organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Nitro-N′-(3-nitro­benzyl­­idene)benzohydrazide

aZibo Vocational Institute, Zibo 255314, People's Republic of China
*Correspondence e-mail: lixiaoyan_zb@126.com

(Received 2 February 2012; accepted 2 February 2012; online 10 February 2012)

The title compound, C14H10N4O5, has an E conformation with respect to the C=N bond. The dihedral angle between the benzene rings is 2.41 (14)°. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds to form chains along the c axis. C—H⋯O inter­actions are also present, linking the chains to form a three-dimensional network.

Related literature

For the syntheses and crystal structures of hydrazone compounds, see: Hashemian et al. (2011[Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.]); Lei (2011[Lei, Y. (2011). Acta Cryst. E67, o162.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]). For the crystal structures of similar compounds, reported on by the author, see: Li (2011a[Li, X.-Y. (2011a). Acta Cryst. E67, o1798.],b[Li, X.-Y. (2011b). Acta Cryst. E67, o2511.], 2012[Li, X.-Y. (2012). Acta Cryst. E68, o654.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N4O5

  • Mr = 314.26

  • Monoclinic, P 21 /c

  • a = 11.856 (2) Å

  • b = 14.116 (3) Å

  • c = 8.6263 (19) Å

  • β = 95.193 (2)°

  • V = 1437.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.987

  • 10319 measured reflections

  • 2671 independent reflections

  • 1288 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.123

  • S = 0.84

  • 2671 reflections

  • 211 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.91 (2) 1.99 (2) 2.853 (3) 158 (2)
C6—H6⋯O1ii 0.93 2.57 3.369 (4) 145
C7—H7⋯O5iii 0.93 2.56 3.287 (4) 135
C7—H7⋯O3i 0.93 2.53 3.271 (3) 137
C14—H14⋯O4iii 0.93 2.40 3.246 (4) 151
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, hydrazone compounds have attracted much attention due to their syntheses and crystal structures (Hashemian et al., 2011; Lei, 2011; Shalash et al., 2010). As a continuation of our work on such compounds (Li, 2011a,b; Li, 2012), the author reports herein on the crystal structure of the new title hydrazone compound.

The title compound (Fig. 1) exists in an E conformation with respect to the C7N1 bond. The dihedral angle between the (C1–C6) and (C9–C14) benzene rings is 2.41 (14) °.

In the crystal, molecules are linked through N–H···O hydrogen bonds to form chains along the c axis (Fig. 2 and Table 1). There are also C-H···O interactions present that link the chains to form a three-dimensional network (Table 1).

Related literature top

For the syntheses and crystal structures of hydrazone compounds, see: Hashemian et al. (2011); Lei (2011); Shalash et al. (2010). For the crystal structures of similar compounds, reported recently by the author, see: Li (2011a,b, 2012).

Experimental top

A mixture of 3-nitrobenzaldehyde (0.151 g, 1 mmol) and 4-nitrobenzohydrazide (0.181 g, 1 mmol) in 30 ml of ethanol containing few drops of acetic acid was refluxed for about 1 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from methanol. Yellow crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution of the title compound in methanol.

Refinement top

The amino H atom was located from a difference Fourier map and was freely refined. The remaining H-atoms were included in calculated positions and refined using a riding model: C–H = 0.93 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The N-H···O hydrogen bonds are indicated by dashed lines (see Table 1 for details). The C-bound H-atoms have been omitted for clarity.
(E)-4-Nitro-N'-(3-nitrobenzylidene)benzohydrazide top
Crystal data top
C14H10N4O5F(000) = 648
Mr = 314.26Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 979 reflections
a = 11.856 (2) Åθ = 2.3–26.3°
b = 14.116 (3) ŵ = 0.11 mm1
c = 8.6263 (19) ÅT = 298 K
β = 95.193 (2)°Block, yellow
V = 1437.8 (5) Å30.17 × 0.13 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2671 independent reflections
Radiation source: fine-focus sealed tube1288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.981, Tmax = 0.987k = 1716
10319 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.0424P)2]
where P = (Fo2 + 2Fc2)/3
2671 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C14H10N4O5V = 1437.8 (5) Å3
Mr = 314.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.856 (2) ŵ = 0.11 mm1
b = 14.116 (3) ÅT = 298 K
c = 8.6263 (19) Å0.17 × 0.13 × 0.12 mm
β = 95.193 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2671 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1288 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.987Rint = 0.104
10319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.18 e Å3
2671 reflectionsΔρmin = 0.16 e Å3
211 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1287 (3)1.33204 (17)0.1686 (3)0.1354 (15)
O20.2448 (3)1.26884 (18)0.0245 (4)0.1188 (15)
O30.23263 (15)0.65945 (12)0.1876 (2)0.0537 (7)
O40.4769 (3)0.3590 (2)0.3204 (4)0.1556 (18)
O50.5842 (3)0.4737 (2)0.3733 (3)0.1211 (14)
N10.17622 (18)0.83659 (16)0.0848 (2)0.0491 (8)
N20.22711 (19)0.76953 (16)0.0036 (2)0.0483 (9)
N30.1702 (3)1.2632 (2)0.1105 (4)0.0899 (16)
N40.5047 (3)0.4393 (3)0.3104 (4)0.0936 (16)
C10.1348 (2)1.00191 (19)0.1080 (3)0.0425 (10)
C20.1696 (2)1.0919 (2)0.0706 (3)0.0522 (11)
C30.1282 (3)1.1686 (2)0.1461 (4)0.0581 (12)
C40.0505 (3)1.1592 (2)0.2540 (4)0.0726 (14)
C50.0174 (3)1.0690 (2)0.2908 (4)0.0689 (12)
C60.0592 (2)0.9917 (2)0.2202 (3)0.0544 (11)
C70.1814 (2)0.9203 (2)0.0303 (3)0.0486 (10)
C80.2553 (2)0.68447 (18)0.0579 (3)0.0405 (10)
C90.3200 (2)0.62217 (18)0.0417 (3)0.0387 (9)
C100.3076 (2)0.52468 (18)0.0295 (3)0.0478 (10)
C110.3684 (3)0.4655 (2)0.1197 (4)0.0605 (11)
C120.4412 (3)0.5048 (2)0.2157 (3)0.0608 (11)
C130.4570 (2)0.5997 (2)0.2249 (3)0.0623 (12)
C140.3961 (2)0.6581 (2)0.1383 (3)0.0524 (11)
H20.220201.100400.004400.0630*
H2A0.245 (2)0.7813 (19)0.1021 (16)0.0800*
H40.021201.212000.300700.0870*
H50.034201.060700.364700.0820*
H60.036600.931300.247700.0650*
H70.215700.929800.061300.0580*
H100.259100.499300.038500.0570*
H110.359700.400200.114900.0720*
H130.508500.624600.289200.0750*
H140.406100.723300.144400.0630*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.204 (3)0.0522 (16)0.154 (3)0.0280 (19)0.039 (2)0.0131 (18)
O20.128 (3)0.0639 (18)0.169 (3)0.0092 (17)0.039 (2)0.0148 (18)
O30.0739 (14)0.0488 (12)0.0407 (11)0.0012 (10)0.0178 (10)0.0052 (10)
O40.157 (3)0.110 (2)0.196 (4)0.058 (2)0.004 (2)0.077 (3)
O50.108 (2)0.174 (3)0.083 (2)0.079 (2)0.0178 (17)0.0014 (19)
N10.0579 (15)0.0459 (15)0.0454 (14)0.0112 (12)0.0145 (12)0.0004 (12)
N20.0655 (17)0.0451 (14)0.0371 (14)0.0116 (12)0.0198 (12)0.0010 (12)
N30.116 (3)0.051 (2)0.101 (3)0.012 (2)0.000 (2)0.0029 (19)
N40.080 (3)0.125 (3)0.072 (2)0.054 (3)0.0140 (19)0.019 (2)
C10.0389 (16)0.0469 (18)0.0411 (16)0.0061 (14)0.0011 (13)0.0036 (14)
C20.0483 (19)0.0519 (19)0.0563 (19)0.0063 (15)0.0035 (15)0.0006 (15)
C30.067 (2)0.045 (2)0.061 (2)0.0126 (17)0.0010 (17)0.0018 (16)
C40.082 (3)0.062 (2)0.073 (2)0.022 (2)0.002 (2)0.0110 (19)
C50.061 (2)0.079 (2)0.068 (2)0.022 (2)0.0138 (17)0.005 (2)
C60.0494 (18)0.058 (2)0.0562 (19)0.0044 (15)0.0064 (15)0.0017 (16)
C70.0488 (18)0.0550 (19)0.0426 (17)0.0011 (15)0.0078 (14)0.0057 (15)
C80.0452 (17)0.0394 (17)0.0374 (16)0.0084 (13)0.0061 (13)0.0025 (13)
C90.0395 (16)0.0402 (16)0.0365 (15)0.0007 (13)0.0038 (13)0.0013 (13)
C100.0509 (18)0.0423 (17)0.0494 (18)0.0025 (15)0.0000 (14)0.0004 (14)
C110.066 (2)0.0439 (18)0.067 (2)0.0093 (17)0.0183 (18)0.0127 (17)
C120.059 (2)0.074 (2)0.0479 (19)0.0325 (19)0.0027 (16)0.0147 (18)
C130.059 (2)0.076 (2)0.054 (2)0.0204 (18)0.0167 (17)0.0064 (18)
C140.0540 (19)0.0489 (18)0.0566 (19)0.0053 (15)0.0176 (15)0.0063 (15)
Geometric parameters (Å, º) top
O1—N31.218 (4)C5—C61.365 (4)
O2—N31.207 (5)C8—C91.490 (4)
O3—C81.226 (3)C9—C141.379 (4)
O4—N41.181 (5)C9—C101.389 (4)
O5—N41.229 (5)C10—C111.387 (4)
N1—N21.387 (3)C11—C121.367 (5)
N1—C71.275 (4)C12—C131.356 (4)
N2—C81.343 (3)C13—C141.363 (4)
N3—C31.467 (4)C2—H20.9300
N4—C121.483 (5)C4—H40.9300
N2—H2A0.910 (16)C5—H50.9300
C1—C61.385 (4)C6—H60.9300
C1—C71.466 (4)C7—H70.9300
C1—C21.383 (4)C10—H100.9300
C2—C31.377 (4)C11—H110.9300
C3—C41.374 (5)C13—H130.9300
C4—C51.378 (4)C14—H140.9300
N2—N1—C7113.1 (2)C8—C9—C14122.0 (2)
N1—N2—C8119.87 (19)C9—C10—C11119.4 (2)
O1—N3—O2123.1 (3)C10—C11—C12119.0 (3)
O1—N3—C3118.9 (3)N4—C12—C13120.3 (3)
O2—N3—C3118.0 (3)N4—C12—C11117.4 (3)
O4—N4—O5124.5 (4)C11—C12—C13122.3 (3)
O4—N4—C12119.1 (3)C12—C13—C14118.9 (3)
O5—N4—C12116.4 (4)C9—C14—C13121.1 (3)
C8—N2—H2A117.5 (17)C1—C2—H2120.00
N1—N2—H2A122.6 (17)C3—C2—H2121.00
C2—C1—C7118.9 (2)C3—C4—H4121.00
C2—C1—C6119.0 (2)C5—C4—H4121.00
C6—C1—C7122.2 (2)C4—C5—H5120.00
C1—C2—C3119.0 (2)C6—C5—H5120.00
N3—C3—C4119.4 (3)C1—C6—H6120.00
N3—C3—C2118.3 (3)C5—C6—H6120.00
C2—C3—C4122.3 (3)N1—C7—H7119.00
C3—C4—C5117.9 (3)C1—C7—H7119.00
C4—C5—C6120.9 (3)C9—C10—H10120.00
C1—C6—C5120.9 (3)C11—C10—H10120.00
N1—C7—C1121.8 (2)C10—C11—H11120.00
O3—C8—C9121.5 (2)C12—C11—H11121.00
N2—C8—C9115.0 (2)C12—C13—H13121.00
O3—C8—N2123.4 (2)C14—C13—H13120.00
C10—C9—C14119.3 (2)C9—C14—H14119.00
C8—C9—C10118.5 (2)C13—C14—H14119.00
C7—N1—N2—C8162.4 (2)C1—C2—C3—C42.2 (5)
N2—N1—C7—C1178.7 (2)N3—C3—C4—C5176.6 (3)
N1—N2—C8—O34.4 (4)C2—C3—C4—C52.6 (5)
N1—N2—C8—C9173.9 (2)C3—C4—C5—C61.1 (5)
O1—N3—C3—C2175.1 (3)C4—C5—C6—C10.9 (5)
O1—N3—C3—C45.6 (5)O3—C8—C9—C1031.6 (4)
O2—N3—C3—C24.9 (5)O3—C8—C9—C14144.7 (3)
O2—N3—C3—C4174.3 (4)N2—C8—C9—C10150.0 (2)
O4—N4—C12—C1112.8 (5)N2—C8—C9—C1433.7 (3)
O4—N4—C12—C13167.8 (3)C8—C9—C10—C11179.1 (3)
O5—N4—C12—C11166.9 (3)C14—C9—C10—C112.7 (4)
O5—N4—C12—C1312.5 (5)C8—C9—C14—C13178.0 (2)
C6—C1—C2—C30.1 (4)C10—C9—C14—C131.8 (4)
C7—C1—C2—C3178.4 (3)C9—C10—C11—C121.6 (4)
C2—C1—C6—C51.4 (4)C10—C11—C12—N4180.0 (3)
C7—C1—C6—C5179.9 (3)C10—C11—C12—C130.7 (5)
C2—C1—C7—N1162.1 (2)N4—C12—C13—C14179.0 (3)
C6—C1—C7—N116.4 (4)C11—C12—C13—C141.7 (4)
C1—C2—C3—N3177.1 (3)C12—C13—C14—C90.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.91 (2)1.99 (2)2.853 (3)158 (2)
C6—H6···O1ii0.932.573.369 (4)145
C7—H7···O5iii0.932.563.287 (4)135
C7—H7···O3i0.932.533.271 (3)137
C14—H14···O4iii0.932.403.246 (4)151
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H10N4O5
Mr314.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.856 (2), 14.116 (3), 8.6263 (19)
β (°) 95.193 (2)
V3)1437.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.17 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
10319, 2671, 1288
Rint0.104
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.123, 0.84
No. of reflections2671
No. of parameters211
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.910 (16)1.991 (17)2.853 (3)158 (2)
C6—H6···O1ii0.932.573.369 (4)145
C7—H7···O5iii0.932.563.287 (4)135
C7—H7···O3i0.932.533.271 (3)137
C14—H14···O4iii0.932.403.246 (4)151
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z1/2.
 

Acknowledgements

The author is grateful to the Zibo Vocational Institute for supporting this work.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLei, Y. (2011). Acta Cryst. E67, o162.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, X.-Y. (2011a). Acta Cryst. E67, o1798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-Y. (2011b). Acta Cryst. E67, o2511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-Y. (2012). Acta Cryst. E68, o654.  CSD CrossRef IUCr Journals Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds