organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-6′H,7′H,8′H-spiro­[indoline-3,7′-pyrano[3,2-c:5,6-c′]di-1-benzo­pyran]-2,6′,8′-trione

aDepartment of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, and bDepartment of Physics, Madura College, Madurai 625 011, India
*Correspondence e-mail: ambujasureshj@yahoo.com

(Received 5 February 2012; accepted 13 February 2012; online 17 February 2012)

In the title compound, C26H12FNO6, the central pyran ring and both benzopyran systems are nonplanar, having total puckering amplitudes of 0.139 (2), 0.050 (1) and 0.112 (2) Å, respectively. The central pyran ring adopts a boat conformation. The crystal structure is stabilized by C—H⋯O, N—H⋯O, N—H⋯F and C—H⋯π inter­actions.

Related literature

For the background to benzopyran derivatives, see: Martin & Critchlow (1999[Martin, E. J. & Critchlow, R. E. (1999). J. Combin. Chem. 1, 32-45.]); Teague & Davis (1999[Teague, S. J. & Davis, A. M. (1999). Angew. Chem. Int. Ed. 38, 3743-3748.]); Joshi & Jain (1985[Joshi, K. C. & Jain, R. (1985). Heterocycles, 23, 957-996.]); Ninamiya (1980[Ninamiya, K. (1980). Jpn Patent No. 80164683.]); Kobayashi & Matsuda (1970[Kobayashi, G. & Matsuda, Y. (1970). Jpn Patent No. 7025894.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H12FNO6

  • Mr = 453.37

  • Triclinic, [P \overline 1]

  • a = 7.8262 (1) Å

  • b = 10.9278 (1) Å

  • c = 12.4067 (2) Å

  • α = 113.374 (1)°

  • β = 94.922 (1)°

  • γ = 100.295 (1)°

  • V = 943.77 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.978

  • 15720 measured reflections

  • 5504 independent reflections

  • 4486 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.04

  • 5504 reflections

  • 311 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C41–C46 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C45—H45⋯O5i 0.93 2.50 3.2564 (18) 139
C22—H22⋯O6ii 0.93 2.46 3.2205 (17) 139
C66—H66⋯O6ii 0.93 2.50 3.2921 (17) 144
C64—H64⋯O3iii 0.93 2.49 3.2641 (18) 141
C25—H25⋯Cg1iv 0.93 2.65 3.5482 (17) 163
N1—H1⋯F1v 0.86 (2) 2.15 (2) 2.810 (2) 134 (2)
N1—H1⋯O5i 0.86 (2) 2.51 (2) 3.208 (2) 140 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) x+1, y+1, z; (iv) -x, -y, -z; (v) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzopyran is a structural motif observed in many biologically active natural products and it plays an important role in binding to various biopolymers (Martin & Critchlow, 1999; Teague & Davis, 1999). Spiro indoles are also known for their broad spectrum of biological activities (Joshi & Jain, 1985). Of the various spiro indoles, the spiro[indole-pyran] system has attracted attention owing to its interesting pharmacological properties (Ninamiya, 1980; Kobayashi & Matsuda, 1970). The biological importance of these heterocycles in conjunction with our research interests, prompted us to synthesize and report the X-ray structure of the title compound, (I).

In (I), Fig. 1, the central pyrano ring A (O1–C6) and both the benzopyran rings B (C5/C6/C61–C66/O4/C51), C (C3/C3/C21–C26/O2/C31) are non-planar, having total puckering amplitudes, QT, of 0.139 (2), 0.050 (1) and 0.112 (2) Å, respectively. The central pyrano ring adopts a boat conformation [Φ = 357.6 (6)° and θ = 109.0 (6)°]. In the indolin-2-one system, the benzene and pyrrole rings are individually planar and make a dihedral angle of 2.20 (1)°. The indoline-2-one system is in a perpendicular configuration with respect to the pyrano ring, as can be seen from the dihedral angle [89.83 (2)°]. The sum of the angles at atom N1 of the indolin-2-one moiety is in accordance with sp2-hybridization [359.41 (2)°].

The N1—H1···O5 hydrogen bonds connect two centrosymmetrically related molecules and generate the graph set motif R22(14) (Bernstein et al., 1995). The centrosymmetric dimers are interconnected into zig-zag linear chain of C—H···O hydrogen bonds and the molecules form a layered structure (Fig. 2). In addition, there is a weak C—H···π interaction, viz. C25—H25···Cg1 (Cg1 is the centroid of the ring C41–C46; symmetry codes are given in Table 1).

Related literature top

For the background to benzopyran derivatives, see: Martin & Critchlow (1999); Teague & Davis (1999); Joshi & Jain (1985); Ninamiya (1980); Kobayashi & Matsuda (1970). For hydrogen-bonding motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 5-fluoroindoline-2,3-dione (0.100 g, 0.60 mmol), 4-hydroxy-2H-chromen-2-one (0.194 g, 1.20 mmol), and paratoluene sulfonic acid (0.114 g, 0.60 mmol) were dissolved in 5 ml of ethanol:water (1:1 v/v) and refluxed for 2 h. After completion of the reaction as evident from TLC, the precipitated solid was filtered and washed with water to afford the product which was recrystallized from ethanol to provide colourless crystals. Yield 72%, m.p. 541–543 K.

Refinement top

The N1—H atom was located in a difference map and refined with an N—H distance restraint of 0.86±0.01 Å. The C-bound H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93 Å,and with Uiso = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A packing diagram for (I).
5-Fluoro-6'H,7'H,8'H-spiro[indoline-3,7'- pyrano[3,2-c:5,6-c']di-1-benzopyran]-2,6',8'-trione top
Crystal data top
C26H12FNO6Z = 2
Mr = 453.37F(000) = 464
Triclinic, P1Dx = 1.595 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8262 (1) ÅCell parameters from 2000 reflections
b = 10.9278 (1) Åθ = 2–31°
c = 12.4067 (2) ŵ = 0.12 mm1
α = 113.374 (1)°T = 293 K
β = 94.922 (1)°Block, colourless
γ = 100.295 (1)°0.23 × 0.21 × 0.18 mm
V = 943.77 (2) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
5504 independent reflections
Radiation source: fine-focus sealed tube4486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 0 pixels mm-1θmax = 30.1°, θmin = 1.8°
ω and ϕ scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1515
Tmin = 0.973, Tmax = 0.978l = 1712
15720 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.4439P]
where P = (Fo2 + 2Fc2)/3
5504 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.46 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C26H12FNO6γ = 100.295 (1)°
Mr = 453.37V = 943.77 (2) Å3
Triclinic, P1Z = 2
a = 7.8262 (1) ÅMo Kα radiation
b = 10.9278 (1) ŵ = 0.12 mm1
c = 12.4067 (2) ÅT = 293 K
α = 113.374 (1)°0.23 × 0.21 × 0.18 mm
β = 94.922 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
5504 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4486 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.978Rint = 0.023
15720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
5504 reflectionsΔρmin = 0.29 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.122 (2)0.3850 (19)0.4085 (15)0.025 (5)*
C20.12458 (17)0.34311 (13)0.00317 (11)0.0140 (2)
C30.05623 (17)0.31770 (13)0.08465 (11)0.0135 (2)
C40.09926 (16)0.42071 (13)0.21373 (11)0.0128 (2)
C50.18729 (17)0.55860 (13)0.21847 (11)0.0139 (2)
C60.24834 (17)0.57319 (13)0.12440 (11)0.0139 (2)
C210.09810 (17)0.23914 (13)0.12381 (11)0.0148 (2)
C220.17434 (19)0.25796 (14)0.21611 (12)0.0172 (3)
H220.24070.34360.20340.021*
C230.15001 (19)0.14852 (15)0.32576 (12)0.0191 (3)
H230.20160.16040.38680.023*
C240.0486 (2)0.01981 (15)0.34611 (12)0.0199 (3)
H240.03440.05330.42030.024*
C250.03060 (19)0.00031 (14)0.25711 (12)0.0194 (3)
H250.10020.08470.27110.023*
C260.00412 (17)0.11020 (14)0.14632 (12)0.0156 (3)
C310.05619 (17)0.18354 (14)0.05589 (12)0.0152 (2)
C410.21280 (17)0.37727 (13)0.29163 (11)0.0130 (2)
C420.37794 (17)0.34883 (13)0.28347 (12)0.0155 (3)
H420.43870.35450.22380.019*
C430.44766 (17)0.31133 (14)0.36932 (12)0.0164 (3)
C440.36544 (18)0.30651 (14)0.46197 (12)0.0168 (3)
H440.42030.28410.51880.020*
C450.19881 (18)0.33555 (13)0.46972 (12)0.0156 (3)
H450.14050.33340.53140.019*
C460.12383 (17)0.36764 (13)0.38189 (11)0.0134 (2)
C480.07059 (17)0.42709 (13)0.27287 (11)0.0140 (2)
C510.21637 (17)0.67890 (13)0.33197 (12)0.0157 (3)
C610.34501 (17)0.70292 (14)0.13272 (12)0.0151 (2)
C620.37581 (17)0.81431 (14)0.24372 (12)0.0162 (3)
C630.47226 (19)0.94335 (14)0.26308 (13)0.0196 (3)
H630.49161.01660.33770.024*
C640.53871 (19)0.96018 (15)0.16875 (13)0.0198 (3)
H640.60451.04550.18030.024*
C650.50796 (19)0.85014 (15)0.05598 (13)0.0195 (3)
H650.55250.86320.00680.023*
C660.41184 (18)0.72236 (14)0.03748 (12)0.0173 (3)
H660.39140.64960.03750.021*
N10.04170 (15)0.39656 (12)0.36839 (10)0.0140 (2)
O10.22685 (13)0.46733 (10)0.01416 (8)0.0159 (2)
O20.08257 (13)0.08560 (10)0.05945 (8)0.0167 (2)
O30.12795 (14)0.15262 (10)0.12640 (9)0.0195 (2)
O40.31252 (13)0.80145 (10)0.33995 (9)0.0180 (2)
O50.16406 (14)0.67882 (10)0.42086 (9)0.0194 (2)
O60.20150 (13)0.45589 (10)0.23875 (9)0.0168 (2)
F10.60614 (11)0.27654 (9)0.36098 (8)0.02124 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0134 (6)0.0131 (6)0.0156 (6)0.0008 (4)0.0019 (4)0.0072 (5)
C30.0134 (6)0.0124 (6)0.0142 (6)0.0009 (4)0.0018 (4)0.0060 (5)
C40.0124 (5)0.0129 (6)0.0132 (5)0.0006 (4)0.0022 (4)0.0066 (5)
C50.0134 (6)0.0135 (6)0.0142 (6)0.0013 (4)0.0013 (4)0.0062 (5)
C60.0128 (6)0.0130 (6)0.0145 (6)0.0012 (4)0.0013 (4)0.0054 (5)
C210.0159 (6)0.0150 (6)0.0139 (6)0.0036 (5)0.0018 (4)0.0065 (5)
C220.0205 (6)0.0170 (6)0.0165 (6)0.0032 (5)0.0028 (5)0.0101 (5)
C230.0233 (7)0.0214 (7)0.0144 (6)0.0047 (5)0.0043 (5)0.0095 (5)
C240.0264 (7)0.0169 (6)0.0139 (6)0.0040 (5)0.0003 (5)0.0051 (5)
C250.0226 (7)0.0147 (6)0.0178 (6)0.0015 (5)0.0009 (5)0.0059 (5)
C260.0146 (6)0.0167 (6)0.0157 (6)0.0021 (5)0.0014 (5)0.0080 (5)
C310.0144 (6)0.0151 (6)0.0157 (6)0.0023 (5)0.0017 (4)0.0067 (5)
C410.0142 (6)0.0113 (5)0.0122 (5)0.0000 (4)0.0009 (4)0.0050 (4)
C420.0146 (6)0.0147 (6)0.0164 (6)0.0010 (5)0.0029 (5)0.0066 (5)
C430.0117 (6)0.0148 (6)0.0209 (6)0.0014 (5)0.0009 (5)0.0068 (5)
C440.0172 (6)0.0157 (6)0.0173 (6)0.0017 (5)0.0010 (5)0.0085 (5)
C450.0176 (6)0.0142 (6)0.0138 (6)0.0017 (5)0.0019 (5)0.0058 (5)
C460.0136 (6)0.0125 (6)0.0132 (5)0.0013 (4)0.0025 (4)0.0051 (4)
C480.0147 (6)0.0125 (6)0.0138 (5)0.0007 (4)0.0026 (4)0.0055 (5)
C510.0150 (6)0.0140 (6)0.0166 (6)0.0003 (5)0.0010 (5)0.0066 (5)
C610.0136 (6)0.0153 (6)0.0173 (6)0.0017 (5)0.0016 (5)0.0086 (5)
C620.0150 (6)0.0157 (6)0.0183 (6)0.0012 (5)0.0032 (5)0.0084 (5)
C630.0195 (6)0.0159 (6)0.0209 (6)0.0011 (5)0.0029 (5)0.0066 (5)
C640.0192 (6)0.0163 (6)0.0256 (7)0.0000 (5)0.0042 (5)0.0122 (6)
C650.0180 (6)0.0204 (7)0.0227 (7)0.0018 (5)0.0048 (5)0.0126 (6)
C660.0181 (6)0.0175 (6)0.0170 (6)0.0018 (5)0.0029 (5)0.0090 (5)
N10.0130 (5)0.0165 (5)0.0142 (5)0.0029 (4)0.0043 (4)0.0080 (4)
O10.0200 (5)0.0127 (4)0.0133 (4)0.0008 (4)0.0042 (3)0.0055 (4)
O20.0186 (5)0.0141 (4)0.0153 (4)0.0010 (4)0.0031 (4)0.0062 (4)
O30.0216 (5)0.0177 (5)0.0188 (5)0.0001 (4)0.0049 (4)0.0090 (4)
O40.0216 (5)0.0141 (4)0.0157 (4)0.0015 (4)0.0047 (4)0.0055 (4)
O50.0223 (5)0.0189 (5)0.0149 (4)0.0007 (4)0.0045 (4)0.0063 (4)
O60.0150 (4)0.0181 (5)0.0186 (5)0.0037 (4)0.0022 (3)0.0092 (4)
F10.0125 (4)0.0252 (4)0.0288 (5)0.0054 (3)0.0035 (3)0.0138 (4)
Geometric parameters (Å, º) top
C2—C31.3555 (18)C41—C461.3968 (18)
C2—O11.3712 (16)C42—C431.3880 (18)
C2—C211.4448 (18)C42—H420.9300
C3—C311.4563 (18)C43—F11.3612 (15)
C3—C41.5122 (17)C43—C441.379 (2)
C4—C51.5167 (18)C44—C451.3985 (19)
C4—C411.5219 (17)C44—H440.9300
C4—C481.5716 (18)C45—C461.3862 (18)
C5—C61.3535 (18)C45—H450.9300
C5—C511.4602 (18)C46—N11.3990 (16)
C6—O11.3685 (16)C48—O61.2144 (16)
C6—C611.4423 (18)C48—N11.3643 (17)
C21—C261.3963 (19)C51—O51.2091 (17)
C21—C221.4036 (19)C51—O41.3753 (16)
C22—C231.3785 (19)C61—C621.3944 (19)
C22—H220.9300C61—C661.4071 (19)
C23—C241.399 (2)C62—O41.3785 (16)
C23—H230.9300C62—C631.3913 (19)
C24—C251.381 (2)C63—C641.384 (2)
C24—H240.9300C63—H630.9300
C25—C261.3881 (19)C64—C651.402 (2)
C25—H250.9300C64—H640.9300
C26—O21.3767 (16)C65—C661.3817 (19)
C31—O31.2025 (17)C65—H650.9300
C31—O21.3751 (16)C66—H660.9300
C41—C421.3851 (18)N1—H10.855 (9)
C3—C2—O1123.63 (12)C43—C42—H42121.9
C3—C2—C21122.30 (12)F1—C43—C44118.16 (12)
O1—C2—C21114.06 (11)F1—C43—C42117.95 (12)
C2—C3—C31119.28 (12)C44—C43—C42123.88 (12)
C2—C3—C4122.74 (11)C43—C44—C45119.46 (12)
C31—C3—C4117.91 (11)C43—C44—H44120.3
C3—C4—C5108.11 (10)C45—C44—H44120.3
C3—C4—C41112.55 (10)C46—C45—C44117.45 (12)
C5—C4—C41111.75 (10)C46—C45—H45121.3
C3—C4—C48111.18 (10)C44—C45—H45121.3
C5—C4—C48112.06 (10)C45—C46—C41122.00 (12)
C41—C4—C48101.17 (10)C45—C46—N1128.16 (12)
C6—C5—C51119.03 (12)C41—C46—N1109.83 (11)
C6—C5—C4122.84 (12)O6—C48—N1127.29 (13)
C51—C5—C4118.03 (11)O6—C48—C4125.09 (12)
C5—C6—O1123.61 (12)N1—C48—C4107.61 (11)
C5—C6—C61122.40 (12)O5—C51—O4117.02 (12)
O1—C6—C61113.99 (11)O5—C51—C5124.82 (12)
C26—C21—C22118.97 (12)O4—C51—C5118.15 (12)
C26—C21—C2116.49 (12)C62—C61—C66118.90 (12)
C22—C21—C2124.47 (12)C62—C61—C6116.85 (12)
C23—C22—C21119.45 (13)C66—C61—C6124.23 (12)
C23—C22—H22120.3O4—C62—C63116.74 (12)
C21—C22—H22120.3O4—C62—C61121.41 (12)
C22—C23—C24120.67 (13)C63—C62—C61121.85 (13)
C22—C23—H23119.7C64—C63—C62118.45 (13)
C24—C23—H23119.7C64—C63—H63120.8
C25—C24—C23120.62 (13)C62—C63—H63120.8
C25—C24—H24119.7C63—C64—C65120.78 (13)
C23—C24—H24119.7C63—C64—H64119.6
C24—C25—C26118.62 (13)C65—C64—H64119.6
C24—C25—H25120.7C66—C65—C64120.39 (13)
C26—C25—H25120.7C66—C65—H65119.8
O2—C26—C25116.72 (12)C64—C65—H65119.8
O2—C26—C21121.62 (12)C65—C66—C61119.62 (13)
C25—C26—C21121.66 (13)C65—C66—H66120.2
O3—C31—O2117.67 (12)C61—C66—H66120.2
O3—C31—C3124.30 (12)C48—N1—C46112.25 (11)
O2—C31—C3118.03 (12)C48—N1—H1123.1 (13)
C42—C41—C46120.82 (12)C46—N1—H1124.1 (13)
C42—C41—C4130.10 (12)C6—O1—C2117.29 (10)
C46—C41—C4109.08 (11)C31—O2—C26122.11 (11)
C41—C42—C43116.28 (12)C51—O4—C62122.08 (11)
C41—C42—H42121.9
O1—C2—C3—C31177.76 (11)C42—C43—C44—C452.5 (2)
C21—C2—C3—C313.55 (19)C43—C44—C45—C460.25 (19)
O1—C2—C3—C45.5 (2)C44—C45—C46—C412.90 (19)
C21—C2—C3—C4173.14 (11)C44—C45—C46—N1178.11 (12)
C2—C3—C4—C513.71 (17)C42—C41—C46—C452.91 (19)
C31—C3—C4—C5169.55 (11)C4—C41—C46—C45177.21 (12)
C2—C3—C4—C41110.20 (14)C42—C41—C46—N1177.93 (11)
C31—C3—C4—C4166.54 (15)C4—C41—C46—N11.94 (14)
C2—C3—C4—C48137.11 (13)C3—C4—C48—O659.04 (17)
C31—C3—C4—C4846.15 (15)C5—C4—C48—O662.07 (16)
C3—C4—C5—C613.18 (17)C41—C4—C48—O6178.75 (12)
C41—C4—C5—C6111.21 (14)C3—C4—C48—N1121.75 (11)
C48—C4—C5—C6136.05 (13)C5—C4—C48—N1117.14 (11)
C3—C4—C5—C51170.66 (11)C41—C4—C48—N12.04 (13)
C41—C4—C5—C5164.95 (15)C6—C5—C51—O5178.02 (13)
C48—C4—C5—C5147.79 (15)C4—C5—C51—O55.7 (2)
C51—C5—C6—O1179.49 (11)C6—C5—C51—O43.06 (18)
C4—C5—C6—O14.4 (2)C4—C5—C51—O4173.26 (11)
C51—C5—C6—C611.49 (19)C5—C6—C61—C620.86 (19)
C4—C5—C6—C61174.63 (11)O1—C6—C61—C62178.25 (11)
C3—C2—C21—C260.75 (19)C5—C6—C61—C66179.52 (12)
O1—C2—C21—C26179.55 (11)O1—C6—C61—C660.41 (19)
C3—C2—C21—C22176.13 (12)C66—C61—C62—O4179.57 (12)
O1—C2—C21—C222.68 (18)C6—C61—C62—O41.69 (19)
C26—C21—C22—C231.41 (19)C66—C61—C62—C630.7 (2)
C2—C21—C22—C23175.39 (12)C6—C61—C62—C63177.99 (12)
C21—C22—C23—C240.8 (2)O4—C62—C63—C64179.70 (12)
C22—C23—C24—C250.7 (2)C61—C62—C63—C640.0 (2)
C23—C24—C25—C261.5 (2)C62—C63—C64—C650.7 (2)
C24—C25—C26—O2178.75 (12)C63—C64—C65—C660.6 (2)
C24—C25—C26—C210.8 (2)C64—C65—C66—C610.2 (2)
C22—C21—C26—O2179.85 (11)C62—C61—C66—C650.8 (2)
C2—C21—C26—O23.10 (18)C6—C61—C66—C65177.82 (12)
C22—C21—C26—C250.6 (2)O6—C48—N1—C46179.76 (13)
C2—C21—C26—C25176.44 (12)C4—C48—N1—C461.05 (14)
C2—C3—C31—O3177.26 (13)C45—C46—N1—C48178.55 (13)
C4—C3—C31—O35.88 (19)C41—C46—N1—C480.54 (15)
C2—C3—C31—O22.63 (18)C5—C6—O1—C25.83 (18)
C4—C3—C31—O2174.23 (11)C61—C6—O1—C2175.07 (11)
C3—C4—C41—C4258.76 (18)C3—C2—O1—C65.26 (18)
C5—C4—C41—C4263.11 (17)C21—C2—O1—C6175.95 (11)
C48—C4—C41—C42177.49 (13)O3—C31—O2—C26178.97 (11)
C3—C4—C41—C46121.10 (12)C3—C31—O2—C261.14 (17)
C5—C4—C41—C46117.03 (12)C25—C26—O2—C31175.47 (12)
C48—C4—C41—C462.37 (13)C21—C26—O2—C314.09 (18)
C46—C41—C42—C430.17 (18)O5—C51—O4—C62178.69 (12)
C4—C41—C42—C43179.98 (12)C5—C51—O4—C622.31 (18)
C41—C42—C43—F1177.06 (11)C63—C62—O4—C51179.61 (12)
C41—C42—C43—C442.6 (2)C61—C62—O4—C510.08 (19)
F1—C43—C44—C45177.07 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C41–C46 ring.
D—H···AD—HH···AD···AD—H···A
C45—H45···O5i0.932.503.2564 (18)139
C22—H22···O6ii0.932.463.2205 (17)139
C66—H66···O6ii0.932.503.2921 (17)144
C64—H64···O3iii0.932.493.2641 (18)141
C25—H25···Cg1iv0.932.653.5482 (17)163
N1—H1···F1v0.86 (2)2.15 (2)2.810 (2)134 (2)
N1—H1···O5i0.86 (2)2.51 (2)3.208 (2)140 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H12FNO6
Mr453.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8262 (1), 10.9278 (1), 12.4067 (2)
α, β, γ (°)113.374 (1), 94.922 (1), 100.295 (1)
V3)943.77 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.23 × 0.21 × 0.18
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
15720, 5504, 4486
Rint0.023
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.04
No. of reflections5504
No. of parameters311
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C41–C46 ring.
D—H···AD—HH···AD···AD—H···A
C45—H45···O5i0.932.503.2564 (18)139
C22—H22···O6ii0.932.463.2205 (17)139
C66—H66···O6ii0.932.503.2921 (17)144
C64—H64···O3iii0.932.493.2641 (18)141
C25—H25···Cg1iv0.932.653.5482 (17)163
N1—H1···F1v0.86 (2)2.15 (2)2.810 (2)134 (2)
N1—H1···O5i0.86 (2)2.51 (2)3.208 (2)140 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y, z; (v) x1, y, z.
 

Acknowledgements

This project was supported by the Research Center, Deanship of Scientific Research, College of Science, King Saud University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJoshi, K. C. & Jain, R. (1985). Heterocycles, 23, 957–996.  CAS Google Scholar
First citationKobayashi, G. & Matsuda, Y. (1970). Jpn Patent No. 7025894.  Google Scholar
First citationMartin, E. J. & Critchlow, R. E. (1999). J. Combin. Chem. 1, 32–45.  Web of Science CrossRef CAS Google Scholar
First citationNinamiya, K. (1980). Jpn Patent No. 80164683.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeague, S. J. & Davis, A. M. (1999). Angew. Chem. Int. Ed. 38, 3743–3748.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds