organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Iso­pentyl 3-(3,4-dihy­dr­oxy­phen­yl)­acrylate

aSchool of Biological and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, People's Republic of China, and bSericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, People's Republic of China
*Correspondence e-mail: jimwang_js@hotmail.com

(Received 14 January 2012; accepted 26 January 2012; online 4 February 2012)

The title compound, C14H18O4, a derivative of caffeic acid, has an E configuration about the C=C bond. The benzene ring is almost coplanar with the C=C—C(O)—O—C linker [maximum deviation = 0.050 (2) Å], making a dihedral angle of only 4.53 (2)°. In the mol­ecule, the adjacent hy­droxy groups form an O—H⋯O inter­action. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, generating a chain propagating in the [110] direction.

Related literature

For the biological properties of caffeic acid esters, see: Buzzi et al. (2009[Buzzi, F. de C., Franzoi, C. L., Antonini, G., Fracasso, M., Filho, V. C., Yunes, R. A. & Niero, R. (2009). Eur. J. Med. Chem. 44, 4596-4602.]); Uwai et al. (2008[Uwai, K., Osanai, Y., Imaizumi, T., Kanno, S., Takeshita, M. & Ishikawa, M. (2008). Bioorg. Med. Chem. 16, 7795-7803.]). For synthetic details, see: Feng et al. (2011[Feng, Y., Zhang, A., Li, J. & He, B. (2011). Bioresour. Technol. 102, 3607-3609.]); Wang et al. (2011[Wang, J., Gu, S., Zhang, L., Wu, F. & Guo, X. (2011). Acta Cryst. E67, o2871.]). For related structures, see: Xia et al. (2004[Xia, C.-N., Hu, W.-X. & Rao, G.-W. (2004). Acta Cryst. E60, o913-o914.], 2006[Xia, C.-N., Hu, W.-X. & Zhou, W. (2006). Acta Cryst. E62, o3900-o3901.]); Wang et al. (2011[Wang, J., Gu, S., Zhang, L., Wu, F. & Guo, X. (2011). Acta Cryst. E67, o2871.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18O4

  • Mr = 250.28

  • Triclinic, [P \overline 1]

  • a = 5.2790 (11) Å

  • b = 10.244 (2) Å

  • c = 13.834 (3) Å

  • α = 69.05 (3)°

  • β = 80.11 (3)°

  • γ = 78.79 (3)°

  • V = 681.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.974, Tmax = 0.991

  • 2507 measured reflections

  • 2507 independent reflections

  • 1300 reflections with I > 2σ(I)

  • 3 standard reflections every 200 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.156

  • S = 1.00

  • 2507 reflections

  • 163 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.82 2.28 2.721 (2) 114
O3—H3A⋯O1i 0.82 1.95 2.764 (2) 173
O4—H4A⋯O3ii 0.82 2.13 2.831 (2) 143
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Caffeic acid esters are a component of propolis (a vegetable resin) and are reported to have a broad spectrum of biological effects, such as, anti-tumour, antioxidant, and anti-inflammatory activities (Uwai et al., 2008; Buzzi et al., 2009). The resin itself has been used as a cation-exchange resin for heterogeneous catalyst (Feng et al., 2011). This prompted us to synthesize a series of caffeic acid esters to investigate their properties better (Wang et al., 2011). Herein, we report on the crystal structure of the title compound, the isopentyl derivative of caffeic acid.

The title molecule has an E configuration about the C7C8 bond (Fig. 1). The benzene ring with the C7C8—C9 linker is almost coplanar, with a root mean square deviation from the mean plane of 0.005 Å. All bond lengths and angles are in very close agreement with those found in similar caffeic acid structures (Xia et al., 2004, 2006), and in the pentyl derivative of caffeic acid (Wang et al., 2011).

In the crystal, the hydroxy groups contribute to intermolecular O—H···O interactions (Table 1), that link the molecules into ribbons extending in the [110] direction (Fig. 2). On the other hand, the intramolecular O—H···O H-bond also contributes to the stability of the molecular configuration (Fig. 1 and Table 1).

Related literature top

For the biological properties of caffeic acid esters, see: Buzzi et al. (2009); Uwai et al. (2008). For synthetic details, see: Feng et al. (2011); Wang et al. (2011). For related structures, see: Xia et al. (2004, 2006); Wang et al. (2011).

Experimental top

The synthesis follows the method of (Wang et al., 2011). Esterification of caffeic acid with hexyl alcohol was performed in a column (inner diameter = 15 mm, length = 200 mm). A cation exchange resin CD-552 particles (5 g) molecular sieve (5 g) and glass beads of 2 mm in diameter were packed into the middle of the reactor. In a reaction mixture tank, 9 g of caffeic acid was mixed with 100 ml hexyl alcohol. The reaction mixture was supplied to the reaction column at a aret of 10.0 ml/h. The reaction continued at 353 K for 24 h. The solvent was then removed under reduced pressure. The residue was extracted with ethyl acetate three times and filtered. The filtrate was washed successively with dilute saturated aqueous NaHCO3 solution, saturated aqueous NaCl, then dried over MgSO4, and evaporated. The residue was recrystallized from ethanol to give the title compound as colourless crystals (Yield 5.2 g; 57.7%).

Refinement top

The OH and C-bound H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93, 0.98, 0.97 and 0.96 Å for CH(aromtic), CH, CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a-axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines - see Table 1 for details.
(E)-Isopentyl 3-(3,4-dihydroxyphenyl)acrylate top
Crystal data top
C14H18O4Z = 2
Mr = 250.28F(000) = 268
Triclinic, P1Dx = 1.220 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2790 (11) ÅCell parameters from 25 reflections
b = 10.244 (2) Åθ = 9–13°
c = 13.834 (3) ŵ = 0.09 mm1
α = 69.05 (3)°T = 293 K
β = 80.11 (3)°Block, colourless
γ = 78.79 (3)°0.30 × 0.20 × 0.10 mm
V = 681.0 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1300 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 66
Absorption correction: ψ scan
(North et al., 1968)
k = 1112
Tmin = 0.974, Tmax = 0.991l = 016
2507 measured reflections3 standard reflections every 200 min
2507 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
2507 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = 0.14 e Å3
Crystal data top
C14H18O4γ = 78.79 (3)°
Mr = 250.28V = 681.0 (2) Å3
Triclinic, P1Z = 2
a = 5.2790 (11) ÅMo Kα radiation
b = 10.244 (2) ŵ = 0.09 mm1
c = 13.834 (3) ÅT = 293 K
α = 69.05 (3)°0.30 × 0.20 × 0.10 mm
β = 80.11 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1300 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.974, Tmax = 0.9913 standard reflections every 200 min
2507 measured reflections intensity decay: 1%
2507 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
2507 reflectionsΔρmin = 0.14 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2966 (5)0.6252 (2)0.56768 (18)0.0557 (7)
H1A0.17000.63720.52480.067*
O10.0024 (4)0.16077 (18)0.62733 (15)0.0877 (7)
O20.1887 (4)0.01321 (17)0.76260 (13)0.0743 (6)
C20.4057 (5)0.7386 (2)0.55959 (18)0.0543 (7)
O30.3407 (3)0.87217 (15)0.49143 (12)0.0658 (6)
H3A0.24040.86980.45310.099*
C30.5921 (5)0.7242 (2)0.62374 (18)0.0561 (7)
O40.7014 (4)0.83462 (17)0.62142 (14)0.0793 (7)
H4A0.64320.90640.57650.119*
C40.6631 (5)0.5938 (2)0.6955 (2)0.0663 (8)
H4B0.78630.58370.73930.080*
C50.5533 (5)0.4770 (3)0.70355 (19)0.0666 (8)
H5A0.60290.38940.75230.080*
C60.3678 (5)0.4917 (2)0.63792 (17)0.0530 (7)
C70.2509 (5)0.3738 (2)0.63921 (18)0.0570 (7)
H7A0.13300.39590.59090.068*
C80.2875 (5)0.2395 (2)0.69908 (18)0.0610 (7)
H8A0.40770.21020.74720.073*
C90.1449 (5)0.1375 (2)0.69123 (18)0.0541 (7)
C100.0528 (7)0.0973 (3)0.7622 (2)0.0821 (10)
H10A0.11490.12280.70030.099*
H10B0.13220.06390.76200.099*
C110.1015 (8)0.2212 (3)0.8563 (2)0.1123 (13)
H11A0.00610.29280.85560.135*
H11B0.28470.25840.84930.135*
C120.0392 (9)0.2063 (4)0.9575 (2)0.1090 (13)
H12A0.14700.13990.95990.131*
C130.1016 (11)0.3421 (5)1.0451 (3)0.171 (2)
H13A0.28240.37851.03520.256*
H13B0.00210.40981.04590.256*
H13C0.06440.32471.11020.256*
C140.2487 (11)0.1421 (5)0.9771 (4)0.179 (2)
H14A0.28870.05620.92060.268*
H14B0.27510.12221.04110.268*
H14C0.36020.20820.98150.268*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0686 (18)0.0450 (14)0.0592 (15)0.0190 (13)0.0249 (13)0.0107 (12)
O10.1255 (19)0.0556 (11)0.0918 (14)0.0350 (11)0.0638 (14)0.0015 (10)
O20.1147 (17)0.0505 (11)0.0639 (11)0.0347 (10)0.0391 (11)0.0014 (9)
C20.0689 (18)0.0438 (14)0.0547 (14)0.0209 (13)0.0223 (13)0.0083 (12)
O30.0876 (14)0.0435 (10)0.0711 (11)0.0261 (9)0.0368 (10)0.0037 (8)
C30.0700 (18)0.0471 (14)0.0576 (14)0.0250 (13)0.0186 (13)0.0116 (12)
O40.1004 (16)0.0569 (11)0.0944 (14)0.0368 (11)0.0507 (11)0.0107 (10)
C40.080 (2)0.0540 (16)0.0741 (17)0.0224 (14)0.0340 (15)0.0142 (14)
C50.087 (2)0.0486 (15)0.0666 (16)0.0247 (14)0.0390 (15)0.0004 (12)
C60.0623 (17)0.0493 (14)0.0529 (14)0.0235 (13)0.0112 (12)0.0135 (12)
C70.0710 (19)0.0493 (15)0.0549 (14)0.0226 (13)0.0237 (13)0.0076 (12)
C80.079 (2)0.0495 (15)0.0574 (15)0.0228 (14)0.0284 (14)0.0048 (12)
C90.0681 (19)0.0418 (14)0.0534 (14)0.0161 (13)0.0183 (13)0.0078 (12)
C100.143 (3)0.0514 (16)0.0632 (16)0.0484 (17)0.0326 (17)0.0050 (13)
C110.183 (4)0.069 (2)0.092 (2)0.058 (2)0.050 (2)0.0008 (18)
C120.120 (3)0.126 (3)0.073 (2)0.055 (3)0.016 (2)0.0006 (19)
C130.223 (6)0.145 (4)0.123 (3)0.028 (4)0.040 (3)0.009 (3)
C140.171 (6)0.200 (6)0.160 (5)0.019 (4)0.014 (4)0.060 (4)
Geometric parameters (Å, º) top
C1—C21.356 (3)C7—H7A0.9300
C1—C61.390 (3)C8—C91.444 (3)
C1—H1A0.9300C8—H8A0.9300
O1—C91.207 (3)C10—C111.476 (3)
O2—C91.310 (3)C10—H10A0.9700
O2—C101.455 (3)C10—H10B0.9700
C2—O31.373 (3)C11—C121.439 (5)
C2—C31.388 (3)C11—H11A0.9700
O3—H3A0.8200C11—H11B0.9700
C3—O41.355 (3)C12—C131.505 (5)
C3—C41.377 (3)C12—C141.553 (6)
O4—H4A0.8200C12—H12A0.9800
C4—C51.390 (3)C13—H13A0.9600
C4—H4B0.9300C13—H13B0.9600
C5—C61.398 (3)C13—H13C0.9600
C5—H5A0.9300C14—H14A0.9600
C6—C71.453 (3)C14—H14B0.9600
C7—C81.324 (3)C14—H14C0.9600
C2—C1—C6122.1 (2)O2—C10—C11108.5 (2)
C2—C1—H1A118.9O2—C10—H10A110.0
C6—C1—H1A118.9C11—C10—H10A110.0
C9—O2—C10117.5 (2)O2—C10—H10B110.0
C1—C2—O3124.0 (2)C11—C10—H10B110.0
C1—C2—C3120.1 (2)H10A—C10—H10B108.4
O3—C2—C3115.9 (2)C12—C11—C10119.8 (3)
C2—O3—H3A109.5C12—C11—H11A107.4
O4—C3—C4118.2 (2)C10—C11—H11A107.4
O4—C3—C2122.6 (2)C12—C11—H11B107.4
C4—C3—C2119.1 (2)C10—C11—H11B107.4
C3—O4—H4A109.5H11A—C11—H11B106.9
C3—C4—C5121.0 (2)C11—C12—C13113.3 (4)
C3—C4—H4B119.5C11—C12—C14112.5 (4)
C5—C4—H4B119.5C13—C12—C14109.6 (3)
C4—C5—C6119.7 (2)C11—C12—H12A107.0
C4—C5—H5A120.1C13—C12—H12A107.0
C6—C5—H5A120.1C14—C12—H12A107.0
C1—C6—C5117.9 (2)C12—C13—H13A109.5
C1—C6—C7119.1 (2)C12—C13—H13B109.5
C5—C6—C7122.9 (2)H13A—C13—H13B109.5
C8—C7—C6129.5 (2)C12—C13—H13C109.5
C8—C7—H7A115.3H13A—C13—H13C109.5
C6—C7—H7A115.3H13B—C13—H13C109.5
C7—C8—C9121.4 (2)C12—C14—H14A109.5
C7—C8—H8A119.3C12—C14—H14B109.5
C9—C8—H8A119.3H14A—C14—H14B109.5
O1—C9—O2121.8 (2)C12—C14—H14C109.5
O1—C9—C8125.2 (2)H14A—C14—H14C109.5
O2—C9—C8113.0 (2)H14B—C14—H14C109.5
C6—C1—C2—O3179.9 (2)C4—C5—C6—C7177.9 (3)
C6—C1—C2—C31.0 (4)C1—C6—C7—C8179.5 (3)
C1—C2—C3—O4177.8 (3)C5—C6—C7—C81.5 (4)
O3—C2—C3—O41.2 (4)C6—C7—C8—C9177.8 (3)
C1—C2—C3—C40.3 (4)C10—O2—C9—O10.1 (4)
O3—C2—C3—C4178.7 (2)C10—O2—C9—C8179.5 (2)
O4—C3—C4—C5178.4 (3)C7—C8—C9—O15.2 (4)
C2—C3—C4—C50.8 (4)C7—C8—C9—O2174.1 (2)
C3—C4—C5—C60.0 (4)C9—O2—C10—C11172.5 (3)
C2—C1—C6—C51.7 (4)O2—C10—C11—C1256.0 (4)
C2—C1—C6—C7177.4 (2)C10—C11—C12—C13179.7 (3)
C4—C5—C6—C11.2 (4)C10—C11—C12—C1455.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.822.282.721 (2)114
O3—H3A···O1i0.821.952.764 (2)173
O4—H4A···O3ii0.822.132.831 (2)143
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H18O4
Mr250.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.2790 (11), 10.244 (2), 13.834 (3)
α, β, γ (°)69.05 (3), 80.11 (3), 78.79 (3)
V3)681.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.974, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2507, 2507, 1300
Rint0.000
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.156, 1.00
No. of reflections2507
No. of parameters163
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.822.282.721 (2)114
O3—H3A···O1i0.821.952.764 (2)173
O4—H4A···O3ii0.822.132.831 (2)143
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was sponsored by the earmarked fund for Natural Science Foundation of Jiangsu Province (grant No. BK2009213), Qing Lan Project of Jiangsu Province, Modern Agro-industry Technology Research System of China (grant No. CARS-22), Science and Technology Support Program of Jiangsu Province (grant No. BE2010419), Graduate Innovation Project of Jiangsu Province in 2011 (grant No. 284), and Start Research Project of Jiangsu University of Science and Technology (grant Nos. 35211002 and 33201002).

References

First citationBuzzi, F. de C., Franzoi, C. L., Antonini, G., Fracasso, M., Filho, V. C., Yunes, R. A. & Niero, R. (2009). Eur. J. Med. Chem. 44, 4596–4602.  PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFeng, Y., Zhang, A., Li, J. & He, B. (2011). Bioresour. Technol. 102, 3607–3609.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUwai, K., Osanai, Y., Imaizumi, T., Kanno, S., Takeshita, M. & Ishikawa, M. (2008). Bioorg. Med. Chem. 16, 7795–7803.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, J., Gu, S., Zhang, L., Wu, F. & Guo, X. (2011). Acta Cryst. E67, o2871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, C.-N., Hu, W.-X. & Rao, G.-W. (2004). Acta Cryst. E60, o913–o914.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationXia, C.-N., Hu, W.-X. & Zhou, W. (2006). Acta Cryst. E62, o3900–o3901.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds