metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m341-m342

Bis[1-cyclo­propyl-6-fluoro-4-oxo-7-(1-piperazin-4-ium-1-yl)-1,4-di­hydro­quinoline-3-carboxyl­ate-κ2O3,O4]bis­­(nitrato-κO)copper(II)

aCollege of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: yangjuanai2008@126.com

(Received 19 February 2012; accepted 21 February 2012; online 29 February 2012)

In the title complex, [Cu(NO3)2(C17H18FN3O3)2], the CuII ion is located on an inversion center. It exhibits a distorted octa­hedral geometry, being coordinated by six O atoms, four from two ciprofloxacin ligand mol­ecules (L), which act as bidentate ligands, and two from two nitrate anions. In the ligand, the piperazine ring has a chair conformation and the quinoline system is essentially planar [maximum deviation = 0.097 (2) Å]. One of the nitrate O atoms is disordered over two positions [occupancy ratio = 0.51 (6):0.49 (6)]. There is a C—H⋯F inter­action in the complex. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds generating a two-dimensional network lying parallel to (111). The presence of C—H⋯O inter­actions leads to the formation of a three-dimensional structure. The title complex was prepared by hydro­thermal synthesis, and the hexa­hydrate form of this complex, synthesized by conventional methods, has been reported previously [Hernandez-Gil et al. (2009[Hernandez-Gil, J., Perello, L., Ortiz, R., Alzuet, G., Gonzalez-Alvarez, M. & Liu-Gonzalez, M. (2009). Polyhedron, 28, 138-144.]). Polyhedron, 28, 138–144].

Related literature

For general background on the use of quinolones in the treatment of infections, see: Barbas et al. (2006[Barbas, R., Martí, F., Prohens, R. & Puigjaner, C. (2006). Cryst. Growth Des. 6, 1463-1467.]); Basavoju et al. (2006[Basavoju, S., Boström, D. & Velaga, S. P. (2006). Cryst. Growth Des. 6, 2699-2708.]); Xiao et al. (2005[Xiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J. 11, 6673-6686.]). For the synthesis and crystal structure of the hexa­hydrate form of this complex, see: Hernandez-Gil et al. (2009[Hernandez-Gil, J., Perello, L., Ortiz, R., Alzuet, G., Gonzalez-Alvarez, M. & Liu-Gonzalez, M. (2009). Polyhedron, 28, 138-144.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C17H18FN3O3)2]

  • Mr = 850.25

  • Triclinic, [P \overline 1]

  • a = 8.8921 (18) Å

  • b = 9.863 (2) Å

  • c = 11.186 (2) Å

  • α = 77.62 (3)°

  • β = 81.95 (3)°

  • γ = 64.15 (3)°

  • V = 861.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 293 K

  • 0.50 × 0.48 × 0.35 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.713, Tmax = 0.785

  • 4702 measured reflections

  • 2935 independent reflections

  • 2766 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.136

  • S = 1.00

  • 2935 reflections

  • 269 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.90 1.86 2.749 (3) 170
N3—H3B⋯O4ii 0.90 2.00 2.838 (19) 155
N3—H3B⋯O6ii 0.90 2.21 2.995 (3) 146
C13—H13A⋯O4iii 0.97 2.40 3.25 (3) 147
C13—H13B⋯O5i 0.97 2.58 3.382 (3) 140
C15—H15A⋯O3iv 0.97 2.57 3.514 (3) 165
C17—H17A⋯F1 0.97 2.18 2.857 (3) 125
Symmetry codes: (i) -x, -y-1, -z+1; (ii) x-1, y, z+1; (iii) x-1, y, z; (iv) -x-1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ciprofloxacin is member of a class of quinolones used to treat infections (Barbas et al., 2006; Basavoju et al., 2006; Xiao et al. 2005). The title copper(II) complex was prepared by mixing Ciprofloxacin [cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-pip -erazinyl)-3-quinolinecarboxylic acid, L] with Cu(NO3)2 under hydrothermal conditions. The synthesis and crystal structure of the hexahydrate form of this complex have been described by (Hernandez-Gil et al., 2009). Herein, we report on the crystal structure of the title complex.

The asymmetric unit of the title compound is compossed of one CuII ion, that is located on an inversion center, one L ligand and one NO3- anion (Fig. 1). The CuII ion is coordinated by six O atoms, four from two L ligand molecules and two from two NO3- anions, in a distorted octahedral geometry. There is a C—H···F interaction in the complex. In the ligand the piperazine ring (N2,N3,C14—C17) has a chair conformation and the quinoline moiety (N1,C2—C10) is essentially planer [max. devsion = 0.097 (2) Å].

In the crystal, molecules are linked via N—H···O hydrogen bonds generating a two-dimensional network lieing parallel to (1 1 1). The presence of C—H···O interactions leads to the formation of a three-dimensional structure.

The geometrical parameters of the title compound are very similar to those of the hexhydrate form of this complex (Hernandez-Gil et al., 2009).

Related literature top

For general background on the use of quinolones in the treatment of infections, see: Barbas et al. (2006); Basavoju et al. (2006); Xiao et al. (2005). For the synthesis and crystal structure of the hexahydrate form of this complex, see: Hernandez-Gil et al. (2009).

Experimental top

A mixture of Cu(NO3)2.3H2O (0.121 g, 0.5 mmol), cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-pip -erazinyl)-3-quinolinecarboxylic acid (HL; 0.192 g, 0.5 mmol) in distilled water (7 ml), was stirred for 20 min in air. The mixture was then transferred to a 23 ml Teflon-lined hydrothermal bomb. The bomb was kept at 383 K for 72 h under autogenous pressure. Upon cooling, blue block-like crystals of the title compound were obtained from the reaction mixture.

Refinement top

The NH H atoms were located in a difference Fourier map. In the final cycles of refinement all the H atoms were included in calculated positions and refined as riding atoms: N—H = 0.90 Å, C—H = 0.97 Å, with Uiso(H) = 1.2 Ueq(N,C). One of the nitrate O atoms (O4) is disordered over two positions [occupancy ratio 0.51 (6):0.49 (6)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom numbering and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity [Symmetry code: (i) -x, -y, -z].
Bis[1-cyclopropyl-6-fluoro-4-oxo-7-(1-piperazin-4-ium-1-yl)-1,4- dihydroquinoline-3-carboxylate-κ2O3,O4]bis(nitrato- κO)copper(II) top
Crystal data top
[Cu(NO3)2(C17H18FN3O3)2]Z = 1
Mr = 850.25F(000) = 439
Triclinic, P1Dx = 1.640 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8921 (18) ÅCell parameters from 4702 reflections
b = 9.863 (2) Åθ = 1.9–25.0°
c = 11.186 (2) ŵ = 0.73 mm1
α = 77.62 (3)°T = 293 K
β = 81.95 (3)°Block, blue
γ = 64.15 (3)°0.50 × 0.48 × 0.35 mm
V = 861.1 (3) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
2935 independent reflections
Radiation source: fine-focus sealed tube2766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.713, Tmax = 0.785k = 1111
4702 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.124P)2]
where P = (Fo2 + 2Fc2)/3
2935 reflections(Δ/σ)max = 0.010
269 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(NO3)2(C17H18FN3O3)2]γ = 64.15 (3)°
Mr = 850.25V = 861.1 (3) Å3
Triclinic, P1Z = 1
a = 8.8921 (18) ÅMo Kα radiation
b = 9.863 (2) ŵ = 0.73 mm1
c = 11.186 (2) ÅT = 293 K
α = 77.62 (3)°0.50 × 0.48 × 0.35 mm
β = 81.95 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2935 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2766 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 0.785Rint = 0.026
4702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.00Δρmax = 0.43 e Å3
2935 reflectionsΔρmin = 0.34 e Å3
269 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.000000.000000.000000.0353 (2)
F10.35238 (18)0.05781 (15)0.56641 (12)0.0421 (4)
O10.0564 (2)0.19893 (19)0.03746 (15)0.0468 (5)
O20.13735 (19)0.44723 (18)0.00732 (14)0.0393 (5)
O30.12571 (19)0.03396 (17)0.14953 (13)0.0363 (5)
O40.471 (2)0.314 (4)0.2079 (17)0.121 (5)0.51 (6)
O50.2223 (3)0.2423 (4)0.2922 (2)0.1016 (12)
O60.2794 (3)0.1278 (3)0.1173 (2)0.0720 (8)
N10.14125 (19)0.43566 (19)0.32933 (15)0.0255 (5)
N20.3720 (2)0.2050 (2)0.69774 (16)0.0292 (5)
N30.4207 (3)0.2834 (2)0.95656 (17)0.0443 (6)
N40.3188 (3)0.2350 (3)0.20525 (19)0.0497 (8)
C10.0559 (2)0.3170 (2)0.03294 (18)0.0302 (6)
C20.0471 (2)0.3005 (2)0.15213 (18)0.0267 (6)
C30.1197 (2)0.1630 (2)0.20359 (18)0.0276 (6)
C40.1884 (2)0.1755 (2)0.32806 (17)0.0264 (6)
C50.2417 (3)0.0520 (2)0.39143 (19)0.0315 (6)
C60.2984 (3)0.0651 (2)0.51032 (19)0.0304 (6)
C70.3090 (2)0.2001 (2)0.57654 (18)0.0271 (6)
C80.2596 (2)0.3220 (2)0.51328 (17)0.0267 (5)
C90.1994 (2)0.3108 (2)0.39076 (17)0.0237 (5)
C100.0668 (2)0.4268 (2)0.21705 (17)0.0271 (6)
C110.1454 (2)0.5794 (2)0.39316 (18)0.0283 (6)
C120.1739 (3)0.6783 (3)0.3222 (2)0.0432 (8)
C130.3071 (3)0.5953 (3)0.4123 (2)0.0376 (7)
C140.4089 (3)0.3377 (3)0.75118 (19)0.0328 (7)
C150.5121 (3)0.3117 (3)0.8697 (2)0.0410 (7)
C160.3878 (3)0.1462 (3)0.9029 (2)0.0420 (7)
C170.2872 (3)0.1690 (3)0.78328 (19)0.0347 (6)
O4A0.449 (3)0.3490 (11)0.1929 (13)0.089 (5)0.49 (6)
H3B0.482000.268601.027600.0530*
H5A0.238000.039500.351300.0380*
H3A0.323100.365600.972400.0530*
H10A0.025100.513200.180300.0330*
H11A0.068100.634300.459400.0340*
H12A0.113200.788300.344300.0520*
H12B0.192800.641200.235600.0520*
H13A0.406200.508300.379900.0450*
H13B0.326600.655400.488600.0450*
H14A0.305100.428500.766100.0390*
H14B0.469500.354000.694000.0390*
H15A0.618800.224400.854300.0490*
H15B0.533600.400800.905300.0490*
H16A0.327000.129300.959600.0500*
H16B0.493100.056700.889600.0500*
H17A0.272400.076800.746700.0420*
H17B0.177300.251900.798000.0420*
H8A0.266800.412000.553300.0320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0494 (3)0.0258 (3)0.0272 (3)0.0183 (2)0.0170 (2)0.0044 (2)
F10.0648 (8)0.0285 (7)0.0343 (7)0.0209 (6)0.0109 (6)0.0136 (5)
O10.0742 (11)0.0322 (9)0.0315 (8)0.0263 (9)0.0212 (8)0.0074 (7)
O20.0513 (9)0.0299 (8)0.0326 (8)0.0148 (7)0.0116 (7)0.0113 (6)
O30.0487 (8)0.0213 (8)0.0304 (8)0.0131 (7)0.0152 (6)0.0018 (6)
O40.064 (5)0.163 (13)0.055 (4)0.015 (7)0.000 (3)0.005 (8)
O50.0879 (17)0.178 (3)0.0495 (13)0.0775 (19)0.0127 (12)0.0038 (16)
O60.0717 (13)0.0698 (15)0.0623 (13)0.0261 (12)0.0013 (11)0.0021 (11)
N10.0326 (8)0.0233 (9)0.0226 (8)0.0148 (7)0.0013 (6)0.0028 (6)
N20.0388 (9)0.0288 (9)0.0221 (8)0.0178 (8)0.0051 (7)0.0053 (7)
N30.0597 (12)0.0404 (11)0.0237 (9)0.0153 (10)0.0072 (8)0.0059 (8)
N40.0666 (14)0.0604 (16)0.0317 (11)0.0352 (13)0.0028 (10)0.0082 (10)
C10.0362 (10)0.0317 (11)0.0246 (10)0.0165 (9)0.0020 (8)0.0059 (8)
C20.0314 (9)0.0259 (10)0.0228 (10)0.0133 (8)0.0009 (7)0.0029 (7)
C30.0300 (9)0.0243 (10)0.0260 (10)0.0110 (8)0.0014 (8)0.0018 (8)
C40.0304 (9)0.0223 (10)0.0250 (10)0.0116 (8)0.0017 (8)0.0019 (8)
C50.0417 (10)0.0237 (10)0.0302 (10)0.0177 (9)0.0027 (8)0.0008 (8)
C60.0389 (10)0.0258 (11)0.0279 (10)0.0148 (9)0.0029 (8)0.0077 (8)
C70.0286 (9)0.0301 (11)0.0237 (10)0.0137 (9)0.0020 (7)0.0059 (8)
C80.0327 (9)0.0270 (10)0.0220 (9)0.0160 (9)0.0004 (7)0.0004 (7)
C90.0268 (9)0.0224 (10)0.0228 (9)0.0119 (8)0.0009 (7)0.0028 (7)
C100.0311 (9)0.0258 (10)0.0247 (10)0.0123 (8)0.0022 (8)0.0064 (8)
C110.0353 (10)0.0239 (11)0.0279 (10)0.0156 (9)0.0010 (8)0.0038 (8)
C120.0637 (14)0.0417 (13)0.0394 (12)0.0367 (12)0.0117 (11)0.0148 (10)
C130.0439 (12)0.0423 (13)0.0343 (11)0.0290 (11)0.0060 (9)0.0033 (9)
C140.0410 (11)0.0338 (12)0.0267 (11)0.0208 (10)0.0035 (8)0.0036 (9)
C150.0488 (12)0.0411 (13)0.0314 (11)0.0231 (11)0.0090 (10)0.0006 (9)
C160.0591 (13)0.0348 (12)0.0294 (11)0.0160 (11)0.0017 (10)0.0107 (9)
C170.0457 (11)0.0331 (11)0.0279 (10)0.0177 (10)0.0016 (9)0.0101 (8)
O4A0.132 (11)0.040 (7)0.050 (5)0.006 (4)0.011 (5)0.004 (3)
Geometric parameters (Å, º) top
Cu1—O11.9267 (18)C4—C51.408 (3)
Cu1—O31.9293 (16)C4—C91.406 (3)
Cu1—O62.637 (3)C5—C61.355 (3)
Cu1—O1i1.9267 (18)C6—C71.413 (3)
Cu1—O3i1.9293 (16)C7—C81.399 (3)
Cu1—O6i2.637 (3)C8—C91.399 (3)
F1—C61.352 (2)C11—C131.495 (4)
O1—C11.260 (3)C11—C121.500 (3)
O2—C11.243 (2)C12—C131.504 (4)
O3—C31.268 (2)C14—C151.505 (3)
O4—N41.23 (3)C16—C171.503 (3)
O4A—N41.229 (17)C5—H5A0.9300
O5—N41.216 (4)C8—H8A0.9300
O6—N41.239 (3)C10—H10A0.9300
N1—C91.402 (3)C11—H11A0.9800
N1—C111.458 (3)C12—H12A0.9700
N1—C101.339 (3)C12—H12B0.9700
N2—C71.392 (3)C13—H13A0.9700
N2—C141.470 (3)C13—H13B0.9700
N2—C171.480 (3)C14—H14A0.9700
N3—C151.489 (4)C14—H14B0.9700
N3—C161.492 (3)C15—H15A0.9700
N3—H3A0.9000C15—H15B0.9700
N3—H3B0.9000C16—H16A0.9700
C1—C21.505 (3)C16—H16B0.9700
C2—C101.370 (3)C17—H17A0.9700
C2—C31.433 (3)C17—H17B0.9700
C3—C41.443 (3)
O1—Cu1—O393.27 (8)C7—C8—C9121.13 (17)
O1—Cu1—O686.89 (9)N1—C9—C4118.31 (17)
O1—Cu1—O1i180.00C4—C9—C8120.46 (17)
O1—Cu1—O3i86.74 (8)N1—C9—C8121.16 (17)
O1—Cu1—O6i93.11 (9)N1—C10—C2125.14 (18)
O3—Cu1—O690.88 (8)N1—C11—C13119.88 (18)
O1i—Cu1—O386.74 (8)N1—C11—C12119.26 (17)
O3—Cu1—O3i180.00C12—C11—C1360.31 (16)
O3—Cu1—O6i89.12 (8)C11—C12—C1359.67 (17)
O1i—Cu1—O693.11 (9)C11—C13—C1260.02 (17)
O3i—Cu1—O689.12 (8)N2—C14—C15110.3 (2)
O6—Cu1—O6i180.00N3—C15—C14109.6 (2)
O1i—Cu1—O3i93.27 (8)N3—C16—C17110.1 (2)
O1i—Cu1—O6i86.89 (9)N2—C17—C16110.8 (2)
O3i—Cu1—O6i90.88 (8)C4—C5—H5A120.00
Cu1—O1—C1129.10 (15)C6—C5—H5A120.00
Cu1—O3—C3125.15 (14)C7—C8—H8A119.00
Cu1—O6—N4127.7 (2)C9—C8—H8A119.00
C9—N1—C10119.56 (17)N1—C10—H10A117.00
C9—N1—C11119.69 (16)C2—C10—H10A117.00
C10—N1—C11120.40 (16)N1—C11—H11A115.00
C7—N2—C14115.73 (17)C12—C11—H11A115.00
C7—N2—C17116.41 (19)C13—C11—H11A115.00
C14—N2—C17112.28 (18)C11—C12—H12A118.00
C15—N3—C16110.14 (18)C11—C12—H12B118.00
O4—N4—O5122.7 (10)C13—C12—H12A118.00
O4—N4—O6113.2 (11)C13—C12—H12B118.00
O5—N4—O6122.6 (3)H12A—C12—H12B115.00
O4A—N4—O5118.8 (8)C11—C13—H13A118.00
O4A—N4—O6117.4 (7)C11—C13—H13B118.00
C15—N3—H3B110.00C12—C13—H13A118.00
C16—N3—H3A110.00C12—C13—H13B118.00
C15—N3—H3A110.00H13A—C13—H13B115.00
H3A—N3—H3B108.00N2—C14—H14A110.00
C16—N3—H3B110.00N2—C14—H14B110.00
O1—C1—C2119.11 (17)C15—C14—H14A110.00
O1—C1—O2122.29 (19)C15—C14—H14B110.00
O2—C1—C2118.60 (17)H14A—C14—H14B108.00
C3—C2—C10118.39 (18)N3—C15—H15A110.00
C1—C2—C3123.98 (17)N3—C15—H15B110.00
C1—C2—C10117.58 (17)C14—C15—H15A110.00
C2—C3—C4116.32 (17)C14—C15—H15B110.00
O3—C3—C2125.45 (18)H15A—C15—H15B108.00
O3—C3—C4118.23 (17)N3—C16—H16A110.00
C3—C4—C9121.71 (17)N3—C16—H16B110.00
C3—C4—C5120.11 (18)C17—C16—H16A110.00
C5—C4—C9118.15 (18)C17—C16—H16B110.00
C4—C5—C6120.65 (19)H16A—C16—H16B108.00
F1—C6—C5118.54 (18)N2—C17—H17A110.00
C5—C6—C7122.64 (18)N2—C17—H17B110.00
F1—C6—C7118.78 (18)C16—C17—H17A109.00
N2—C7—C8123.21 (18)C16—C17—H17B110.00
N2—C7—C6119.81 (17)H17A—C17—H17B108.00
C6—C7—C8116.94 (18)
O3—Cu1—O1—C120.0 (2)C16—N3—C15—C1459.7 (3)
O6—Cu1—O1—C170.7 (2)C15—N3—C16—C1758.6 (3)
O3i—Cu1—O1—C1160.0 (2)O1—C1—C2—C312.9 (3)
O6i—Cu1—O1—C1109.3 (2)O1—C1—C2—C10169.7 (2)
O1—Cu1—O3—C315.06 (19)O2—C1—C2—C3167.3 (2)
O6—Cu1—O3—C371.87 (18)O2—C1—C2—C1010.1 (3)
O1i—Cu1—O3—C3164.94 (19)C1—C2—C3—O39.7 (3)
O6i—Cu1—O3—C3108.13 (18)C1—C2—C3—C4169.18 (18)
O1—Cu1—O6—N459.5 (2)C10—C2—C3—O3172.9 (2)
O3—Cu1—O6—N433.7 (2)C10—C2—C3—C48.3 (3)
O1i—Cu1—O6—N4120.5 (2)C1—C2—C10—N1173.62 (19)
O3i—Cu1—O6—N4146.3 (2)C3—C2—C10—N14.0 (3)
Cu1—O1—C1—O2159.28 (17)O3—C3—C4—C57.5 (3)
Cu1—O1—C1—C220.9 (3)O3—C3—C4—C9174.55 (19)
Cu1—O3—C3—C213.6 (3)C2—C3—C4—C5171.5 (2)
Cu1—O3—C3—C4165.31 (14)C2—C3—C4—C96.5 (3)
Cu1—O6—N4—O4149.8 (15)C3—C4—C5—C6176.6 (2)
Cu1—O6—N4—O544.3 (4)C9—C4—C5—C61.4 (4)
C10—N1—C9—C44.7 (3)C3—C4—C9—N10.1 (3)
C10—N1—C9—C8172.32 (19)C3—C4—C9—C8177.10 (19)
C11—N1—C9—C4177.84 (18)C5—C4—C9—N1177.9 (2)
C11—N1—C9—C80.9 (3)C5—C4—C9—C80.9 (3)
C9—N1—C10—C22.8 (3)C4—C5—C6—F1178.3 (2)
C11—N1—C10—C2175.92 (19)C4—C5—C6—C70.6 (4)
C9—N1—C11—C12147.5 (2)F1—C6—C7—N20.9 (3)
C9—N1—C11—C1376.9 (2)F1—C6—C7—C8176.9 (2)
C10—N1—C11—C1239.4 (3)C5—C6—C7—N2178.5 (2)
C10—N1—C11—C13110.0 (2)C5—C6—C7—C80.7 (4)
C14—N2—C7—C6168.5 (2)N2—C7—C8—C9178.99 (19)
C14—N2—C7—C89.2 (3)C6—C7—C8—C91.3 (3)
C17—N2—C7—C656.3 (3)C7—C8—C9—N1176.45 (19)
C17—N2—C7—C8126.0 (2)C7—C8—C9—C40.5 (3)
C7—N2—C14—C15166.8 (2)N1—C11—C12—C13109.8 (2)
C17—N2—C14—C1556.3 (3)N1—C11—C13—C12108.7 (2)
C7—N2—C17—C16168.18 (19)N2—C14—C15—N358.1 (3)
C14—N2—C17—C1655.2 (3)N3—C16—C17—N255.6 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2ii0.901.862.749 (3)170
N3—H3B···O4iii0.902.002.838 (19)155
N3—H3B···O6iii0.902.212.995 (3)146
C13—H13A···O4iv0.972.403.25 (3)147
C13—H13B···O5ii0.972.583.382 (3)140
C15—H15A···O3v0.972.573.514 (3)165
C17—H17A···F10.972.182.857 (3)125
Symmetry codes: (ii) x, y1, z+1; (iii) x1, y, z+1; (iv) x1, y, z; (v) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C17H18FN3O3)2]
Mr850.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8921 (18), 9.863 (2), 11.186 (2)
α, β, γ (°)77.62 (3), 81.95 (3), 64.15 (3)
V3)861.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.50 × 0.48 × 0.35
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.713, 0.785
No. of measured, independent and
observed [I > 2σ(I)] reflections
4702, 2935, 2766
Rint0.026
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.136, 1.00
No. of reflections2935
No. of parameters269
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.901.862.749 (3)170
N3—H3B···O4ii0.902.002.838 (19)155
N3—H3B···O6ii0.902.212.995 (3)146
C13—H13A···O4iii0.972.403.25 (3)147
C13—H13B···O5i0.972.583.382 (3)140
C15—H15A···O3iv0.972.573.514 (3)165
C17—H17A···F10.972.182.857 (3)125
Symmetry codes: (i) x, y1, z+1; (ii) x1, y, z+1; (iii) x1, y, z; (iv) x1, y, z+1.
 

Acknowledgements

This work was financially supported by the Science and Technology Foundation of Southwest University (grant No. SWUB2007035) and the Science and Technology Innovation Foundation for Students of Southwest University.

References

First citationBarbas, R., Martí, F., Prohens, R. & Puigjaner, C. (2006). Cryst. Growth Des. 6, 1463–1467.  Web of Science CrossRef CAS Google Scholar
First citationBasavoju, S., Boström, D. & Velaga, S. P. (2006). Cryst. Growth Des. 6, 2699–2708.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHernandez-Gil, J., Perello, L., Ortiz, R., Alzuet, G., Gonzalez-Alvarez, M. & Liu-Gonzalez, M. (2009). Polyhedron, 28, 138–144.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J. 11, 6673–6686.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m341-m342
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds