metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{3,3′-Bis[(anthracen-9-yl)meth­yl]-1,1′-[(ethane-1,2-diyldi­­oxy)bis­­(ethane-1,2-di­yl)]bis­­(imidazol-2-yl­­idene)}mercury(II) bis­­(hexa­fluoridophosphate) aceto­nitrile disolvate

aCollege of Chemical and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, bCollege of Chemical Engineering, Hebei United University, Tangshan 063009, People's Republic of China, and cQian'an College, Hebei United University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: wjwchlwx@126.com

(Received 6 February 2012; accepted 10 February 2012; online 17 February 2012)

In the title compound, [Hg(C42H38N4O2)](PF6)2·2CH3CN, the HgII cation lies on a twofold axis which is also the inter­nal symmetry element of the complete cationic complex. The HgII cation is coordinated by two symmetry-related C(carbene) atoms [Hg—C = 2.058 (9) Å] in a nearly linear geometry, with a C—Hg—C angle of 175.8 (5)°. There are weak inter­molecular C—H⋯F inter­actions in the crystal packing between an F atom of a hexa­fluoridophosphate anion and a –CH2– group of the bis-N-heterocyclic carbene ligand.

Related literature

For related bis-N-heterocyclic carbene structures, see: Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]); Nielsen et al. (2006[Nielsen, D. J., Cavell, K. J., Skelton, B. W. & White, A. H. (2006). Organometallics, 25, 4850-4856.]); Guo & Dong (2009[Guo, W.-Y. & Dong, G.-Y. (2009). Acta Cryst. E65, m217.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C42H38N4O2)](PF6)2·2C2H3N

  • Mr = 1203.4

  • Orthorhombic, P b c n

  • a = 19.774 (5) Å

  • b = 9.774 (3) Å

  • c = 24.250 (6) Å

  • V = 4687 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 298 K

  • 0.24 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan SADABS (Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.775, Tmax = 0.864

  • 25351 measured reflections

  • 4804 independent reflections

  • 3011 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.169

  • S = 1.10

  • 4804 reflections

  • 313 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.46 e Å−3

  • Δρmin = −1.80 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—C1 2.058 (9)
P1—F5 1.561 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯F5 0.97 2.48 3.265 (13) 137

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-heterocyclic carbene (NHC) ligands derived from imidazolium salts have seen an increasing use in organometallic chemistry and homogeneous catalysis (Arduengo et al.,1991). The mercury and silver complexes of bis-NHC ligands bearing a weakly coordinating ether functionality have been reported before (Guo & Dong, 2009; Nielsen et al., 2006). To study further the coordination chemistry of this kind of ligands, we report here the crystal structure of the title complex, (I)

The asymmetric unit of the title compound [C42H38HgN4O2]2+.2(PF6)-.2CH3CN (I) consists of one half of the [3,3'-Bis(9-anthracenylmethyl)-1,1'-(2,2'-oxydiethylene)bis-(imidazol- 2-ylidene)]mercury(II) cation, one hexafluorophosphate anion and one acetonitrile solvate molecule. The complete complex (Fig. 1) is generated by a crystallographic two-fold axis on which the HgII cation is situated. The HgII cation of (I) is coordinated by an anthracenyl-carbene ligand adopting a cis-conformation, the geometry of the HgII coordination being nearly linear, formed by two symmetry related C(carbene) atoms [Hg—C = 2.058 (9) Å, C— Hg—C = 175.8 (5)°]. The crystal packing exhibits intermolecular C—H···F weak interaction between the organic C atoms and the F atom of hexafluorophosphate anion with H4B···F distance of 2.48 Å.

Related literature top

For related bis-N-heterocyclic carbene structures, see: Arduengo et al. (1991); Nielsen et al. (2006); Guo & Dong (2009).

Experimental top

[3,3'-Bis(9-anthracenylmethyl)-1,1'-(2,2'- oxydiethylene)bis-imidazolium] hexafluorophosphate salt (522 mg, 0.566 mmol) was mixed with anhydrous Hg(OAc)2 (181 mg, 0.566 mmol) in acetonitrile (100 ml) (under argon) and heated under reflux for 2 d and then cooled to room temperature. The acetonitrile was removed in vacuo to yield a white solid which was washed with methanol to give the crude product. Colourless single crystals of the title compound were obtained by recrystallization from acetonitile and ethyl ether (yield: 75.3%).

Refinement top

The acetonitrile solvant molecule shows slight positional disorder. Instead of treating the disorder with split sites, the geometry of the molecule was rather regularized with the following three distance restraints: N3—C23: 2.60 (1) Å, N3—C22: 1.10 (1) Å and C22—C23: 1.50 (1) Å. The aromatic [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)] and methylene H atoms [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)] were included in the refinement using a riding-model approximation.

Computing details top

Data collection: APEX2 (Bruker 2007); cell refinement: SAINT (Bruker 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing atomic displacement ellipsoids at the 30% probability level [symmetry code A: -x, y, 0.5 - z]. H atoms are omitted for clarity.
{3,3'-Bis[(anthracen-9-yl)methyl]-1,1'-[(ethane-1,2-diyldioxy)bis(ethane- 1,2-diyl)]bis(imidazol-2-ylidene)}mercury(II) bis(hexafluoridophosphate) acetonitrile disolvate top
Crystal data top
[Hg(C42H38N4O2)](PF6)2·2C2H3NF(000) = 2384
Mr = 1203.4Dx = 1.705 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 990 reflections
a = 19.774 (5) Åθ = 2.7–24.2°
b = 9.774 (3) ŵ = 3.45 mm1
c = 24.250 (6) ÅT = 298 K
V = 4687 (2) Å3Block, colourless
Z = 40.24 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4804 independent reflections
Radiation source: fine-focus sealed tube3011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 2421
Tmin = 0.775, Tmax = 0.864k = 812
25351 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0885P)2]
where P = (Fo2 + 2Fc2)/3
4804 reflections(Δ/σ)max = 0.001
313 parametersΔρmax = 1.46 e Å3
3 restraintsΔρmin = 1.80 e Å3
Crystal data top
[Hg(C42H38N4O2)](PF6)2·2C2H3NV = 4687 (2) Å3
Mr = 1203.4Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 19.774 (5) ŵ = 3.45 mm1
b = 9.774 (3) ÅT = 298 K
c = 24.250 (6) Å0.24 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4804 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
3011 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.864Rint = 0.086
25351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0653 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.10Δρmax = 1.46 e Å3
4804 reflectionsΔρmin = 1.80 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.00000.46027 (4)0.25000.03456 (17)
N10.1519 (4)0.5080 (8)0.2447 (3)0.0373 (17)
N20.1200 (3)0.3926 (8)0.1754 (3)0.0378 (17)
O10.0679 (4)0.7289 (7)0.2621 (3)0.054 (2)
C10.0977 (4)0.4525 (8)0.2209 (3)0.0316 (18)
C20.2094 (5)0.4854 (12)0.2147 (5)0.057 (3)
H20.25310.51410.22290.068*
C30.1889 (5)0.4122 (11)0.1705 (4)0.052 (3)
H30.21620.38080.14190.062*
C40.1511 (5)0.5826 (10)0.2972 (4)0.044 (2)
H4A0.19570.57910.31360.053*
H4B0.11980.53790.32220.053*
C50.1304 (5)0.7289 (10)0.2901 (4)0.049 (3)
H5A0.12580.77290.32570.058*
H5B0.16410.77800.26880.058*
C60.0285 (6)0.8505 (10)0.2693 (4)0.048 (2)
H6A0.05650.93030.26280.057*
H6B0.01170.85480.30680.057*
C70.0762 (5)0.3126 (10)0.1375 (4)0.046 (2)
H7A0.04250.37310.12180.055*
H7B0.05270.24290.15860.055*
C80.1157 (5)0.2431 (11)0.0902 (4)0.046 (2)
C90.1315 (5)0.3178 (11)0.0428 (4)0.048 (3)
C100.1182 (6)0.4599 (12)0.0370 (5)0.060 (3)
H100.09820.50630.06630.073*
C110.1334 (8)0.5304 (11)0.0093 (5)0.067 (4)
H110.12180.62230.01240.081*
C120.1673 (6)0.4629 (14)0.0533 (5)0.070 (4)
H120.17930.51170.08470.084*
C130.1823 (5)0.3289 (13)0.0497 (4)0.058 (3)
H130.20380.28610.07910.069*
C140.1654 (5)0.2502 (11)0.0012 (4)0.050 (3)
C150.1800 (5)0.1125 (12)0.0019 (4)0.050 (3)
H150.20000.06940.02820.061*
C160.1655 (5)0.0367 (11)0.0488 (4)0.048 (3)
C170.1790 (5)0.1056 (12)0.0516 (5)0.055 (3)
H170.19750.14910.02100.066*
C180.1657 (5)0.1800 (12)0.0975 (5)0.061 (3)
H180.17640.27250.09850.073*
C190.1358 (6)0.1179 (11)0.1431 (5)0.064 (3)
H190.12590.17030.17410.076*
C200.1209 (6)0.0192 (11)0.1432 (5)0.054 (3)
H200.10280.05920.17470.065*
C210.1330 (5)0.1013 (10)0.0953 (4)0.041 (2)
N30.5038 (11)0.1282 (19)0.1170 (10)0.146 (8)
C220.5063 (9)0.217 (2)0.0890 (8)0.117 (9)
C230.5048 (8)0.334 (2)0.0493 (9)0.145 (9)
H23A0.46530.32770.02650.217*
H23B0.54450.33180.02660.217*
H23C0.50370.41900.06940.217*
P10.13116 (17)0.1670 (3)0.34660 (15)0.0625 (8)
F10.1456 (7)0.1821 (11)0.4086 (4)0.165 (5)
F20.1925 (4)0.2599 (8)0.3349 (5)0.136 (4)
F30.1723 (6)0.0382 (8)0.3418 (7)0.194 (7)
F40.0695 (5)0.0783 (9)0.3592 (4)0.128 (4)
F50.0880 (4)0.3006 (8)0.3479 (5)0.125 (3)
F60.1159 (9)0.1570 (13)0.2854 (4)0.219 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0341 (3)0.0382 (3)0.0314 (2)0.0000.0074 (3)0.000
N10.040 (4)0.047 (4)0.025 (4)0.003 (3)0.002 (4)0.010 (4)
N20.024 (4)0.049 (4)0.041 (4)0.001 (4)0.006 (3)0.007 (4)
O10.067 (5)0.037 (3)0.057 (5)0.002 (3)0.013 (3)0.017 (3)
C10.039 (5)0.034 (4)0.022 (4)0.002 (4)0.006 (4)0.002 (4)
C20.029 (5)0.081 (8)0.061 (7)0.009 (5)0.007 (5)0.032 (6)
C30.032 (5)0.076 (7)0.047 (6)0.001 (5)0.013 (5)0.011 (6)
C40.040 (6)0.047 (5)0.045 (6)0.002 (5)0.004 (5)0.004 (5)
C50.054 (6)0.047 (6)0.045 (6)0.009 (5)0.013 (5)0.015 (5)
C60.064 (6)0.036 (5)0.043 (5)0.001 (5)0.007 (5)0.002 (4)
C70.040 (5)0.052 (6)0.046 (6)0.007 (5)0.013 (5)0.013 (5)
C80.041 (5)0.060 (6)0.036 (5)0.010 (5)0.005 (4)0.018 (5)
C90.037 (5)0.060 (6)0.048 (6)0.009 (5)0.006 (5)0.024 (5)
C100.067 (8)0.065 (7)0.050 (7)0.010 (6)0.008 (6)0.016 (6)
C110.087 (10)0.062 (8)0.053 (8)0.006 (7)0.002 (6)0.005 (6)
C120.060 (8)0.096 (11)0.055 (7)0.007 (8)0.008 (6)0.001 (7)
C130.061 (7)0.077 (8)0.035 (5)0.006 (7)0.002 (5)0.008 (6)
C140.046 (6)0.061 (6)0.042 (6)0.013 (6)0.008 (5)0.012 (5)
C150.047 (6)0.064 (6)0.040 (6)0.000 (6)0.011 (5)0.014 (5)
C160.034 (5)0.061 (7)0.047 (6)0.005 (5)0.003 (4)0.020 (5)
C170.040 (6)0.061 (7)0.065 (7)0.000 (5)0.004 (5)0.025 (6)
C180.053 (7)0.057 (7)0.073 (8)0.001 (6)0.016 (6)0.004 (6)
C190.079 (8)0.047 (6)0.066 (7)0.011 (6)0.009 (7)0.000 (6)
C200.055 (7)0.064 (7)0.045 (6)0.020 (6)0.001 (5)0.008 (5)
C210.034 (5)0.050 (5)0.040 (5)0.011 (5)0.001 (4)0.012 (5)
N30.114 (13)0.110 (13)0.21 (2)0.013 (13)0.025 (13)0.071 (16)
C220.044 (9)0.124 (17)0.18 (3)0.015 (15)0.002 (14)0.085 (18)
C230.097 (14)0.16 (2)0.18 (2)0.033 (15)0.064 (13)0.022 (18)
P10.068 (2)0.0389 (14)0.080 (2)0.0070 (15)0.0066 (18)0.0066 (15)
F10.258 (14)0.134 (8)0.103 (7)0.033 (9)0.075 (8)0.014 (7)
F20.091 (6)0.088 (6)0.228 (12)0.023 (5)0.030 (7)0.004 (7)
F30.179 (11)0.056 (5)0.35 (2)0.026 (6)0.102 (12)0.006 (8)
F40.108 (7)0.121 (7)0.155 (9)0.050 (6)0.032 (6)0.023 (7)
F50.078 (5)0.089 (6)0.208 (11)0.011 (5)0.000 (6)0.024 (7)
F60.42 (2)0.158 (11)0.084 (7)0.145 (14)0.030 (10)0.001 (7)
Geometric parameters (Å, º) top
Hg1—C12.058 (9)C11—C121.423 (17)
Hg1—C1i2.058 (9)C11—H110.9300
N1—C11.334 (11)C12—C131.345 (15)
N1—C21.367 (12)C12—H120.9300
N1—C41.466 (11)C13—C141.446 (14)
N2—C11.324 (10)C13—H130.9300
N2—C31.380 (11)C14—C151.378 (14)
N2—C71.485 (11)C15—C161.388 (14)
O1—C51.410 (11)C15—H150.9300
O1—C61.432 (12)C16—C171.417 (15)
C2—C31.351 (14)C16—C211.444 (13)
C2—H20.9300C17—C181.355 (15)
C3—H30.9300C17—H170.9300
C4—C51.497 (13)C18—C191.393 (15)
C4—H4A0.9700C18—H180.9300
C4—H4B0.9700C19—C201.371 (15)
C5—H5A0.9700C19—H190.9300
C5—H5B0.9700C20—C211.431 (14)
C6—C6i1.46 (2)C20—H200.9300
C6—H6A0.9700N3—C221.104 (8)
C6—H6B0.9700C22—C231.497 (8)
C7—C81.546 (12)C23—H23A0.9600
C7—H7A0.9700C23—H23B0.9600
C7—H7B0.9700C23—H23C0.9600
C8—C91.397 (14)P1—F61.518 (11)
C8—C211.433 (14)P1—F31.503 (9)
C9—C101.421 (14)P1—F41.527 (8)
C9—C141.422 (13)P1—F11.539 (10)
C10—C111.352 (16)P1—F21.540 (8)
C10—H100.9300P1—F51.561 (8)
C1—Hg1—C1i175.8 (5)C13—C12—C11120.5 (12)
C1—N1—C2111.9 (7)C13—C12—H12119.8
C1—N1—C4124.6 (7)C11—C12—H12119.8
C2—N1—C4123.5 (8)C12—C13—C14121.4 (11)
C1—N2—C3109.9 (8)C12—C13—H13119.3
C1—N2—C7123.6 (7)C14—C13—H13119.3
C3—N2—C7126.5 (7)C15—C14—C9120.8 (10)
C5—O1—C6114.7 (7)C15—C14—C13121.0 (10)
N2—C1—N1105.8 (8)C9—C14—C13118.1 (10)
N2—C1—Hg1128.0 (7)C14—C15—C16121.5 (9)
N1—C1—Hg1126.3 (6)C14—C15—H15119.3
C3—C2—N1105.0 (9)C16—C15—H15119.3
C3—C2—H2127.5C15—C16—C17121.6 (10)
N1—C2—H2127.5C15—C16—C21119.9 (10)
C2—C3—N2107.5 (8)C17—C16—C21118.4 (10)
C2—C3—H3126.3C18—C17—C16121.9 (10)
N2—C3—H3126.3C18—C17—H17119.0
N1—C4—C5112.2 (8)C16—C17—H17119.0
N1—C4—H4A109.2C17—C18—C19120.1 (11)
C5—C4—H4A109.2C17—C18—H18120.0
N1—C4—H4B109.2C19—C18—H18120.0
C5—C4—H4B109.2C20—C19—C18121.1 (11)
H4A—C4—H4B107.9C20—C19—H19119.4
O1—C5—C4107.1 (8)C18—C19—H19119.4
O1—C5—H5A110.3C19—C20—C21120.8 (10)
C4—C5—H5A110.3C19—C20—H20119.6
O1—C5—H5B110.3C21—C20—H20119.6
C4—C5—H5B110.3C20—C21—C8125.0 (9)
H5A—C5—H5B108.5C20—C21—C16117.5 (10)
O1—C6—C6i110.0 (7)C8—C21—C16117.5 (9)
O1—C6—H6A109.7N3—C22—C23176 (3)
C6i—C6—H6A109.7C22—C23—H23A109.5
O1—C6—H6B109.7C22—C23—H23B109.5
C6i—C6—H6B109.7H23A—C23—H23B109.5
H6A—C6—H6B108.2C22—C23—H23C109.5
N2—C7—C8113.3 (7)H23A—C23—H23C109.5
N2—C7—H7A108.9H23B—C23—H23C109.5
C8—C7—H7A108.9F6—P1—F388.8 (9)
N2—C7—H7B108.9F6—P1—F490.0 (7)
C8—C7—H7B108.9F3—P1—F488.4 (6)
H7A—C7—H7B107.7F6—P1—F1178.0 (8)
C9—C8—C21121.6 (9)F3—P1—F193.2 (8)
C9—C8—C7119.6 (9)F4—P1—F190.4 (6)
C21—C8—C7118.7 (9)F6—P1—F290.9 (7)
C8—C9—C10123.4 (9)F3—P1—F293.1 (5)
C8—C9—C14118.6 (10)F4—P1—F2178.3 (6)
C10—C9—C14117.9 (10)F1—P1—F288.7 (7)
C11—C10—C9122.6 (11)F6—P1—F588.0 (8)
C11—C10—H10118.7F3—P1—F5176.8 (9)
C9—C10—H10118.7F4—P1—F592.0 (5)
C10—C11—C12119.4 (11)F1—P1—F590.0 (6)
C10—C11—H11120.3F2—P1—F586.6 (5)
C12—C11—H11120.3
C3—N2—C1—N10.7 (10)C9—C10—C11—C123.4 (18)
C7—N2—C1—N1177.2 (8)C10—C11—C12—C132.1 (19)
C3—N2—C1—Hg1179.4 (7)C11—C12—C13—C141.0 (18)
C7—N2—C1—Hg12.7 (13)C8—C9—C14—C152.8 (15)
C2—N1—C1—N20.5 (11)C10—C9—C14—C15179.9 (10)
C4—N1—C1—N2178.5 (8)C8—C9—C14—C13179.2 (9)
C2—N1—C1—Hg1179.6 (8)C10—C9—C14—C132.1 (14)
C4—N1—C1—Hg11.4 (13)C12—C13—C14—C15179.0 (11)
C1—N1—C2—C30.1 (13)C12—C13—C14—C91.0 (16)
C4—N1—C2—C3178.9 (9)C9—C14—C15—C163.6 (16)
N1—C2—C3—N20.3 (13)C13—C14—C15—C16178.5 (10)
C1—N2—C3—C20.6 (12)C14—C15—C16—C17178.5 (10)
C7—N2—C3—C2177.2 (10)C14—C15—C16—C211.6 (15)
C1—N1—C4—C582.8 (11)C15—C16—C17—C18179.3 (10)
C2—N1—C4—C598.3 (11)C21—C16—C17—C183.7 (15)
C6—O1—C5—C4157.9 (9)C16—C17—C18—C192.1 (16)
N1—C4—C5—O154.2 (11)C17—C18—C19—C201.6 (17)
C5—O1—C6—C6i169.4 (10)C18—C19—C20—C212.7 (16)
C1—N2—C7—C8175.1 (8)C19—C20—C21—C8176.4 (10)
C3—N2—C7—C82.4 (14)C19—C20—C21—C164.3 (14)
N2—C7—C8—C983.4 (11)C9—C8—C21—C20177.5 (9)
N2—C7—C8—C2199.1 (10)C7—C8—C21—C205.0 (14)
C21—C8—C9—C10177.0 (10)C9—C8—C21—C161.8 (14)
C7—C8—C9—C105.6 (15)C7—C8—C21—C16175.7 (8)
C21—C8—C9—C140.0 (14)C15—C16—C21—C20178.3 (9)
C7—C8—C9—C14177.5 (8)C17—C16—C21—C204.7 (13)
C8—C9—C10—C11179.6 (11)C15—C16—C21—C81.1 (13)
C14—C9—C10—C113.4 (17)C17—C16—C21—C8175.9 (8)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···F50.972.483.265 (13)137

Experimental details

Crystal data
Chemical formula[Hg(C42H38N4O2)](PF6)2·2C2H3N
Mr1203.4
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)19.774 (5), 9.774 (3), 24.250 (6)
V3)4687 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.45
Crystal size (mm)0.24 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.775, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
25351, 4804, 3011
Rint0.086
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.169, 1.10
No. of reflections4804
No. of parameters313
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.46, 1.80

Computer programs: APEX2 (Bruker 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Hg1—C12.058 (9)P1—F51.561 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···F50.972.483.265 (13)137
 

Acknowledgements

We acknowledge financial support from the Research Fund for the Education Department of Shanxi Province (No. 2010111) and the financial support from the Opening Foundation of Key Laboratory of Shanxi Province (No. 2009011059-7) and the Shanxi Natural Science Foundation of China (Nos 2006011069 and 2011011006-4).

References

First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, W.-Y. & Dong, G.-Y. (2009). Acta Cryst. E65, m217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNielsen, D. J., Cavell, K. J., Skelton, B. W. & White, A. H. (2006). Organometallics, 25, 4850–4856.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds