organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Secohellebrigeninamide

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

(Received 15 January 2012; accepted 6 February 2012; online 10 February 2012)

The title compound, C26H37NO5, was the reaction product of hellebrigenin with N,N-dimethyl­formamide. It consists of three cyclo­hexane rings (A, B and C), one five-membered ring (D) and one dihydro­pyran ring (E). The stereochemistry of the ring junctions is is A/B cis, B/C trans, C/D cis and C/E trans. The cyclo­hexane rings A, B and C have chair conformations. Both the five-membered ring D and the dihydro­pyran ring adopt an envelope conformation. Two orientations are found for the aldehyde group with occupancies of 0.608 (10) and 0.392 (10). In the crystal, short O—H⋯O hydrogen bonds and short C—H⋯O contacts involving the hy­droxy group, terminal methyl group and carbonyl group link the mol­ecules into a three-dimensional network.

Related literature

For previous isolation of hellebrigenin, see: Urscheler et al. (1955[Urscheler, H. R., Tamm, C. & Reichstein, T. (1955). Helv. Chim. Acta, 38, 883-905.]); Yang et al. (2010[Yang, F. Y., Su, Y. F., Wang, Y., Chai, X., Han, X., Wu, Z. H. & Gao, X. M. (2010). Biochem. Syst. Ecol. 38, 759-763.]); Zhao et al. (2010[Zhao, H. Y., Wu, F. K., Qiu, Y. K., Wu, Z., Jiang, Y. T. & Chen, J. Y. (2010). J. Asian Nat. Prod. Res. 12, 793-800.]). For the treatment of hellebrigenin with sodium hydroxide, see: Kupchan et al. (1969[Kupchan, S. M., Hemingway, R. J. & Hemingway, J. C. (1969). J. Org. Chem. 34, 3894-3898.]). For the stereochemistry of bufalin, see: Rohrer et al. (1982[Rohrer, D. C., Fullerton, D. S., Kitatsuji, E., Nambara, T. & Yoshii, E. (1982). Acta Cryst. B38, 1865-1868.]).

[Scheme 1]

Experimental

Crystal data
  • C26H37NO5

  • Mr = 443.57

  • Monoclinic, P 21

  • a = 6.6942 (1) Å

  • b = 16.0580 (4) Å

  • c = 10.9672 (3) Å

  • β = 98.693 (2)°

  • V = 1165.38 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 291 K

  • 0.38 × 0.30 × 0.25 mm

Data collection
  • Oxford Diffraction Gemini S Ultra Sapphire CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.673, Tmax = 1.000

  • 3575 measured reflections

  • 2534 independent reflections

  • 2431 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.04

  • 2534 reflections

  • 293 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5i 0.82 1.97 2.790 (3) 178
C25—H25C⋯O1ii 0.96 2.64 3.513 (3) 152
Symmetry codes: (i) x, y+1, z; (ii) x+1, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: XPREP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hellebrigenin is a cardiac steroid. It was firstly isolated from the European toad in 1955 (Urscheler et al., 1955). Since then, it was isolated from the rhizomes of Helleborus thibetanus (Yang et al., 2010) and the skin of the Chinese toad Bufo bufo gargarizans (Zhao et al., 2010). The lactone ring at C-17 is not stable in alkaline conditions. Treatment of hellebrigenin with sodium hydroxide in methanol affords methyl isohellebrigeninate (Kupchan et al., 1969). Recently we treated hellebrigenin with N,N-dimethylformamide (DMF), and a new derivative named secohellebrigeninamide was obtained. We report herein the crystal structure of this compound.

The colorless blocks of crystals were obtained by recrystallization from the methanol solution at room temperature. The molecule (Fig. 1) is composed of three cyclohexane rings (A, B and C), one five-membered ring (D) and one dihydropyran ring (E). The stereochemistry of the ring juncture is A/B cis, B/C trans, C/D cis and C/E trans.

The cyclohexane rings A, B and C have normal chair conformations. The five-membered ring D adopts an envelope conformation with C13 displaced by 0.7246 (2) Å from the mean plane of the remaining four atoms (C14, C15, C16 and C17). Similarly, the dihydropyran ring E also adopts an envelope conformation with C13 displaced by 0.8848 (3) Å from the mean plane of the remaining five atoms (C14, C17, C20, C21 and O4). The absolute configuration determined for bufalin (Rohrer et al., 1982), a similar cardiac steroid, was invoked, giving the assignments of the chiral centres in the molecule as shown in Fig. 1.

A short intermolecular O—H···O hydrogen bond (Table 1) between the hydroxyl group at C3 and the carbonyl group at C24 [O1—H1A···O5i, 2.790 (4) Å; symmetry code: (i) x,y + 1, z] links adjacent molecules into chains along the b-axis. Adjacent chains are linked by short C—H···O contacts between the terminal methyl group and the hydroxyl group at C3 [C25—H25C···O1ii, 3.513 (3) Å; symmetry code: (ii) x + 1, y - 1, z] into a three-dimensional network (Fig. 2).

Related literature top

For previous isolation of hellebrigenin, see: Urscheler et al. (1955); Yang et al. (2010); Zhao et al. (2010). For the treatment of hellebrigenin with sodium hydroxide, see: Kupchan et al. (1969). For the stereochemistry of bufalin, see: Rohrer et al. (1982).

Experimental top

Hellebrigenin (41.6 mg) was dissolved in DMF and refluxed for 3 h. After the reaction, the mixture was poured into water and extracted with ethyl acetate. The ethyl acetate extract was washed with water to remove the remaining DMF and condensed by a rotary evaporator under reduced pressure. The residue was recrystallized in methanol at room temperature to afford colorless crystals (32.5 mg) suitable for X-ray analysis.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C); 0.98 Å (CH) and Uiso(H) = 1.2Ueq(C); 0.93 Å (aryl H) and Uiso(H)= 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). O3 and H19 are disordered over two positions with occupancies of 0.608 (10) and 0.392 (10). The Friedel pair coverage for the collection is low. It may be due to an inadequate collection strategy. Recollection of diffraction data was not thought to be necessary since the absolute configuration can be unambiguously assigned with reference to the known configuration of the closed related compound bufalin. The absolute structure is indeterminate.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: XPREP in SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 30% probability displacement ellipsoids. Only one orientation of the aldehyde group is shown.
[Figure 2] Fig. 2. Packing diagram showing the intermolecular O—H···O hydrogen bonds and short C—H···O contacts represented as dashed lines. Only H-atoms involved in interactions are shown.
Secohellebrigeninamide top
Crystal data top
C26H37NO5F(000) = 480
Mr = 443.57Dx = 1.264 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 6.6942 (1) ÅCell parameters from 1847 reflections
b = 16.0580 (4) Åθ = 6.2–62.6°
c = 10.9672 (3) ŵ = 0.70 mm1
β = 98.693 (2)°T = 291 K
V = 1165.38 (5) Å3Block, colorless
Z = 20.38 × 0.30 × 0.25 mm
Data collection top
Oxford Diffraction Gemini S Ultra Sapphire CCD
diffractometer
2534 independent reflections
Radiation source: fine-focus sealed tube2431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scanθmax = 62.7°, θmin = 5.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 27
Tmin = 0.673, Tmax = 1.000k = 1816
3575 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0899P)2 + 0.1076P]
where P = (Fo2 + 2Fc2)/3
2534 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C26H37NO5V = 1165.38 (5) Å3
Mr = 443.57Z = 2
Monoclinic, P21Cu Kα radiation
a = 6.6942 (1) ŵ = 0.70 mm1
b = 16.0580 (4) ÅT = 291 K
c = 10.9672 (3) Å0.38 × 0.30 × 0.25 mm
β = 98.693 (2)°
Data collection top
Oxford Diffraction Gemini S Ultra Sapphire CCD
diffractometer
2534 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2431 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 1.000Rint = 0.021
3575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2534 reflectionsΔρmin = 0.16 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3441 (4)1.40909 (16)0.1536 (2)0.0750 (6)
H1A0.41271.44950.17930.113*
O20.0185 (3)1.30160 (16)0.1275 (2)0.0737 (7)
H2A0.07581.34650.14130.111*
O30.0767 (8)1.1408 (4)0.3299 (6)0.1087 (18)0.608 (10)
O3A0.0065 (11)1.2140 (6)0.4159 (9)0.1087 (18)0.39
O40.2368 (3)0.91532 (13)0.12249 (17)0.0530 (5)
O50.5706 (4)0.54857 (15)0.2410 (3)0.0815 (7)
N10.9026 (4)0.56933 (19)0.3016 (3)0.0666 (7)
C10.3354 (5)1.2767 (2)0.3439 (3)0.0618 (8)
H1B0.24411.32340.34680.074*
H1C0.37651.25770.42790.074*
C20.5202 (5)1.3069 (3)0.2931 (3)0.0712 (9)
H2B0.58201.35210.34400.085*
H2C0.61771.26190.29680.085*
C30.4688 (5)1.3362 (2)0.1624 (3)0.0674 (9)
H3A0.59391.34890.12980.081*
C40.3537 (5)1.2682 (2)0.0838 (3)0.0634 (8)
H4A0.31371.28960.00100.076*
H4B0.44451.22170.07840.076*
C50.1669 (4)1.2363 (2)0.1317 (3)0.0560 (7)
C60.0671 (5)1.1673 (2)0.0493 (3)0.0671 (9)
H6A0.06421.15540.07240.080*
H6B0.04561.18680.03540.080*
C70.1889 (6)1.0873 (2)0.0561 (3)0.0644 (8)
H7A0.31331.09690.02310.077*
H7B0.11251.04500.00580.077*
C80.2392 (4)1.05563 (19)0.1893 (2)0.0473 (6)
H8A0.11111.04200.21770.057*
C90.3438 (4)1.12326 (18)0.2759 (2)0.0483 (6)
H9A0.47211.13610.24720.058*
C100.2204 (4)1.2060 (2)0.2691 (2)0.0515 (7)
C110.3965 (5)1.0893 (2)0.4077 (2)0.0599 (8)
H11A0.47011.13140.45980.072*
H11B0.27281.07720.44030.072*
C120.5241 (5)1.0104 (2)0.4113 (3)0.0613 (8)
H12A0.55110.99030.49550.074*
H12B0.65281.02400.38570.074*
C130.4233 (4)0.94111 (19)0.3285 (2)0.0497 (6)
C140.3650 (4)0.97681 (19)0.1972 (2)0.0445 (6)
C150.5674 (4)0.9822 (2)0.1456 (3)0.0545 (7)
H15A0.54860.96650.05920.065*
H15B0.62081.03840.15350.065*
C160.7123 (4)0.9212 (2)0.2229 (3)0.0598 (8)
H16A0.81790.95080.27600.072*
H16B0.77390.88350.17040.072*
C170.5736 (4)0.8739 (2)0.2993 (3)0.0520 (6)
H17A0.64910.84920.37410.062*
C180.2473 (5)0.9056 (3)0.3841 (3)0.0682 (9)
H18A0.16030.95010.40180.102*
H18B0.29760.87660.45900.102*
H18C0.17270.86770.32670.102*
C190.0265 (6)1.1947 (3)0.3181 (4)0.0756 (10)
H19A0.02141.24460.34580.091*0.608 (10)
H19B0.07891.16990.26570.091*0.392 (10)
C200.4571 (4)0.8096 (2)0.2173 (3)0.0509 (7)
C210.2995 (4)0.83593 (19)0.1362 (3)0.0533 (7)
H21A0.22810.79610.08550.064*
C220.5116 (4)0.7228 (2)0.2182 (3)0.0519 (7)
H22A0.42380.68780.16820.062*
C230.6737 (4)0.6871 (2)0.2826 (3)0.0533 (7)
H23A0.76550.71950.33430.064*
C240.7095 (5)0.5968 (2)0.2728 (3)0.0584 (7)
C250.9418 (7)0.4814 (3)0.2967 (6)0.1014 (15)
H25A0.81610.45180.28010.152*
H25B1.01480.46340.37440.152*
H25C1.02080.47030.23240.152*
C261.0793 (5)0.6229 (3)0.3278 (4)0.0850 (12)
H26A1.03690.67990.32910.127*
H26B1.16320.61560.26490.127*
H26C1.15430.60840.40650.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0879 (15)0.0492 (13)0.0877 (15)0.0031 (12)0.0124 (12)0.0062 (12)
O20.0705 (12)0.0510 (13)0.0906 (16)0.0170 (12)0.0169 (11)0.0032 (13)
O30.091 (3)0.098 (4)0.147 (4)0.003 (3)0.050 (3)0.008 (3)
O3A0.091 (3)0.098 (4)0.147 (4)0.003 (3)0.050 (3)0.008 (3)
O40.0530 (10)0.0431 (11)0.0563 (10)0.0014 (9)0.0130 (8)0.0010 (9)
O50.0729 (14)0.0478 (14)0.122 (2)0.0068 (13)0.0100 (13)0.0097 (15)
N10.0637 (15)0.0555 (16)0.0823 (17)0.0165 (13)0.0171 (12)0.0104 (14)
C10.0785 (19)0.0551 (19)0.0496 (14)0.0123 (15)0.0023 (13)0.0106 (14)
C20.0645 (17)0.062 (2)0.080 (2)0.0001 (17)0.0106 (15)0.0223 (19)
C30.0655 (17)0.060 (2)0.079 (2)0.0063 (16)0.0204 (15)0.0040 (17)
C40.085 (2)0.0552 (18)0.0507 (14)0.0045 (16)0.0126 (13)0.0032 (14)
C50.0621 (15)0.0452 (16)0.0545 (15)0.0085 (14)0.0114 (12)0.0027 (14)
C60.079 (2)0.0498 (19)0.0622 (17)0.0052 (17)0.0229 (15)0.0032 (16)
C70.088 (2)0.0491 (18)0.0469 (14)0.0056 (16)0.0193 (13)0.0018 (14)
C80.0463 (12)0.0452 (15)0.0460 (13)0.0063 (12)0.0065 (10)0.0009 (12)
C90.0524 (13)0.0479 (16)0.0415 (13)0.0067 (12)0.0027 (10)0.0028 (12)
C100.0534 (14)0.0478 (16)0.0516 (14)0.0081 (13)0.0027 (11)0.0007 (13)
C110.0778 (18)0.0543 (18)0.0423 (13)0.0158 (16)0.0083 (12)0.0046 (13)
C120.0705 (17)0.0562 (19)0.0494 (14)0.0096 (16)0.0157 (13)0.0019 (14)
C130.0492 (13)0.0487 (16)0.0463 (13)0.0076 (13)0.0091 (10)0.0006 (12)
C140.0426 (12)0.0424 (14)0.0451 (13)0.0002 (12)0.0041 (10)0.0032 (11)
C150.0557 (14)0.0477 (16)0.0611 (15)0.0030 (14)0.0123 (12)0.0072 (14)
C160.0442 (13)0.0497 (18)0.0839 (19)0.0017 (13)0.0047 (12)0.0115 (16)
C170.0474 (12)0.0474 (15)0.0558 (14)0.0046 (13)0.0097 (11)0.0012 (14)
C180.0688 (17)0.076 (2)0.0592 (16)0.0125 (18)0.0086 (13)0.0127 (16)
C190.067 (2)0.067 (2)0.099 (3)0.0136 (19)0.0331 (19)0.006 (2)
C200.0450 (12)0.0463 (16)0.0586 (16)0.0016 (12)0.0012 (11)0.0023 (13)
C210.0546 (14)0.0414 (15)0.0601 (16)0.0046 (13)0.0038 (12)0.0011 (13)
C220.0543 (14)0.0408 (15)0.0597 (14)0.0028 (13)0.0054 (11)0.0013 (13)
C230.0528 (14)0.0448 (17)0.0614 (16)0.0028 (13)0.0059 (12)0.0001 (13)
C240.0641 (16)0.0458 (17)0.0671 (17)0.0049 (15)0.0159 (13)0.0026 (14)
C250.097 (3)0.056 (2)0.158 (4)0.024 (2)0.041 (3)0.012 (3)
C260.0605 (19)0.081 (3)0.112 (3)0.0096 (19)0.0097 (17)0.012 (2)
Geometric parameters (Å, º) top
O1—C31.432 (4)C10—C191.489 (5)
O1—H1A0.8200C11—C121.525 (4)
O2—C51.440 (4)C11—H11A0.9700
O2—H2A0.8200C11—H11B0.9700
O3—C191.127 (7)C12—C131.528 (4)
O3A—C191.169 (10)C12—H12A0.9700
O4—C211.343 (4)C12—H12B0.9700
O4—C141.473 (3)C13—C181.517 (5)
O5—C241.219 (4)C13—C171.543 (4)
N1—C241.357 (4)C13—C141.544 (4)
N1—C251.439 (5)C14—C151.548 (4)
N1—C261.455 (5)C15—C161.540 (5)
C1—C21.511 (5)C15—H15A0.9700
C1—C101.538 (5)C15—H15B0.9700
C1—H1B0.9700C16—C171.541 (5)
C1—H1C0.9700C16—H16A0.9700
C2—C31.500 (5)C16—H16B0.9700
C2—H2B0.9700C17—C201.506 (4)
C2—H2C0.9700C17—H17A0.9800
C3—C41.526 (5)C18—H18A0.9600
C3—H3A0.9800C18—H18B0.9600
C4—C51.517 (5)C18—H18C0.9600
C4—H4A0.9700C19—H19A0.9300
C4—H4B0.9700C19—H19B0.9300
C5—C61.519 (4)C20—C211.342 (4)
C5—C101.572 (4)C20—C221.441 (4)
C6—C71.518 (5)C21—H21A0.9300
C6—H6A0.9700C22—C231.331 (4)
C6—H6B0.9700C22—H22A0.9300
C7—C81.534 (4)C23—C241.477 (4)
C7—H7A0.9700C23—H23A0.9300
C7—H7B0.9700C25—H25A0.9600
C8—C141.515 (4)C25—H25B0.9600
C8—C91.540 (4)C25—H25C0.9600
C8—H8A0.9800C26—H26A0.9600
C9—C111.535 (4)C26—H26B0.9600
C9—C101.560 (4)C26—H26C0.9600
C9—H9A0.9800
C3—O1—H1A109.5C13—C12—H12B108.9
C5—O2—H2A109.5H12A—C12—H12B107.7
C21—O4—C14115.3 (2)C18—C13—C12109.6 (3)
C24—N1—C25118.9 (3)C18—C13—C17113.0 (3)
C24—N1—C26124.9 (3)C12—C13—C17113.0 (2)
C25—N1—C26116.1 (3)C18—C13—C14114.3 (2)
C2—C1—C10114.3 (3)C12—C13—C14108.1 (2)
C2—C1—H1B108.7C17—C13—C1498.5 (2)
C10—C1—H1B108.7O4—C14—C8104.82 (18)
C2—C1—H1C108.7O4—C14—C13108.3 (2)
C10—C1—H1C108.7C8—C14—C13115.1 (2)
H1B—C1—H1C107.6O4—C14—C15107.6 (2)
C3—C2—C1111.8 (3)C8—C14—C15116.2 (3)
C3—C2—H2B109.3C13—C14—C15104.5 (2)
C1—C2—H2B109.3C16—C15—C14106.0 (2)
C3—C2—H2C109.3C16—C15—H15A110.5
C1—C2—H2C109.3C14—C15—H15A110.5
H2B—C2—H2C107.9C16—C15—H15B110.5
O1—C3—C2111.6 (3)C14—C15—H15B110.5
O1—C3—C4107.9 (3)H15A—C15—H15B108.7
C2—C3—C4109.7 (3)C15—C16—C17103.4 (2)
O1—C3—H3A109.2C15—C16—H16A111.1
C2—C3—H3A109.2C17—C16—H16A111.1
C4—C3—H3A109.2C15—C16—H16B111.1
C5—C4—C3114.7 (3)C17—C16—H16B111.1
C5—C4—H4A108.6H16A—C16—H16B109.0
C3—C4—H4A108.6C20—C17—C16108.3 (2)
C5—C4—H4B108.6C20—C17—C13107.9 (2)
C3—C4—H4B108.6C16—C17—C13103.5 (3)
H4A—C4—H4B107.6C20—C17—H17A112.2
O2—C5—C4110.1 (3)C16—C17—H17A112.2
O2—C5—C6105.8 (2)C13—C17—H17A112.2
C4—C5—C6110.6 (3)C13—C18—H18A109.5
O2—C5—C10108.2 (2)C13—C18—H18B109.5
C4—C5—C10110.8 (2)H18A—C18—H18B109.5
C6—C5—C10111.2 (3)C13—C18—H18C109.5
C7—C6—C5113.8 (2)H18A—C18—H18C109.5
C7—C6—H6A108.8H18B—C18—H18C109.5
C5—C6—H6A108.8O3—C19—O3A83.9 (6)
C7—C6—H6B108.8O3—C19—C10135.9 (5)
C5—C6—H6B108.8O3A—C19—C10126.5 (6)
H6A—C6—H6B107.7O3—C19—H19A112.1
C6—C7—C8111.5 (3)O3A—C19—H19A49.4
C6—C7—H7A109.3C10—C19—H19A112.1
C8—C7—H7A109.3O3—C19—H19B47.2
C6—C7—H7B109.3O3A—C19—H19B116.8
C8—C7—H7B109.3C10—C19—H19B116.8
H7A—C7—H7B108.0H19A—C19—H19B107.7
C14—C8—C7111.8 (2)C21—C20—C22118.8 (3)
C14—C8—C9110.88 (19)C21—C20—C17117.7 (3)
C7—C8—C9111.6 (2)C22—C20—C17123.4 (2)
C14—C8—H8A107.4C20—C21—O4125.0 (3)
C7—C8—H8A107.4C20—C21—H21A117.5
C9—C8—H8A107.4O4—C21—H21A117.5
C11—C9—C8110.4 (2)C23—C22—C20127.3 (3)
C11—C9—C10113.1 (2)C23—C22—H22A116.4
C8—C9—C10112.5 (2)C20—C22—H22A116.4
C11—C9—H9A106.8C22—C23—C24120.8 (3)
C8—C9—H9A106.8C22—C23—H23A119.6
C10—C9—H9A106.8C24—C23—H23A119.6
C19—C10—C1106.9 (3)O5—C24—N1121.3 (3)
C19—C10—C9111.3 (3)O5—C24—C23121.3 (3)
C1—C10—C9112.6 (2)N1—C24—C23117.5 (3)
C19—C10—C5107.4 (2)N1—C25—H25A109.5
C1—C10—C5107.8 (3)N1—C25—H25B109.5
C9—C10—C5110.6 (2)H25A—C25—H25B109.5
C12—C11—C9111.5 (2)N1—C25—H25C109.5
C12—C11—H11A109.3H25A—C25—H25C109.5
C9—C11—H11A109.3H25B—C25—H25C109.5
C12—C11—H11B109.3N1—C26—H26A109.5
C9—C11—H11B109.3N1—C26—H26B109.5
H11A—C11—H11B108.0H26A—C26—H26B109.5
C11—C12—C13113.2 (2)N1—C26—H26C109.5
C11—C12—H12A108.9H26A—C26—H26C109.5
C13—C12—H12A108.9H26B—C26—H26C109.5
C11—C12—H12B108.9
C10—C1—C2—C357.5 (4)C7—C8—C14—C13179.7 (2)
C1—C2—C3—O165.9 (4)C9—C8—C14—C1354.5 (3)
C1—C2—C3—C453.7 (4)C7—C8—C14—C1557.1 (3)
O1—C3—C4—C567.4 (4)C9—C8—C14—C1568.1 (3)
C2—C3—C4—C554.5 (4)C18—C13—C14—O447.9 (3)
C3—C4—C5—O265.0 (3)C12—C13—C14—O4170.2 (2)
C3—C4—C5—C6178.4 (3)C17—C13—C14—O472.2 (2)
C3—C4—C5—C1054.7 (4)C18—C13—C14—C869.0 (4)
O2—C5—C6—C7171.6 (3)C12—C13—C14—C853.3 (3)
C4—C5—C6—C769.2 (4)C17—C13—C14—C8170.9 (2)
C10—C5—C6—C754.3 (4)C18—C13—C14—C15162.4 (3)
C5—C6—C7—C855.2 (4)C12—C13—C14—C1575.3 (3)
C6—C7—C8—C14178.7 (3)C17—C13—C14—C1542.3 (3)
C6—C7—C8—C953.8 (3)O4—C14—C15—C1693.9 (3)
C14—C8—C9—C1153.4 (3)C8—C14—C15—C16149.1 (2)
C7—C8—C9—C11178.7 (3)C13—C14—C15—C1621.1 (3)
C14—C8—C9—C10179.2 (2)C14—C15—C16—C179.2 (3)
C7—C8—C9—C1053.9 (3)C15—C16—C17—C2078.0 (3)
C2—C1—C10—C19170.2 (3)C15—C16—C17—C1336.4 (3)
C2—C1—C10—C967.3 (4)C18—C13—C17—C2055.1 (3)
C2—C1—C10—C555.0 (3)C12—C13—C17—C20179.8 (2)
C11—C9—C10—C1959.4 (3)C14—C13—C17—C2066.0 (3)
C8—C9—C10—C1966.6 (3)C18—C13—C17—C16169.7 (2)
C11—C9—C10—C160.6 (3)C12—C13—C17—C1665.2 (3)
C8—C9—C10—C1173.4 (2)C14—C13—C17—C1648.6 (3)
C11—C9—C10—C5178.6 (2)C1—C10—C19—O3147.7 (7)
C8—C9—C10—C552.7 (3)C9—C10—C19—O324.3 (8)
O2—C5—C10—C1946.2 (3)C5—C10—C19—O396.8 (7)
C4—C5—C10—C19167.0 (3)C1—C10—C19—O3A22.8 (8)
C6—C5—C10—C1969.6 (4)C9—C10—C19—O3A100.6 (7)
O2—C5—C10—C168.6 (3)C5—C10—C19—O3A138.3 (7)
C4—C5—C10—C152.2 (3)C16—C17—C20—C2177.4 (3)
C6—C5—C10—C1175.6 (2)C13—C17—C20—C2134.0 (4)
O2—C5—C10—C9167.8 (2)C16—C17—C20—C2299.9 (3)
C4—C5—C10—C971.4 (3)C13—C17—C20—C22148.8 (3)
C6—C5—C10—C952.0 (3)C22—C20—C21—O4177.6 (3)
C8—C9—C11—C1255.2 (3)C17—C20—C21—O40.2 (5)
C10—C9—C11—C12177.7 (3)C14—O4—C21—C205.0 (4)
C9—C11—C12—C1357.2 (4)C21—C20—C22—C23172.7 (3)
C11—C12—C13—C1871.4 (3)C17—C20—C22—C234.5 (5)
C11—C12—C13—C17161.6 (3)C20—C22—C23—C24179.5 (3)
C11—C12—C13—C1453.8 (3)C25—N1—C24—O51.4 (5)
C21—O4—C14—C8166.9 (2)C26—N1—C24—O5173.2 (4)
C21—O4—C14—C1343.6 (3)C25—N1—C24—C23178.1 (4)
C21—O4—C14—C1568.8 (3)C26—N1—C24—C237.3 (5)
C7—C8—C14—O461.5 (3)C22—C23—C24—O524.2 (5)
C9—C8—C14—O4173.3 (2)C22—C23—C24—N1156.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.821.972.790 (3)178
C25—H25C···O1ii0.962.643.513 (3)152
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC26H37NO5
Mr443.57
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)6.6942 (1), 16.0580 (4), 10.9672 (3)
β (°) 98.693 (2)
V3)1165.38 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.38 × 0.30 × 0.25
Data collection
DiffractometerOxford Diffraction Gemini S Ultra Sapphire CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.673, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3575, 2534, 2431
Rint0.021
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 1.04
No. of reflections2534
No. of parameters293
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16
Absolute structure parameter0.3 (3)

Computer programs: CrysAlis PRO (Agilent, 2011), XPREP in SHELXTL (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.8201.9702.790 (3)178.4
C25—H25C···O1ii0.962.643.513 (3)152
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z.
 

Acknowledgements

This work was supported by grants from the New Century Excellent Talents Scheme of the Ministry of Education (grant No. NCET-08–0612), Guangdong High Level Talent Scheme and the Fundamental Research Funds for the Central Universities (grant No. 21609202).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationKupchan, S. M., Hemingway, R. J. & Hemingway, J. C. (1969). J. Org. Chem. 34, 3894–3898.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRohrer, D. C., Fullerton, D. S., Kitatsuji, E., Nambara, T. & Yoshii, E. (1982). Acta Cryst. B38, 1865–1868.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrscheler, H. R., Tamm, C. & Reichstein, T. (1955). Helv. Chim. Acta, 38, 883–905.  CrossRef CAS Web of Science Google Scholar
First citationYang, F. Y., Su, Y. F., Wang, Y., Chai, X., Han, X., Wu, Z. H. & Gao, X. M. (2010). Biochem. Syst. Ecol. 38, 759–763.  Web of Science CrossRef CAS Google Scholar
First citationZhao, H. Y., Wu, F. K., Qiu, Y. K., Wu, Z., Jiang, Y. T. & Chen, J. Y. (2010). J. Asian Nat. Prod. Res. 12, 793–800.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds