 (10)
C90.0912 (13)0.0506 (9)0.0793 (14)0.0041 (10)0.0439 (10)0.0043 (10)
C100.107 (2)0.0544 (15)0.0822 (18)0.0098 (14)0.0462 (17)0.0021 (14)
C110.109 (2)0.0652 (16)0.0757 (18)0.0014 (16)0.0364 (17)0.0059 (13)
C120.0949 (19)0.0610 (15)0.0773 (18)0.0038 (15)0.0380 (16)0.0025 (13)
C130.099 (2)0.0571 (15)0.0863 (19)0.0138 (14)0.0393 (16)0.0013 (14)
C140.100 (2)0.0471 (13)0.0736 (17)0.0011 (14)0.0384 (16)0.0006 (12)
C150.119 (2)0.116 (3)0.079 (2)0.010 (2)0.0204 (18)0.0069 (18)
C160.160 (3)0.121 (3)0.126 (3)0.040 (3)0.032 (2)0.031 (2)
C170.1002 (14)0.0906 (14)0.0938 (13)0.0076 (10)0.0270 (11)0.0048 (11)
C180.134 (4)0.110 (3)0.135 (4)0.024 (3)0.048 (3)0.024 (2)
Geometric parameters (Å, º) top
O—C141.344 (3)C9—C101.405 (3)
O—H0A0.8200C9—C141.417 (3)
N1—C11.143 (4)C10—C111.357 (3)
N2—C81.290 (3)C10—H10A0.9300
N2—C51.398 (3)C11—C121.410 (3)
N3—C121.358 (3)C11—H11A0.9300
N3—C171.484 (3)C12—C131.405 (3)
N3—C151.469 (3)C13—C141.368 (3)
C1—C21.437 (4)C13—H13A0.9300
C2—C31.383 (3)C15—C161.504 (4)
C2—C71.383 (3)C15—H15A0.9700
C3—C41.369 (3)C15—H15B0.9700
C3—H3A0.9300C16—H16A0.9600
C4—C51.398 (3)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C5—C61.384 (3)C17—C181.490 (4)
C6—C71.365 (3)C17—H17A0.9700
C6—H6A0.9300C17—H17B0.9700
C7—H7A0.9300C18—H18A0.9600
C8—C91.412 (3)C18—H18B0.9600
C8—H8A0.9300C18—H18C0.9600
C14—O—H0A109.5C12—C11—H11A119.5
C8—N2—C5123.8 (2)N3—C12—C13121.2 (2)
C12—N3—C17121.8 (2)N3—C12—C11122.2 (3)
C12—N3—C15122.2 (2)C13—C12—C11116.6 (3)
C17—N3—C15116.0 (2)C14—C13—C12122.2 (2)
N1—C1—C2179.0 (4)C14—C13—H13A118.9
C3—C2—C7118.8 (3)C12—C13—H13A118.9
C3—C2—C1121.3 (3)O—C14—C13118.4 (2)
C7—C2—C1119.9 (3)O—C14—C9120.4 (3)
C2—C3—C4120.8 (3)C13—C14—C9121.2 (2)
C2—C3—H3A119.6N3—C15—C16111.8 (2)
C4—C3—H3A119.6N3—C15—H15A109.2
C3—C4—C5120.8 (3)C16—C15—H15A109.2
C3—C4—H4A119.6N3—C15—H15B109.2
C5—C4—H4A119.6C16—C15—H15B109.2
N2—C5—C6117.7 (2)H15A—C15—H15B107.9
N2—C5—C4124.7 (2)C15—C16—H16A109.5
C6—C5—C4117.5 (3)C15—C16—H16B109.5
C5—C6—C7121.9 (3)H16A—C16—H16B109.5
C5—C6—H6A119.1C15—C16—H16C109.5
C7—C6—H6A119.1H16A—C16—H16C109.5
C2—C7—C6120.3 (3)H16B—C16—H16C109.5
C2—C7—H7A119.9N3—C17—C18111.5 (2)
C6—C7—H7A119.9N3—C17—H17A109.3
N2—C8—C9121.9 (2)C18—C17—H17A109.3
N2—C8—H8A119.0N3—C17—H17B109.3
C9—C8—H8A119.0C18—C17—H17B109.3
C10—C9—C14115.9 (3)H17A—C17—H17B108.0
C10—C9—C8122.1 (2)C17—C18—H18A109.5
C14—C9—C8121.9 (2)C17—C18—H18B109.5
C11—C10—C9123.0 (2)H18A—C18—H18B109.5
C11—C10—H10A118.5C17—C18—H18C109.5
C9—C10—H10A118.5H18A—C18—H18C109.5
C10—C11—C12121.0 (2)H18B—C18—H18C109.5
C10—C11—H11A119.5
C7—C2—C3—C41.2 (4)C17—N3—C12—C134.9 (4)
C1—C2—C3—C4178.5 (2)C15—N3—C12—C13171.7 (2)
C2—C3—C4—C50.6 (4)C17—N3—C12—C11173.9 (2)
C8—N2—C5—C6163.3 (2)C15—N3—C12—C119.5 (4)
C8—N2—C5—C421.3 (3)C10—C11—C12—N3178.3 (2)
C3—C4—C5—N2175.6 (2)C10—C11—C12—C130.5 (3)
C3—C4—C5—C60.2 (4)N3—C12—C13—C14179.8 (2)
N2—C5—C6—C7176.2 (2)C11—C12—C13—C141.0 (3)
C4—C5—C6—C70.5 (4)C12—C13—C14—O178.2 (2)
C3—C2—C7—C61.5 (4)C12—C13—C14—C92.1 (4)
C1—C2—C7—C6178.2 (2)C10—C9—C14—O178.8 (2)
C5—C6—C7—C21.1 (4)C8—C9—C14—O4.4 (3)
C5—N2—C8—C9173.49 (19)C10—C9—C14—C131.5 (3)
N2—C8—C9—C10176.6 (2)C8—C9—C14—C13175.3 (2)
N2—C8—C9—C140.0 (3)C12—N3—C15—C1695.1 (3)
C14—C9—C10—C110.0 (3)C17—N3—C15—C1688.1 (3)
C8—C9—C10—C11176.8 (2)C12—N3—C17—C1887.4 (3)
C9—C10—C11—C121.0 (4)C15—N3—C17—C1889.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0A···N20.821.842.572 (3)148
C4—H4A···Oi0.932.603.334 (3)137
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H19N3O
Mr293.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.361 (3), 12.118 (2), 8.7317 (14)
β (°) 100.717 (4)
V3)1597.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.35 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2001)
Tmin, Tmax0.436, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8867, 3136, 1405
Rint0.054
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.171, 1.02
No. of reflections3136
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0A···N20.821.842.572 (3)148
C4—H4A···Oi0.932.603.334 (3)137
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Science Council (grant No. NSC 99-2113-M-035-001-MY2) and Feng Chia University in Taiwan.

References

First citationBlagus, A. & Kaitner, B. (2011). Acta Cryst. E67, o1423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, K.-Y., Fang, T.-C., Chang, M.-J., Tsai, H.-Y. & Luo, M.-H. (2011). Acta Cryst. E67, o2862.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914–1918.  Web of Science CrossRef CAS Google Scholar
First citationChuang, W.-T., Hsieh, C.-C., Lai, C.-H., Lai, C.-H., Shih, C.-W., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Org. Chem. 76, 8189–8202.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuo, J.-B. (2010). Acta Cryst. E66, o2689.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, D. Y., Kim, J. M., Kim, J., Jung, H. S., Lee, Y. H., Zhang, J. F. & Kim, J. S. (2010). Tetrahedron Lett. 51, 1947–1951.  Web of Science CSD CrossRef CAS Google Scholar
First citationHelal, A., Lee, S. H., Kim, S. H. & Kim, H.-S. (2010). Tetrahedron Lett. 51, 3531–3535.  Web of Science CrossRef CAS Google Scholar
First citationIkeda, S., Toganoh, M., Easwaramoorthi, S., Lim, J. M., Kim, D. & Furuta, H. (2010). J. Org. Chem. 75, 8637–8649.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIto, Y., Amimoto, K. & Kawato, T. (2011). Dyes Pigm. 89, 319–323.  Web of Science CSD CrossRef CAS Google Scholar
First citationLim, C.-K., Seo, J., Kim, S., Kwon, I. C., Ahn, C.-H. & Park, S. Y. (2011). Dyes Pigm. 90, 284–289.  Web of Science CrossRef CAS Google Scholar
First citationLins, G. O. W., Campo, L. F., Rodembusch, F. S. & Stefani, V. (2010). Dyes Pigm. 84, 114–120.  Web of Science CrossRef CAS Google Scholar
First citationManvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaupin, C. M., Castillo, N., Taraphder, S., Tu, C., McKenna, R., Silverman, D. N. & Voth, G. A. (2011). J. Am. Chem. Soc. 133, 6223–6234.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSantos, R. C., Silva Faleiro, N. V., Campo, L. F., Scroferneker, M. L., Corbellini, V. A., Rodembusch, F. S. & Stefani, V. (2011). Tetrahedron Lett. 52, 3048–3053.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirinian, V. Z., Shimkin, A. A., Mailian, A. K., Tsyganov, D. V., Popov, L. D. & Krayushkin, M. M. (2010). Dyes Pigm. 84, 19–24.  Web of Science CrossRef CAS Google Scholar
First citationTang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, X.-C., Xu, H. & Qian, K. (2010). Acta Cryst. E66, o528.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o904-o905
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds