organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(3,4-Dimeth­­oxy­phen­yl)eth­yl]-N-methyl­benzene­sulfonamide

aDepartment of Physics, Panimalar Institute of Technology, Chennai 602 103, India, bDepartment of Physics, SRM University, Kattankulathur Campus, Chennai 603 203, India, cDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, dDepartment of Chemistry, SRM University, Ramapuram Campus, Chennai 600 089, India, and eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, India
*Correspondence e-mail: jasprabhu1@yahoo.co.in

(Received 27 January 2012; accepted 6 February 2012; online 29 February 2012)

In the title compound, C17H21NO4S, the phenyl and dimeth­oxy­phenyl rings are almost perpendicular to each other, making a dihedral angle of 82.57 (5)°. The structure is stabilized by inter­molecular C—H⋯O inter­actions and the packing is further enhanced by C—H ⋯π inter­actions.

Related literature

For the biological activity of sulfonamide derivatives, see: Zareef et al. (2007[Zareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enzyme Inhib. Med. Chem. 22, 301-308.]); Pomarnacka & Kozlarska-Kedra (2003[Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423-429.]); Siddiqui et al. (2007[Siddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255-259.]); Gennarte et al. (1994[Gennarte, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067-2069.]). For standard bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For geometric parameters, see: Khan et al. (2010[Khan, I. U., Akkurt, M., Sharif, S. & Ahmad, W. (2010). Acta Cryst. E66, o3053.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21NO4S

  • Mr = 335.41

  • Monoclinic, P 21 /c

  • a = 9.9383 (3) Å

  • b = 14.6494 (4) Å

  • c = 12.0097 (3) Å

  • β = 108.535 (1)°

  • V = 1657.80 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.938

  • 20493 measured reflections

  • 4353 independent reflections

  • 3342 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.00

  • 4353 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the phenyl plane C10–C15.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.93 2.60 3.380 (2) 142
C8—H8A⋯O3ii 0.97 2.71 3.620 (2) 156
C4—H4⋯O1iii 0.93 2.65 3.369 (2) 135
C3—H3⋯Cg2iv 0.93 2.91 3.661 (2) 139
C6—H6⋯Cg2ii 0.93 3.05 3.827 (8) 123
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides exhibit a wide vareity of pharmocological activities such as antibacterial, antitumour, anti-carbonic anhydrase, diuretic hypoglycaemic, antithyroid and protease inhibitory activity. Sulfonamides have also been used clinically as antimalarial agents (Zareef et al., 2007). Sulfonamide derivatives are known to exhibit anticancer and HIV activities (Pomarnacka & Kozlarska-Kedra, 2003). They are also used as anti-convulsants (Siddiqui et al., 2007) and for the treatment of inflammatory rheumatic & non-rheumatic processes (Gennarte et al., 1994).

Fig. 1 shows the structure of compound (I). Bond lengths are comparable with other reported values (Allen et al., 1987).

In the title compound (I) the geometric parameters are similar with those of a similar structure (Khan et al., 2010). The phenyl rings are almost perpendicular to each other making a dihedral angle of 82.57 (5)°. The sum of bond angles around N atom [345.31°] indicates sp2 hybridization. The asymmetry parameters for the phenyl rings C1—C6 and C10—C15 are given by Δs (C2) = 0.46°, Δ2 (C1) = 0.28°, Δs (C12) = 0.32° and Δ2 (C11) = 0.22° [Nardelli, 1983]. The crystal packing shows that the molecules are linked into a three dimensional framework through intermolecular C14—H14···02, C8—H8A···03 and C4—H4···01 hydrogen bonds . The packing is further stabilized by C3—H3···Cg(2) and C6—H6···Cg(2) C—H··· π interactions. [Cg(2) is the centroid of the C10—C15 ring], with a distances 3.661 (2)Å and 3.827 (8) Å respectively.

Related literature top

For the biological activity of sulfonamide derivatives, see: Zareef et al. (2007); Pomarnacka & Kozlarska-Kedra (2003); Siddiqui et al. (2007); Gennarte et al. (1994). For standard bond distances, see: Allen et al. (1987). For geometric parameters, see: Khan et al. (2010). For asymmetry parameters, see: Nardelli (1983).

Experimental top

2-(3,4-dimethoxyphenyl)-N-methyl ethanamine (5 mmol) was dissolved in dichloromethane (20 ml) in a round bottom flask. To this, triethylamine (10.2 mmol) was added with stirring for 5 minutes. Then benzenesulfonyl chloride (51 mmol) was added into the reaction mixture and heated to 50 °C for 6 hrs. After cooling the reaction mixture to the ambient temperature, it was added to water (20 ml). The aqueous layer was separated. The ethyl acetate layer was washed twice with 10% sodium chloride solution. The organic layer was dried over 2 g of anhydrous sodium sulfate and filtered. The filtrate was evaporated under vacuum to isolate the crude compound. Recrystallization of the compound using ethyl acetate and hexane mixture yielded diffraction quality crystals.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H = 0.93 or 0.96Å and Uiso(H)= 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the molecules viewed along b axis.
N-[2-(3,4-Dimethoxyphenyl)ethyl]-N-methylbenzenesulfonamide top
Crystal data top
C17H21NO4SF(000) = 712
Mr = 335.41Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7936 reflections
a = 9.9383 (3) Åθ = 2.2–29.0°
b = 14.6494 (4) ŵ = 0.22 mm1
c = 12.0097 (3) ÅT = 293 K
β = 108.535 (1)°Block, colourless
V = 1657.80 (8) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4353 independent reflections
Radiation source: fine-focus sealed tube3342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 138
Tmin = 0.879, Tmax = 0.938k = 1919
20493 measured reflectionsl = 1614
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.383P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4353 reflectionsΔρmax = 0.27 e Å3
212 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (10)
Crystal data top
C17H21NO4SV = 1657.80 (8) Å3
Mr = 335.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9383 (3) ŵ = 0.22 mm1
b = 14.6494 (4) ÅT = 293 K
c = 12.0097 (3) Å0.40 × 0.40 × 0.30 mm
β = 108.535 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4353 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3342 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.938Rint = 0.028
20493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
4353 reflectionsΔρmin = 0.30 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11829 (14)0.66352 (10)0.73921 (12)0.0389 (3)
C20.02018 (16)0.69298 (11)0.71549 (15)0.0503 (4)
H20.08110.66300.74810.060*
C30.06711 (18)0.76743 (13)0.64283 (16)0.0590 (4)
H30.15970.78810.62750.071*
C40.02163 (19)0.81095 (11)0.59322 (15)0.0557 (4)
H40.01080.86070.54400.067*
C50.15918 (18)0.78080 (11)0.61644 (16)0.0548 (4)
H50.21910.81020.58220.066*
C60.20867 (15)0.70752 (10)0.68983 (15)0.0477 (4)
H60.30190.68780.70600.057*
C70.01095 (18)0.45745 (13)0.66936 (16)0.0588 (4)
H7A0.02520.49990.60600.088*
H7B0.04540.46050.72100.088*
H7C0.00680.39680.63830.088*
C80.25582 (17)0.47960 (10)0.66388 (14)0.0463 (3)
H8A0.34670.50470.71020.056*
H8B0.21750.51820.59550.056*
C90.2778 (2)0.38392 (11)0.62405 (14)0.0531 (4)
H9A0.18620.36020.57700.064*
H9B0.33640.38840.57330.064*
C100.34519 (14)0.31529 (10)0.71947 (12)0.0404 (3)
C110.33172 (14)0.22281 (10)0.68971 (12)0.0413 (3)
H110.28030.20590.61340.050*
C120.39284 (14)0.15593 (10)0.77076 (12)0.0399 (3)
C130.47154 (13)0.18065 (10)0.88626 (12)0.0391 (3)
C140.48459 (14)0.27165 (10)0.91596 (12)0.0429 (3)
H140.53600.28870.99220.051*
C150.42196 (14)0.33848 (10)0.83345 (13)0.0437 (3)
H150.43190.39960.85540.052*
C160.6248 (2)0.13091 (15)1.07208 (15)0.0661 (5)
H16A0.70430.16411.06360.099*
H16B0.65760.07551.11470.099*
H16C0.57710.16761.11420.099*
C170.3105 (2)0.03597 (13)0.63220 (16)0.0655 (5)
H17A0.21360.05610.61040.098*
H17B0.31300.02940.62790.098*
H17C0.35530.06190.57960.098*
N0.15832 (12)0.48049 (8)0.73455 (10)0.0398 (3)
O10.08318 (15)0.54928 (9)0.89196 (10)0.0632 (3)
O20.32561 (12)0.57504 (8)0.88559 (10)0.0597 (3)
O30.38351 (13)0.06447 (7)0.74855 (10)0.0576 (3)
O40.52907 (12)0.10956 (8)0.95905 (9)0.0554 (3)
S0.17728 (4)0.56558 (3)0.82594 (3)0.04282 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (7)0.0361 (7)0.0379 (7)0.0028 (5)0.0145 (5)0.0021 (5)
C20.0480 (8)0.0537 (9)0.0563 (9)0.0072 (7)0.0267 (7)0.0050 (7)
C30.0517 (9)0.0619 (10)0.0654 (10)0.0210 (8)0.0212 (8)0.0074 (9)
C40.0664 (10)0.0433 (9)0.0581 (9)0.0135 (7)0.0207 (8)0.0087 (7)
C50.0618 (10)0.0416 (8)0.0678 (11)0.0012 (7)0.0302 (8)0.0063 (8)
C60.0408 (7)0.0415 (8)0.0624 (9)0.0015 (6)0.0188 (6)0.0014 (7)
C70.0508 (8)0.0637 (11)0.0547 (9)0.0121 (8)0.0066 (7)0.0042 (8)
C80.0567 (8)0.0405 (8)0.0447 (8)0.0030 (6)0.0202 (7)0.0036 (6)
C90.0715 (10)0.0485 (9)0.0413 (8)0.0107 (8)0.0209 (7)0.0004 (7)
C100.0421 (7)0.0416 (8)0.0407 (7)0.0026 (6)0.0175 (5)0.0027 (6)
C110.0421 (7)0.0450 (8)0.0355 (7)0.0008 (6)0.0107 (5)0.0069 (6)
C120.0386 (6)0.0399 (7)0.0404 (7)0.0005 (5)0.0115 (5)0.0052 (6)
C130.0341 (6)0.0463 (8)0.0366 (7)0.0022 (5)0.0108 (5)0.0026 (6)
C140.0356 (6)0.0515 (8)0.0391 (7)0.0031 (6)0.0083 (5)0.0107 (6)
C150.0434 (7)0.0401 (8)0.0481 (8)0.0037 (6)0.0153 (6)0.0093 (6)
C160.0598 (10)0.0829 (13)0.0438 (8)0.0087 (9)0.0000 (7)0.0054 (9)
C170.0789 (12)0.0467 (9)0.0563 (10)0.0028 (8)0.0009 (9)0.0181 (8)
N0.0436 (6)0.0363 (6)0.0381 (6)0.0006 (5)0.0110 (5)0.0007 (5)
O10.0888 (9)0.0641 (8)0.0482 (6)0.0084 (6)0.0383 (6)0.0079 (6)
O20.0581 (7)0.0543 (7)0.0491 (6)0.0022 (5)0.0080 (5)0.0059 (5)
O30.0729 (8)0.0390 (6)0.0486 (6)0.0019 (5)0.0021 (5)0.0087 (5)
O40.0631 (7)0.0524 (7)0.0422 (6)0.0095 (5)0.0048 (5)0.0015 (5)
S0.0521 (2)0.0410 (2)0.03312 (18)0.00382 (15)0.01030 (14)0.00021 (14)
Geometric parameters (Å, º) top
C1—C61.383 (2)C10—C151.381 (2)
C1—C21.383 (2)C10—C111.397 (2)
C1—S1.7604 (14)C11—C121.379 (2)
C2—C31.382 (2)C11—H110.9300
C2—H20.9300C12—O31.3635 (18)
C3—C41.369 (3)C12—C131.4062 (18)
C3—H30.9300C13—O41.3631 (17)
C4—C51.378 (2)C13—C141.375 (2)
C4—H40.9300C14—C151.391 (2)
C5—C61.377 (2)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—H60.9300C16—O41.4229 (19)
C7—N1.4638 (19)C16—H16A0.9600
C7—H7A0.9600C16—H16B0.9600
C7—H7B0.9600C16—H16C0.9600
C7—H7C0.9600C17—O31.4173 (19)
C8—N1.4773 (19)C17—H17A0.9600
C8—C91.519 (2)C17—H17B0.9600
C8—H8A0.9700C17—H17C0.9600
C8—H8B0.9700N—S1.6317 (12)
C9—C101.511 (2)O1—S1.4254 (13)
C9—H9A0.9700O2—S1.4262 (11)
C9—H9B0.9700
C6—C1—C2120.38 (14)C12—C11—C10121.59 (13)
C6—C1—S119.60 (11)C12—C11—H11119.2
C2—C1—S119.92 (12)C10—C11—H11119.2
C3—C2—C1119.37 (15)O3—C12—C11124.96 (12)
C3—C2—H2120.3O3—C12—C13115.34 (13)
C1—C2—H2120.3C11—C12—C13119.70 (13)
C4—C3—C2120.51 (15)O4—C13—C14126.05 (12)
C4—C3—H3119.7O4—C13—C12115.10 (12)
C2—C3—H3119.7C14—C13—C12118.85 (13)
C3—C4—C5119.85 (15)C13—C14—C15120.89 (13)
C3—C4—H4120.1C13—C14—H14119.6
C5—C4—H4120.1C15—C14—H14119.6
C6—C5—C4120.59 (16)C10—C15—C14120.93 (14)
C6—C5—H5119.7C10—C15—H15119.5
C4—C5—H5119.7C14—C15—H15119.5
C5—C6—C1119.30 (14)O4—C16—H16A109.5
C5—C6—H6120.4O4—C16—H16B109.5
C1—C6—H6120.4H16A—C16—H16B109.5
N—C7—H7A109.5O4—C16—H16C109.5
N—C7—H7B109.5H16A—C16—H16C109.5
H7A—C7—H7B109.5H16B—C16—H16C109.5
N—C7—H7C109.5O3—C17—H17A109.5
H7A—C7—H7C109.5O3—C17—H17B109.5
H7B—C7—H7C109.5H17A—C17—H17B109.5
N—C8—C9112.04 (13)O3—C17—H17C109.5
N—C8—H8A109.2H17A—C17—H17C109.5
C9—C8—H8A109.2H17B—C17—H17C109.5
N—C8—H8B109.2C7—N—C8114.72 (12)
C9—C8—H8B109.2C7—N—S114.70 (11)
H8A—C8—H8B107.9C8—N—S115.88 (9)
C10—C9—C8116.64 (13)C12—O3—C17117.65 (13)
C10—C9—H9A108.1C13—O4—C16117.44 (13)
C8—C9—H9A108.1O2—S—O1119.54 (8)
C10—C9—H9B108.1O2—S—N106.98 (7)
C8—C9—H9B108.1O1—S—N106.87 (7)
H9A—C9—H9B107.3O2—S—C1108.34 (7)
C15—C10—C11118.04 (13)O1—S—C1108.16 (7)
C15—C10—C9124.05 (14)N—S—C1106.21 (6)
C11—C10—C9117.90 (13)
C6—C1—C2—C30.6 (2)C11—C10—C15—C140.3 (2)
S—C1—C2—C3177.00 (13)C9—C10—C15—C14178.10 (14)
C1—C2—C3—C41.0 (3)C13—C14—C15—C100.1 (2)
C2—C3—C4—C50.5 (3)C9—C8—N—C767.78 (17)
C3—C4—C5—C60.4 (3)C9—C8—N—S154.94 (11)
C4—C5—C6—C10.8 (3)C11—C12—O3—C172.8 (2)
C2—C1—C6—C50.2 (2)C13—C12—O3—C17177.37 (15)
S—C1—C6—C5176.16 (12)C14—C13—O4—C167.8 (2)
N—C8—C9—C1062.34 (19)C12—C13—O4—C16171.97 (14)
C8—C9—C10—C1518.9 (2)C7—N—S—O2176.93 (11)
C8—C9—C10—C11162.67 (14)C8—N—S—O245.78 (12)
C15—C10—C11—C120.1 (2)C7—N—S—O147.78 (13)
C9—C10—C11—C12178.44 (14)C8—N—S—O1174.93 (10)
C10—C11—C12—O3179.51 (14)C7—N—S—C167.51 (12)
C10—C11—C12—C130.4 (2)C8—N—S—C169.77 (11)
O3—C12—C13—O40.95 (19)C6—C1—S—O232.79 (14)
C11—C12—C13—O4179.17 (13)C2—C1—S—O2150.81 (13)
O3—C12—C13—C14179.30 (13)C6—C1—S—O1163.73 (12)
C11—C12—C13—C140.6 (2)C2—C1—S—O119.87 (15)
O4—C13—C14—C15179.37 (14)C6—C1—S—N81.85 (13)
C12—C13—C14—C150.3 (2)C2—C1—S—N94.55 (13)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the phenyl plane C10–C15.
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.932.603.380 (2)142
C8—H8A···O3ii0.972.713.620 (2)156
C4—H4···O1iii0.932.653.369 (2)135
C3—H3···Cg2iv0.932.913.661 (2)139
C6—H6···Cg2ii0.933.053.827 (8)123
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H21NO4S
Mr335.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.9383 (3), 14.6494 (4), 12.0097 (3)
β (°) 108.535 (1)
V3)1657.80 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.879, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
20493, 4353, 3342
Rint0.028
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.00
No. of reflections4353
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the phenyl plane C10–C15.
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.932.603.380 (2)142.2
C8—H8A···O3ii0.972.713.620 (2)156.0
C4—H4···O1iii0.932.653.369 (2)134.5
C3—H3···Cg2iv0.932.913.661 (2)139
C6—H6···Cg2ii0.933.053.827 (8)123
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x, y1/2, z+1/2.
 

Acknowledgements

The authors wish to acknowledge SAIF, IIT-Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGennarte, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067–2069.  Google Scholar
First citationKhan, I. U., Akkurt, M., Sharif, S. & Ahmad, W. (2010). Acta Cryst. E66, o3053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423–429.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enzyme Inhib. Med. Chem. 22, 301–308.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds