organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,6E)-2,6-Bis(2,6-di­chloro­benzyl­­idene)­cyclo­hexa­none

aDepartment of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, bDepartment of Chemistry, Shahre-Rey Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: hmahdavinia@gmail.com

(Received 6 February 2012; accepted 14 February 2012; online 17 February 2012)

The title compound, C20H14Cl4O, was prepared by the reaction of 2,6-dichloro­benzaldehyde and cyclo­hexa­none. In the mol­ecule, the central cyclo­hexa­none ring adopts an envelope conformation, while the terminal benzene rings make a dihedral angle of 57.87 (9)°.

Related literature

For background and applications of aryl­idene cyclo­alkanones, see: Deli et al. (1984[Deli, J., Lorand, T., Szabo, D. & Foldesi, A. (1984). Pharmazie, 39, 539-540.]); Nakano et al. (1987[Nakano, T., Irifune, S. & Inada, A. (1987). J. Org. Chem. 52, 2239-2244.]); Kawamata et al. (1996[Kawamata, J., Inoue, K., Inabe, T., Kiguchi, M., Kato, M. & Taniguchi, Y. (1996). Chem. Phys. Lett. 249, 29-34.]); Dimmock et al. (2003[Dimmock, J. R., Padmanilayam, M. P., Zello, G. A., Nienaber, K. H., Allen, T. M., Santos, C. L., Clercq, E. D., Balzarini, J., Manavathu, E. K. & Stables, J. P. (2003). Eur. J. Med. Chem. 38, 169-177.]); Raj et al. (2003[Raj, A. A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]); Gangadhara (1995[Gangadhara, K. K. (1995). Polymer, 36, 1903-1910.]). For related structures, see: Yu et al. (2000[Yu, R. C., Yakimansky, A. V., Kothe, H., Voigt-Martin, I. G., Schollmeyer, D., Jansen, J., Zandbergen, H. & Tenkovtsev, A. V. (2000). Acta Cryst. A56, 436-450.]); Zhou (2007[Zhou, L.-Y. (2007). Acta Cryst. E63, o3113.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14Cl4O

  • Mr = 412.11

  • Orthorhombic, P n a 21

  • a = 17.917 (4) Å

  • b = 7.3094 (15) Å

  • c = 14.093 (3) Å

  • V = 1845.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 120 K

  • 0.6 × 0.35 × 0.33 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 13510 measured reflections

  • 4946 independent reflections

  • 4682 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.071

  • S = 1.04

  • 4946 reflections

  • 226 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2369 Friedel pairs

  • Flack parameter: 0.01 (4)

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cross-aldol condensation of aromatic aldehydes with cyclic ketones is an important protocol for the synthesis of arylidene cycloalkanones, which are very important precursors to potentially bioactive pyrimidine derivates (Deli et al., 1984), intermediates for agrochemical, pharmaceuticals and perfumes (Nakano et al., 1987), new organic material for nonlinear optical applications (Kawamata et al., 1996), cytotoxic analogous (Dimmock et al., 2003), bis-spiropyrrolidines (Raj et al., 2003) and the units of liquid crystalline polymers (Gangadhara, 1995). Usually, this condensation process is catalyzed by strong acid or base.

In the molecule of the title compound, (Fig. 1), the bond lengths and angles are within normal ranges (Yu et al., 2000; Zhou, 2007). A dihedral angle of 57.87 (9) A is found between the mean planes of the two benzene rings.

Related literature top

For background and applications of arylidene cycloalkanones, see: Deli et al. (1984); Nakano et al. (1987); Kawamata et al. (1996); Dimmock et al. (2003); Raj et al. (2003); Gangadhara (1995). For related structures, see: Yu et al. (2000); Zhou (2007).

Experimental top

To a 10 ml solution of KOH (0.11 g) in ethanol at 313 K in a round bottom flask, cyclohexanone (5.0 mmol, 0.50 g) and 2,6-dichlorobenzaldehyde (10 mmol, 1.75 g) was added and the mixture was stirred for 2 min. The resulting product was then isolated by simple filtration from the reaction mixture and given washings with water to remove any trace of KOH remaining on the product. Yellow crystals, yield 97%, 1.98 g, m. p. 455–458 K.

Refinement top

All H atoms were positioned geometrically with C–H = 0.93–0.97 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(2E,6E)-2,6-Bis(2,6-dichlorobenzylidene)cyclohexanone top
Crystal data top
C20H14Cl4OF(000) = 840
Mr = 412.11Dx = 1.483 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4949 reflections
a = 17.917 (4) Åθ = 2.3–29.2°
b = 7.3094 (15) ŵ = 0.65 mm1
c = 14.093 (3) ÅT = 120 K
V = 1845.7 (7) Å3Needle, yellow
Z = 40.6 × 0.35 × 0.33 mm
Data collection top
Stoe IPDS 2T
diffractometer
4682 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 29.2°, θmin = 2.3°
rotation method scansh = 2424
13510 measured reflectionsk = 810
4946 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.5994P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4946 reflectionsΔρmax = 0.25 e Å3
226 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 2369 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Crystal data top
C20H14Cl4OV = 1845.7 (7) Å3
Mr = 412.11Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.917 (4) ŵ = 0.65 mm1
b = 7.3094 (15) ÅT = 120 K
c = 14.093 (3) Å0.6 × 0.35 × 0.33 mm
Data collection top
Stoe IPDS 2T
diffractometer
4682 reflections with I > 2σ(I)
13510 measured reflectionsRint = 0.043
4946 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.25 e Å3
S = 1.04Δρmin = 0.20 e Å3
4946 reflectionsAbsolute structure: Flack (1983), 2369 Friedel pairs
226 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23181 (3)1.40628 (7)0.99333 (3)0.03179 (11)
Cl30.14648 (3)0.88978 (7)0.82912 (3)0.03028 (10)
Cl40.05216 (3)0.35099 (7)0.89917 (4)0.03460 (11)
Cl20.30403 (3)0.77001 (7)1.16748 (4)0.03902 (13)
C120.04419 (9)0.8310 (2)0.91901 (11)0.0196 (3)
O10.04467 (7)0.94480 (19)1.07669 (9)0.0237 (3)
C60.27374 (10)1.0891 (2)1.07795 (12)0.0211 (3)
C130.07918 (9)0.9234 (2)1.00226 (12)0.0185 (3)
C70.19499 (9)1.0268 (2)1.07289 (12)0.0199 (3)
H70.16861.01781.12950.024*
C90.19554 (9)0.9844 (3)0.89597 (12)0.0253 (3)
H9A0.24900.96790.90320.030*
H9B0.18721.10260.86660.030*
C150.05043 (9)0.6110 (2)0.85940 (12)0.0209 (3)
C50.32884 (10)0.9818 (3)1.12039 (12)0.0252 (4)
C180.11451 (11)0.3989 (3)0.71361 (15)0.0317 (4)
H180.13540.32950.66510.038*
C80.15938 (9)0.9827 (2)0.99274 (12)0.0186 (3)
C10.29745 (11)1.2584 (3)1.04280 (12)0.0253 (4)
C160.02454 (10)0.4355 (3)0.83722 (14)0.0246 (3)
C100.16500 (10)0.8350 (3)0.83127 (13)0.0278 (4)
H10A0.18730.84570.76880.033*
H10B0.17770.71570.85680.033*
C190.14239 (10)0.5721 (3)0.73292 (14)0.0281 (4)
H190.18200.61910.69790.034*
C110.08055 (10)0.8530 (3)0.82365 (12)0.0260 (4)
H11A0.06810.97210.79780.031*
H11B0.06150.76050.78060.031*
C30.42366 (10)1.2027 (3)1.08876 (13)0.0318 (4)
H30.47331.23931.09160.038*
C140.01489 (9)0.7245 (2)0.93404 (12)0.0211 (3)
H140.03500.72100.99480.025*
C200.11038 (10)0.6741 (3)0.80531 (12)0.0222 (3)
C170.05563 (11)0.3289 (3)0.76625 (15)0.0295 (4)
H170.03730.21220.75410.035*
C40.40302 (11)1.0347 (3)1.12538 (14)0.0296 (4)
H40.43840.95841.15300.036*
C20.37123 (11)1.3166 (3)1.04810 (13)0.0298 (4)
H20.38501.43061.02460.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0347 (2)0.0280 (2)0.0326 (2)0.00606 (18)0.00506 (19)0.0103 (2)
Cl30.0346 (2)0.0290 (2)0.0272 (2)0.00852 (18)0.00735 (18)0.00764 (19)
Cl40.0329 (2)0.0303 (2)0.0406 (3)0.00904 (18)0.0048 (2)0.0030 (2)
Cl20.0393 (2)0.0295 (2)0.0483 (3)0.0027 (2)0.0170 (2)0.0103 (2)
C120.0205 (7)0.0212 (8)0.0172 (7)0.0006 (6)0.0003 (6)0.0023 (6)
O10.0229 (6)0.0316 (7)0.0167 (5)0.0022 (5)0.0025 (4)0.0034 (5)
C60.0233 (7)0.0252 (8)0.0147 (6)0.0025 (6)0.0014 (6)0.0006 (6)
C130.0185 (7)0.0214 (7)0.0157 (7)0.0020 (6)0.0008 (6)0.0017 (6)
C70.0214 (7)0.0217 (7)0.0166 (7)0.0015 (6)0.0011 (6)0.0020 (6)
C90.0218 (8)0.0344 (10)0.0197 (7)0.0056 (7)0.0038 (7)0.0032 (8)
C150.0188 (7)0.0219 (8)0.0219 (7)0.0041 (6)0.0023 (6)0.0011 (6)
C50.0273 (9)0.0279 (9)0.0204 (8)0.0009 (7)0.0027 (7)0.0023 (7)
C180.0259 (9)0.0345 (10)0.0348 (10)0.0081 (8)0.0025 (7)0.0151 (9)
C80.0196 (7)0.0193 (7)0.0169 (6)0.0001 (6)0.0001 (6)0.0010 (6)
C10.0267 (8)0.0313 (9)0.0179 (7)0.0039 (7)0.0008 (6)0.0017 (7)
C160.0228 (7)0.0228 (8)0.0283 (9)0.0013 (6)0.0026 (7)0.0026 (7)
C100.0276 (8)0.0360 (10)0.0197 (7)0.0038 (7)0.0050 (7)0.0068 (8)
C190.0233 (8)0.0340 (10)0.0270 (9)0.0018 (7)0.0015 (7)0.0090 (8)
C110.0289 (8)0.0331 (10)0.0160 (7)0.0077 (7)0.0011 (7)0.0018 (7)
C30.0220 (8)0.0518 (12)0.0216 (8)0.0093 (8)0.0008 (7)0.0069 (8)
C140.0212 (7)0.0233 (8)0.0187 (7)0.0006 (7)0.0001 (6)0.0014 (6)
C200.0217 (8)0.0232 (8)0.0216 (8)0.0014 (7)0.0017 (6)0.0040 (6)
C170.0281 (9)0.0241 (9)0.0362 (10)0.0048 (7)0.0066 (8)0.0085 (8)
C40.0232 (8)0.0412 (11)0.0243 (8)0.0021 (8)0.0063 (7)0.0062 (8)
C20.0299 (9)0.0386 (10)0.0210 (8)0.0137 (8)0.0032 (7)0.0017 (8)
Geometric parameters (Å, º) top
Cl1—C11.743 (2)C5—C41.386 (3)
Cl3—C201.7370 (19)C18—C171.388 (3)
Cl4—C161.7414 (19)C18—C191.388 (3)
Cl2—C51.742 (2)C18—H180.9300
C12—C141.331 (2)C1—C21.391 (3)
C12—C131.492 (2)C16—C171.385 (3)
C12—C111.502 (2)C10—C111.523 (3)
O1—C131.228 (2)C10—H10A0.9700
C6—C51.396 (3)C10—H10B0.9700
C6—C11.399 (3)C19—C201.388 (2)
C6—C71.484 (2)C19—H190.9300
C13—C81.507 (2)C11—H11A0.9700
C7—C81.337 (2)C11—H11B0.9700
C7—H70.9300C3—C21.380 (3)
C9—C81.510 (2)C3—C41.382 (3)
C9—C101.524 (3)C3—H30.9300
C9—H9A0.9700C14—H140.9300
C9—H9B0.9700C17—H170.9300
C15—C201.396 (2)C4—H40.9300
C15—C161.399 (3)C2—H20.9300
C15—C141.483 (2)
C14—C12—C13118.29 (15)C15—C16—Cl4118.34 (14)
C14—C12—C11123.35 (15)C11—C10—C9109.69 (15)
C13—C12—C11118.23 (14)C11—C10—H10A109.7
C5—C6—C1115.73 (17)C9—C10—H10A109.7
C5—C6—C7121.37 (17)C11—C10—H10B109.7
C1—C6—C7122.89 (16)C9—C10—H10B109.7
O1—C13—C12121.19 (15)H10A—C10—H10B108.2
O1—C13—C8121.32 (16)C18—C19—C20119.04 (18)
C12—C13—C8117.45 (14)C18—C19—H19120.5
C8—C7—C6124.63 (15)C20—C19—H19120.5
C8—C7—H7117.7C12—C11—C10111.02 (15)
C6—C7—H7117.7C12—C11—H11A109.4
C8—C9—C10112.35 (15)C10—C11—H11A109.4
C8—C9—H9A109.1C12—C11—H11B109.4
C10—C9—H9A109.1C10—C11—H11B109.4
C8—C9—H9B109.1H11A—C11—H11B108.0
C10—C9—H9B109.1C2—C3—C4120.58 (18)
H9A—C9—H9B107.9C2—C3—H3119.7
C20—C15—C16115.85 (16)C4—C3—H3119.7
C20—C15—C14122.20 (16)C12—C14—C15123.77 (15)
C16—C15—C14121.93 (16)C12—C14—H14118.1
C4—C5—C6122.88 (19)C15—C14—H14118.1
C4—C5—Cl2118.28 (15)C19—C20—C15122.83 (18)
C6—C5—Cl2118.83 (14)C19—C20—Cl3118.41 (14)
C17—C18—C19120.36 (18)C15—C20—Cl3118.76 (13)
C17—C18—H18119.8C16—C17—C18118.97 (18)
C19—C18—H18119.8C16—C17—H17120.5
C7—C8—C13116.69 (15)C18—C17—H17120.5
C7—C8—C9123.82 (15)C3—C4—C5119.07 (19)
C13—C8—C9119.47 (14)C3—C4—H4120.5
C2—C1—C6122.69 (18)C5—C4—H4120.5
C2—C1—Cl1118.25 (16)C3—C2—C1119.02 (19)
C6—C1—Cl1119.03 (14)C3—C2—H2120.5
C17—C16—C15122.94 (18)C1—C2—H2120.5
C17—C16—Cl4118.69 (15)
C14—C12—C13—O120.1 (3)C14—C15—C16—Cl40.5 (2)
C11—C12—C13—O1163.96 (17)C8—C9—C10—C1155.7 (2)
C14—C12—C13—C8157.57 (16)C17—C18—C19—C200.2 (3)
C11—C12—C13—C818.4 (2)C14—C12—C11—C10132.96 (18)
C5—C6—C7—C8112.5 (2)C13—C12—C11—C1042.8 (2)
C1—C6—C7—C868.8 (3)C9—C10—C11—C1261.2 (2)
C1—C6—C5—C42.0 (3)C13—C12—C14—C15173.89 (16)
C7—C6—C5—C4179.24 (17)C11—C12—C14—C151.8 (3)
C1—C6—C5—Cl2179.18 (13)C20—C15—C14—C1292.9 (2)
C7—C6—C5—Cl20.4 (2)C16—C15—C14—C1285.4 (2)
C6—C7—C8—C13179.65 (16)C18—C19—C20—C150.7 (3)
C6—C7—C8—C92.1 (3)C18—C19—C20—Cl3179.49 (15)
O1—C13—C8—C712.3 (2)C16—C15—C20—C190.8 (3)
C12—C13—C8—C7165.39 (16)C14—C15—C20—C19177.55 (17)
O1—C13—C8—C9169.41 (17)C16—C15—C20—Cl3179.37 (13)
C12—C13—C8—C912.9 (2)C14—C15—C20—Cl32.3 (2)
C10—C9—C8—C7146.11 (18)C15—C16—C17—C180.8 (3)
C10—C9—C8—C1332.1 (2)Cl4—C16—C17—C18176.99 (15)
C5—C6—C1—C20.9 (3)C19—C18—C17—C160.9 (3)
C7—C6—C1—C2179.69 (17)C2—C3—C4—C50.2 (3)
C5—C6—C1—Cl1177.17 (13)C6—C5—C4—C31.4 (3)
C7—C6—C1—Cl11.6 (2)Cl2—C5—C4—C3179.70 (14)
C20—C15—C16—C170.1 (3)C4—C3—C2—C11.2 (3)
C14—C15—C16—C17178.32 (17)C6—C1—C2—C30.6 (3)
C20—C15—C16—Cl4177.86 (13)Cl1—C1—C2—C3178.73 (14)

Experimental details

Crystal data
Chemical formulaC20H14Cl4O
Mr412.11
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)120
a, b, c (Å)17.917 (4), 7.3094 (15), 14.093 (3)
V3)1845.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.6 × 0.35 × 0.33
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13510, 4946, 4682
Rint0.043
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.071, 1.04
No. of reflections4946
No. of parameters226
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20
Absolute structureFlack (1983), 2369 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are grateful to the Islamic Azad University, Marvdasht Branch, for financial support.

References

First citationDeli, J., Lorand, T., Szabo, D. & Foldesi, A. (1984). Pharmazie, 39, 539–540.  CAS PubMed Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Zello, G. A., Nienaber, K. H., Allen, T. M., Santos, C. L., Clercq, E. D., Balzarini, J., Manavathu, E. K. & Stables, J. P. (2003). Eur. J. Med. Chem. 38, 169–177.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGangadhara, K. K. (1995). Polymer, 36, 1903–1910.  CrossRef CAS Google Scholar
First citationKawamata, J., Inoue, K., Inabe, T., Kiguchi, M., Kato, M. & Taniguchi, Y. (1996). Chem. Phys. Lett. 249, 29–34.  CrossRef CAS Web of Science Google Scholar
First citationNakano, T., Irifune, S. & Inada, A. (1987). J. Org. Chem. 52, 2239–2244.  CrossRef CAS Web of Science Google Scholar
First citationRaj, A. A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany  Google Scholar
First citationYu, R. C., Yakimansky, A. V., Kothe, H., Voigt-Martin, I. G., Schollmeyer, D., Jansen, J., Zandbergen, H. & Tenkovtsev, A. V. (2000). Acta Cryst. A56, 436–450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhou, L.-Y. (2007). Acta Cryst. E63, o3113.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds