metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{2-[(2,6-di­methyl­phen­yl)imino­meth­yl]pyridine-κ2N,N′}zinc

aSchool of Chemistry and Chemical Engineering, GuangDong Pharmaceutical University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: flairzhao@163.com

(Received 17 January 2012; accepted 12 February 2012; online 24 February 2012)

In the asymmetric unit of the title compound, [ZnCl2(C14H14N2)], the central ZnII ion is four-coordinated in a distorted tetra­hedral environment by two N atoms of the ligand 2-[(2,6-dimethyl­phen­yl)imino­meth­yl]pyridine and two chloride anions. In the crystal, adjacent mol­ecules are connected through C—H⋯Cl hydrogen bonds between a C—H group of the ligand and a Cl anion, leading to a chain-like structure along the b direction.

Related literature

For related structures, see: Roy et al. (2011[Roy, A. S., Saha, P., Mitra, P., Maity, S. S., Ghosh, S. & Ghosh, P. (2011). Dalton Trans. 40, 7375-7384.]); Shi et al. (2010[Shi, Y.-F., Feng, Q.-H., Zhao, W.-J., Shi, Y.-B. & Zhan, P. (2010). Acta Cryst. E66, m593.]); Talei Bavil Olyai et al. (2008[Talei Bavil Olyai, M. R., Dehghanpour, S., Hoormehr, B., Gholami, F. & Khavasi, H. R. (2008). Acta Cryst. E64, m1191.]); Schulz et al. (2009[Schulz, M., Klopfleisch, M., Görls, H., Kahnes, M. & Westerhausen, M. (2009). Inorg. Chim. Acta, 362, 4706-4712.]); Hathwar et al.. (2010[Hathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Row, T. N. G. (2010). J. Chem. Sci. 122, 677-685.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C14H14N2)]

  • Mr = 346.54

  • Monoclinic, P 21 /c

  • a = 14.360 (4) Å

  • b = 8.222 (2) Å

  • c = 13.176 (4) Å

  • β = 105.770 (3)°

  • V = 1497.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 296 K

  • 0.80 × 0.60 × 0.60 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.300, Tmax = 0.382

  • 7309 measured reflections

  • 2620 independent reflections

  • 2099 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.071

  • S = 1.01

  • 2620 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl1i 0.93 2.95 3.762 (3) 147
C6—H6⋯Cl1i 0.93 2.85 3.675 (3) 148
C1—H1⋯Cl2ii 0.93 2.93 3.684 (3) 139
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the bidentate [N, N] ligand such as pyridineimine have drawn much attention owing to their valuable applications in the fields of catalysis, conjugated organic devices. These bidentate ligands can be modified by tuning the substituents. Therefore, different steric and electronic properties are achieved easily. Various zinc metal complexes (Roy et al. 2011; Shi et al. 2010; Talei Bavil Olyai et al. 2008; Schulz et al. 2009) have been developed. In order to enrich this family type of compounds, we report the single-crystal growth and structure investigation of title compound [Zn(C14H14N2)Cl2].

The molecular structure of the compound is shown in Fig. 1. The solid-state structure showed a distorted tetrahedral coordinate geometry formed by two N atoms from the ligand 2,6-dimethyl-N-(pyridine-2-ylmethylene)aniline and two chloride atoms, with the Zn—N distances of 2.071 (2) and 2.078 (2) Å and the Zn—Cl distances of 2.1972 (10) and 2.2135 (11) Å. On an over view (Fig. 2), the adjacent molecules were connected through the C—H···Cl inter-molecule hydrogen bonds between the C—H group of the ligand and the Cl atom, leading to a one-dimensional chain-like structure.

Related literature top

For related structures, see: Roy et al. (2011); Shi et al. (2010); Talei Bavil Olyai et al. (2008); Schulz et al. (2009).

Experimental top

A mixture of picolinaldehyde (0.0535 g, 0.5 mmol) and 2,6-dimethylaniline (0.0606 g, 0.5 mmol) was refluxed in CH3OH (20 ml) for 2 h, ZnCl2 (0.0682 g, 0.5 mmol) was added and refluxed for another 30 min, then cooled to the room temperature gradually, yellow precipitates were obtained at this time, which were dissolved in the solution of DMSO (5 ml) and CH3OH (3 ml). After the evaporation process at room temperature for about 12 d, yellow crystals were got.

Refinement top

X-ray data were collected on a APEX2 (Bruker, 2001).Semi-empirical absorption corrections were made using SADABS. The structures were solved using direct methods, followed by full matrix least-squares refinement against F2 (all data) using SHELXTL. Anisotropic refinement for all ordered non-H atoms; organic H atoms were placed in calculated positions.

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound drawn with 50% ellipsoidal probability.
[Figure 2] Fig. 2. The one-dimensional chain-like structure connected through the C—H···Cl inter-molecule hydrogen bonds.
Dichlorido{2-[(2,6-dimethylphenyl)iminomethyl]pyridine- κ2N,N'}zinc top
Crystal data top
[ZnCl2(C14H14N2)]F(000) = 704
Mr = 346.54Dx = 1.538 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.360 (4) ÅCell parameters from 2535 reflections
b = 8.222 (2) Åθ = 2.9–25.3°
c = 13.176 (4) ŵ = 1.98 mm1
β = 105.770 (3)°T = 296 K
V = 1497.0 (7) Å3Block, yellow
Z = 40.80 × 0.60 × 0.60 mm
Data collection top
Bruker APEXII CCD
diffractometer
2620 independent reflections
Radiation source: fine-focus sealed tube2099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1617
Tmin = 0.300, Tmax = 0.382k = 89
7309 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0267P)2 + 0.7932P]
where P = (Fo2 + 2Fc2)/3
2620 reflections(Δ/σ)max = 0.002
174 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[ZnCl2(C14H14N2)]V = 1497.0 (7) Å3
Mr = 346.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.360 (4) ŵ = 1.98 mm1
b = 8.222 (2) ÅT = 296 K
c = 13.176 (4) Å0.80 × 0.60 × 0.60 mm
β = 105.770 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2620 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2099 reflections with I > 2σ(I)
Tmin = 0.300, Tmax = 0.382Rint = 0.027
7309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
2620 reflectionsΔρmin = 0.34 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.30152 (2)0.11718 (4)0.46883 (3)0.03949 (12)
C10.50567 (19)0.2130 (4)0.6054 (2)0.0479 (7)
H10.52530.10720.59700.058*
C20.5729 (2)0.3225 (4)0.6611 (3)0.0543 (8)
H20.63640.29010.69160.065*
C30.5449 (2)0.4803 (4)0.6712 (2)0.0526 (8)
H30.58970.55680.70660.063*
C40.4498 (2)0.5235 (4)0.6283 (2)0.0458 (7)
H40.42910.62940.63440.055*
C50.38552 (19)0.4066 (3)0.5760 (2)0.0354 (6)
C60.28131 (19)0.4390 (3)0.5312 (2)0.0365 (6)
H60.25650.54200.53730.044*
C70.12475 (18)0.3613 (3)0.4352 (2)0.0347 (6)
C80.05578 (19)0.2822 (3)0.4741 (2)0.0384 (7)
C90.0408 (2)0.3138 (4)0.4244 (3)0.0489 (8)
H90.08860.26410.44900.059*
C100.0669 (2)0.4178 (4)0.3393 (3)0.0545 (9)
H100.13200.43730.30690.065*
C110.0025 (2)0.4922 (4)0.3023 (2)0.0490 (8)
H110.01630.56130.24450.059*
C120.10028 (19)0.4669 (3)0.3492 (2)0.0394 (7)
C130.1757 (2)0.5507 (4)0.3071 (2)0.0546 (8)
H13A0.20120.64250.35080.082*
H13B0.14660.58700.23630.082*
H13C0.22700.47590.30730.082*
C140.0848 (2)0.1719 (4)0.5686 (3)0.0541 (8)
H14A0.11710.07780.55140.081*
H14B0.02820.13860.58850.081*
H14C0.12780.22900.62610.081*
Cl10.28638 (6)0.11449 (9)0.54595 (8)0.0664 (3)
Cl20.31417 (6)0.11215 (10)0.30514 (6)0.0610 (2)
N10.41315 (14)0.2537 (3)0.56299 (17)0.0372 (5)
N20.22550 (14)0.3265 (2)0.48443 (16)0.0319 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03867 (19)0.02821 (18)0.0486 (2)0.00313 (14)0.00686 (15)0.00420 (15)
C10.0391 (16)0.0441 (18)0.058 (2)0.0072 (14)0.0085 (14)0.0018 (15)
C20.0352 (16)0.062 (2)0.060 (2)0.0025 (15)0.0026 (15)0.0056 (17)
C30.0437 (18)0.055 (2)0.054 (2)0.0138 (15)0.0047 (15)0.0060 (16)
C40.0460 (17)0.0403 (17)0.0492 (19)0.0061 (14)0.0099 (14)0.0073 (14)
C50.0373 (14)0.0338 (15)0.0341 (15)0.0008 (12)0.0080 (12)0.0007 (12)
C60.0402 (15)0.0283 (14)0.0409 (16)0.0049 (12)0.0106 (13)0.0023 (12)
C70.0337 (14)0.0268 (14)0.0408 (16)0.0025 (11)0.0055 (12)0.0067 (12)
C80.0415 (16)0.0264 (14)0.0473 (17)0.0014 (12)0.0121 (13)0.0112 (12)
C90.0374 (16)0.0419 (17)0.069 (2)0.0048 (14)0.0172 (15)0.0166 (16)
C100.0353 (16)0.053 (2)0.066 (2)0.0099 (15)0.0012 (15)0.0161 (17)
C110.0480 (18)0.0470 (18)0.0459 (19)0.0127 (15)0.0023 (15)0.0020 (14)
C120.0409 (15)0.0358 (15)0.0393 (17)0.0070 (13)0.0072 (13)0.0034 (13)
C130.0586 (19)0.0528 (19)0.052 (2)0.0047 (16)0.0135 (16)0.0106 (16)
C140.0572 (19)0.0446 (17)0.066 (2)0.0003 (15)0.0270 (17)0.0063 (16)
Cl10.0729 (6)0.0314 (4)0.0953 (7)0.0023 (4)0.0236 (5)0.0090 (4)
Cl20.0668 (5)0.0669 (5)0.0487 (5)0.0093 (4)0.0148 (4)0.0096 (4)
N10.0327 (12)0.0325 (12)0.0436 (14)0.0044 (10)0.0057 (10)0.0014 (10)
N20.0330 (11)0.0275 (11)0.0346 (12)0.0026 (10)0.0082 (10)0.0005 (10)
Geometric parameters (Å, º) top
Zn1—N12.071 (2)C7—C121.394 (4)
Zn1—N22.078 (2)C7—N21.444 (3)
Zn1—Cl12.1972 (10)C8—C91.387 (4)
Zn1—Cl22.2135 (11)C8—C141.504 (4)
C1—N11.336 (3)C9—C101.379 (4)
C1—C21.377 (4)C9—H90.9300
C1—H10.9300C10—C111.367 (4)
C2—C31.375 (4)C10—H100.9300
C2—H20.9300C11—C121.388 (4)
C3—C41.376 (4)C11—H110.9300
C3—H30.9300C12—C131.511 (4)
C4—C51.379 (4)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—N11.343 (3)C13—H13C0.9600
C5—C61.476 (4)C14—H14A0.9600
C6—N21.269 (3)C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—C81.394 (4)
N1—Zn1—N280.43 (8)C10—C9—C8121.1 (3)
N1—Zn1—Cl1110.53 (7)C10—C9—H9119.5
N2—Zn1—Cl1123.47 (7)C8—C9—H9119.5
N1—Zn1—Cl2109.80 (7)C11—C10—C9120.2 (3)
N2—Zn1—Cl2107.24 (6)C11—C10—H10119.9
Cl1—Zn1—Cl2118.63 (4)C9—C10—H10119.9
N1—C1—C2122.1 (3)C10—C11—C12121.4 (3)
N1—C1—H1118.9C10—C11—H11119.3
C2—C1—H1118.9C12—C11—H11119.3
C3—C2—C1119.2 (3)C11—C12—C7117.1 (3)
C3—C2—H2120.4C11—C12—C13120.5 (3)
C1—C2—H2120.4C7—C12—C13122.4 (2)
C2—C3—C4119.2 (3)C12—C13—H13A109.5
C2—C3—H3120.4C12—C13—H13B109.5
C4—C3—H3120.4H13A—C13—H13B109.5
C3—C4—C5118.7 (3)C12—C13—H13C109.5
C3—C4—H4120.7H13A—C13—H13C109.5
C5—C4—H4120.7H13B—C13—H13C109.5
N1—C5—C4122.3 (2)C8—C14—H14A109.5
N1—C5—C6114.9 (2)C8—C14—H14B109.5
C4—C5—C6122.8 (2)H14A—C14—H14B109.5
N2—C6—C5120.0 (2)C8—C14—H14C109.5
N2—C6—H6120.0H14A—C14—H14C109.5
C5—C6—H6120.0H14B—C14—H14C109.5
C8—C7—C12122.8 (2)C1—N1—C5118.4 (2)
C8—C7—N2117.9 (2)C1—N1—Zn1129.37 (19)
C12—C7—N2119.3 (2)C5—N1—Zn1112.12 (16)
C9—C8—C7117.3 (3)C6—N2—C7119.8 (2)
C9—C8—C14121.3 (3)C6—N2—Zn1111.88 (17)
C7—C8—C14121.4 (2)C7—N2—Zn1127.51 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.932.953.762 (3)147
C6—H6···Cl1i0.932.853.675 (3)148
C1—H1···Cl2ii0.932.933.684 (3)139
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[ZnCl2(C14H14N2)]
Mr346.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.360 (4), 8.222 (2), 13.176 (4)
β (°) 105.770 (3)
V3)1497.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.80 × 0.60 × 0.60
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.300, 0.382
No. of measured, independent and
observed [I > 2σ(I)] reflections
7309, 2620, 2099
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.071, 1.01
No. of reflections2620
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.34

Computer programs: APEX2 (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.932.953.762 (3)146.9
C6—H6···Cl1i0.932.853.675 (3)147.9
C1—H1···Cl2ii0.932.933.684 (3)138.6
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (grant No. 21004014) for financial support.

References

First citationBruker (2001). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Row, T. N. G. (2010). J. Chem. Sci. 122, 677–685.  CSD CrossRef CAS Google Scholar
First citationRoy, A. S., Saha, P., Mitra, P., Maity, S. S., Ghosh, S. & Ghosh, P. (2011). Dalton Trans. 40, 7375–7384.  CAS PubMed Google Scholar
First citationSchulz, M., Klopfleisch, M., Görls, H., Kahnes, M. & Westerhausen, M. (2009). Inorg. Chim. Acta, 362, 4706-4712.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y.-F., Feng, Q.-H., Zhao, W.-J., Shi, Y.-B. & Zhan, P. (2010). Acta Cryst. E66, m593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTalei Bavil Olyai, M. R., Dehghanpour, S., Hoormehr, B., Gholami, F. & Khavasi, H. R. (2008). Acta Cryst. E64, m1191.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds