organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2-Bromo­phen­yl)-1-(3,4-dimeth­­oxy­phen­yl)prop-2-en-1-one

aLife Science College, Wenzhou Medical College, Wenzhou, Zhejiang Province 325035, People's Republic of China, and bSchool of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang Province 325035, People's Republic of China
*Correspondence e-mail: csh97012@yahoo.com.cn

(Received 14 December 2011; accepted 10 February 2012; online 17 February 2012)

The crystal structure of the title compound, C17H15BrO3, a chalcone derivative, exhibits two crystallographically independent mol­ecules per asymmetric unit showing an E conformation about the ethyl­ene double bond. In each mol­ecule, the two phenyl rings are almost coplanar: the mean planes make dihedral angles of 9.3 (2) and 19.4 (2)°. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Wu et al. (2009[Wu, J. Z., Zhang, L., Wang, J., Yang, S. L. & Li, X. K. (2009). Acta Cryst. E65, o2805.], 2010[Wu, J. Z., Wang, C., Cai, Y. P., Yang, S. L., Zheng, X. Y., Qiu, P. H., Peng, J., Wu, X. P., Liang, G. & Li, X. K. (2010). Chin. J. Org. Chem. 30, 884-889.], 2011a[Wu, J. Z., Li, J. L., Cai, Y. P., Pan, Y., Ye, F. Q., Zhang, Y. L., Zhao, Y. J., Yang, S. L., Li, X. K. & Liang, G. (2011a). J. Med. Chem. 54, 8110-8123.],b[Wu, J. Z., Wang, C., Cai, Y. P., Peng, J., Liang, D. L., Zhao, Y. J., Yang, S. L., Li, X. K., Wu, X. P. & Liang, G. (2011b). Med. Chem. Res. doi: 10.1007/s00044-011-9549-9.]); Huang et al. (2010[Huang, T., Zhang, D., Yang, Q., Wei, X. & Wu, J. (2010). Acta Cryst. E66, o2518.]); Peng et al. (2010[Peng, J., Xu, H., Li, Z., Zhang, Y. & Wu, J. (2010). Acta Cryst. E66, o1156-o1157.]). For background to and applications of chalcones, see: Nielsen et al. (2005[Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.]); Wu et al. (2010[Wu, J. Z., Wang, C., Cai, Y. P., Yang, S. L., Zheng, X. Y., Qiu, P. H., Peng, J., Wu, X. P., Liang, G. & Li, X. K. (2010). Chin. J. Org. Chem. 30, 884-889.], 2011a[Wu, J. Z., Li, J. L., Cai, Y. P., Pan, Y., Ye, F. Q., Zhang, Y. L., Zhao, Y. J., Yang, S. L., Li, X. K. & Liang, G. (2011a). J. Med. Chem. 54, 8110-8123.],b[Wu, J. Z., Wang, C., Cai, Y. P., Peng, J., Liang, D. L., Zhao, Y. J., Yang, S. L., Li, X. K., Wu, X. P. & Liang, G. (2011b). Med. Chem. Res. doi: 10.1007/s00044-011-9549-9.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrO3

  • Mr = 347.20

  • Triclinic, [P \overline 1]

  • a = 11.574 (6) Å

  • b = 11.781 (6) Å

  • c = 11.877 (6) Å

  • α = 91.857 (9)°

  • β = 107.021 (9)°

  • γ = 91.917 (9)°

  • V = 1546.2 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.67 mm−1

  • T = 298 K

  • 0.49 × 0.34 × 0.24 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.355, Tmax = 0.567

  • 7968 measured reflections

  • 5326 independent reflections

  • 3031 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.00

  • 5326 reflections

  • 383 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29⋯O2i 0.93 2.59 3.256 (5) 129
C33—H33A⋯O1ii 0.96 2.46 3.323 (5) 149
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Natural chalcones exist widely in vegetables, fruits, medicinal plants, and so on. Natural and synthetical chalcones have extensive biological properties such as anti-inflammatory, antitumor, antioxidant (Nielsen et al., 2005; Wu et al., 2010, 2011a,b). We synthesized a series of chalcones in order to study antitumor activity. We obtain monocrystals of the title compound, and its crystal structure was characterized by a X-ray diffraction study.

The crystal structure of the title compound, C17H15BrO3, a chalcone derivative, exhibits two crystallographically independent molecules per asymmetric unit showing an E configuration about the ethylene double bond (see for instance: Wu et al., 2009; Peng et al., 2010; Huang et al., 2010). In each molecule, the two phenyl rings are almost coplanar: the mean planes make dihedral angles of 9.3 (2) and 19.4 (2)°. In the crystal, molecules are linked through weak intermolecular C—H···O hydrogen bonds.

Related literature top

For related structures, see: Wu et al. (2009, 2010, 2011a,b); Huang et al. (2010); Peng et al. (2010). For background to and applications of chalcones, see: Nielsen et al. (2005); Wu et al. (2010, 2011a,b).

Experimental top

The title compound was synthesized by Claisene–Schmidt condensation between 3,4-dimethoxybenzaldehyde and 2'-bromoacetophenone. 3,4-Dimethoxybenzaldehyde (1 mmol) and 2'-bromoacetophenone (1 mmol) were dissolved in ethanol (10 ml). NaOH (40%, 5 drops) was added at 283 K. The temperature during the whole reaction was controlled to remain below 288 K. The reaction was monitored by thin-layer chromatography. After reaction was over, 10 ml H2O was added and the white solid was precipitated, washed with a mixture of water and cold ethanol (10:1), and dried (yield: 75.3%, m.p. 372–376 K). The title compound was dissolved in a mixture solution of ethanol and dichloromethane. Single crystals were obtained by solvent evaporation.

Refinement top

All hydrogen positions were calculated after each cycle of refinement using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitrary size.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the crystallographic b axis.
(E)-3-(2-bromophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C17H15BrO3Z = 4
Mr = 347.20F(000) = 704
Triclinic, P1Dx = 1.492 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.574 (6) ÅCell parameters from 2084 reflections
b = 11.781 (6) Åθ = 2.4–22.1°
c = 11.877 (6) ŵ = 2.67 mm1
α = 91.857 (9)°T = 298 K
β = 107.021 (9)°Block, colourless
γ = 91.917 (9)°0.49 × 0.34 × 0.24 mm
V = 1546.2 (13) Å3
Data collection top
Bruker APEX
diffractometer
5326 independent reflections
Radiation source: fine-focus sealed tube3031 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 137
Tmin = 0.355, Tmax = 0.567k = 1314
7968 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0693P)2]
where P = (Fo2 + 2Fc2)/3
5326 reflections(Δ/σ)max = 0.001
383 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
C17H15BrO3γ = 91.917 (9)°
Mr = 347.20V = 1546.2 (13) Å3
Triclinic, P1Z = 4
a = 11.574 (6) ÅMo Kα radiation
b = 11.781 (6) ŵ = 2.67 mm1
c = 11.877 (6) ÅT = 298 K
α = 91.857 (9)°0.49 × 0.34 × 0.24 mm
β = 107.021 (9)°
Data collection top
Bruker APEX
diffractometer
5326 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3031 reflections with I > 2σ(I)
Tmin = 0.355, Tmax = 0.567Rint = 0.020
7968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.00Δρmax = 0.60 e Å3
5326 reflectionsΔρmin = 0.75 e Å3
383 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.31399 (5)0.24675 (5)0.31891 (5)0.1117 (3)
Br20.65864 (5)0.47379 (5)1.48067 (4)0.1092 (3)
O10.9383 (3)0.2110 (3)0.0037 (3)0.0994 (11)
O20.5144 (2)0.1793 (2)0.2772 (2)0.0612 (7)
O30.4199 (2)0.0087 (2)0.2365 (2)0.0663 (7)
O40.3197 (2)0.4779 (3)1.1131 (3)0.0945 (10)
O50.0283 (2)0.3636 (2)0.7519 (2)0.0674 (7)
O60.0593 (2)0.2352 (2)0.6217 (2)0.0712 (8)
C11.2701 (3)0.0977 (4)0.3508 (3)0.0687 (11)
C21.3450 (4)0.0455 (5)0.4462 (4)0.0872 (15)
H21.41510.08370.49310.105*
C31.3160 (4)0.0620 (6)0.4713 (4)0.0916 (15)
H31.36710.09720.53480.110*
C41.2123 (4)0.1185 (4)0.4041 (4)0.0833 (13)
H41.19250.19160.42170.100*
C51.1384 (3)0.0663 (4)0.3111 (3)0.0669 (11)
H51.06870.10580.26520.080*
C61.1626 (3)0.0426 (3)0.2819 (3)0.0564 (10)
C71.0796 (3)0.0964 (3)0.1822 (3)0.0611 (10)
H71.10880.16270.15760.073*
C80.9686 (3)0.0613 (3)0.1239 (3)0.0618 (10)
H80.93550.00460.14540.074*
C90.8956 (3)0.1246 (4)0.0248 (3)0.0625 (10)
C100.7700 (3)0.0834 (3)0.0386 (3)0.0535 (9)
C110.7197 (3)0.0189 (3)0.0212 (3)0.0614 (10)
H110.76480.06580.03510.074*
C120.6032 (3)0.0537 (3)0.0856 (3)0.0605 (10)
H120.57020.12340.07270.073*
C130.5364 (3)0.0158 (3)0.1691 (3)0.0515 (9)
C140.5866 (3)0.1193 (3)0.1896 (3)0.0473 (8)
C150.7013 (3)0.1528 (3)0.1241 (3)0.0524 (9)
H150.73420.22270.13660.063*
C160.5611 (4)0.2853 (3)0.3024 (4)0.0765 (12)
H16A0.57800.33610.23420.115*
H16B0.50250.31730.36700.115*
H16C0.63420.27400.32320.115*
C170.3661 (4)0.1170 (4)0.2221 (4)0.0778 (13)
H17A0.40910.17680.24640.117*
H17B0.28300.12220.26960.117*
H17C0.37010.12430.14080.117*
C180.7467 (3)0.4225 (3)1.3779 (3)0.0659 (11)
C190.8659 (4)0.4014 (4)1.4280 (4)0.0818 (13)
H190.90100.41231.50890.098*
C200.9328 (4)0.3639 (4)1.3572 (5)0.0896 (15)
H201.01390.34941.39070.108*
C210.8821 (4)0.3475 (4)1.2382 (5)0.0785 (12)
H210.92880.32341.19100.094*
C220.7612 (3)0.3668 (3)1.1886 (4)0.0628 (10)
H220.72680.35371.10790.075*
C230.6898 (3)0.4055 (3)1.2563 (3)0.0555 (9)
C240.5611 (3)0.4248 (3)1.2031 (3)0.0579 (9)
H240.52370.46671.24900.069*
C250.4934 (3)0.3899 (3)1.0985 (3)0.0577 (10)
H250.52770.34841.04960.069*
C260.3628 (3)0.4145 (3)1.0551 (3)0.0577 (10)
C270.2870 (3)0.3600 (3)0.9424 (3)0.0511 (9)
C280.3319 (3)0.2920 (3)0.8702 (3)0.0555 (9)
H280.41330.27570.89390.067*
C290.2586 (3)0.2475 (3)0.7631 (3)0.0604 (10)
H290.29050.20070.71610.072*
C300.1385 (3)0.2725 (3)0.7262 (3)0.0525 (9)
C310.0910 (3)0.3418 (3)0.7983 (3)0.0524 (9)
C320.1640 (3)0.3843 (3)0.9051 (3)0.0533 (9)
H320.13190.42940.95320.064*
C330.0848 (3)0.4297 (3)0.8225 (3)0.0666 (11)
H33A0.08330.39030.89230.100*
H33B0.16710.44110.77830.100*
H33C0.04190.50200.84420.100*
C340.1004 (4)0.1567 (5)0.5498 (4)0.1024 (17)
H34A0.16550.19190.52680.154*
H34B0.03510.13460.48080.154*
H34C0.12830.09070.59340.154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0906 (4)0.0923 (4)0.1373 (5)0.0230 (3)0.0170 (3)0.0320 (3)
Br20.1124 (4)0.1390 (6)0.0687 (3)0.0344 (4)0.0123 (3)0.0010 (3)
O10.0711 (19)0.102 (3)0.102 (2)0.0269 (18)0.0118 (16)0.0457 (19)
O20.0512 (14)0.0496 (16)0.0749 (17)0.0054 (12)0.0047 (12)0.0129 (13)
O30.0526 (15)0.0552 (17)0.0806 (18)0.0091 (13)0.0041 (13)0.0067 (13)
O40.0570 (17)0.116 (3)0.093 (2)0.0218 (17)0.0012 (15)0.0437 (19)
O50.0446 (14)0.083 (2)0.0687 (16)0.0124 (13)0.0087 (12)0.0123 (14)
O60.0571 (15)0.090 (2)0.0599 (16)0.0101 (14)0.0076 (13)0.0165 (14)
C10.054 (2)0.087 (3)0.060 (2)0.002 (2)0.012 (2)0.023 (2)
C20.047 (3)0.130 (5)0.069 (3)0.010 (3)0.003 (2)0.027 (3)
C30.069 (3)0.138 (5)0.064 (3)0.024 (3)0.012 (2)0.012 (3)
C40.062 (3)0.113 (4)0.074 (3)0.014 (3)0.016 (2)0.026 (3)
C50.050 (2)0.088 (3)0.056 (2)0.005 (2)0.0049 (19)0.010 (2)
C60.047 (2)0.071 (3)0.049 (2)0.0059 (19)0.0117 (17)0.0051 (19)
C70.059 (2)0.063 (3)0.059 (2)0.0018 (19)0.0133 (19)0.0015 (19)
C80.053 (2)0.069 (3)0.058 (2)0.000 (2)0.0078 (19)0.0084 (19)
C90.056 (2)0.069 (3)0.057 (2)0.002 (2)0.0077 (19)0.010 (2)
C100.052 (2)0.056 (2)0.051 (2)0.0005 (18)0.0124 (17)0.0058 (18)
C110.063 (2)0.064 (3)0.053 (2)0.004 (2)0.0094 (19)0.0086 (19)
C120.062 (2)0.056 (2)0.060 (2)0.003 (2)0.013 (2)0.0102 (19)
C130.048 (2)0.052 (2)0.053 (2)0.0002 (18)0.0128 (17)0.0003 (17)
C140.047 (2)0.044 (2)0.050 (2)0.0053 (17)0.0110 (16)0.0036 (16)
C150.053 (2)0.049 (2)0.055 (2)0.0006 (17)0.0136 (18)0.0067 (17)
C160.074 (3)0.048 (3)0.095 (3)0.007 (2)0.002 (2)0.021 (2)
C170.068 (3)0.069 (3)0.091 (3)0.021 (2)0.017 (2)0.005 (2)
C180.061 (2)0.059 (3)0.067 (3)0.003 (2)0.002 (2)0.007 (2)
C190.068 (3)0.075 (3)0.080 (3)0.000 (2)0.014 (3)0.007 (2)
C200.057 (3)0.074 (3)0.119 (4)0.002 (2)0.004 (3)0.014 (3)
C210.053 (3)0.067 (3)0.112 (4)0.002 (2)0.021 (3)0.005 (3)
C220.052 (2)0.055 (3)0.076 (3)0.0033 (19)0.011 (2)0.001 (2)
C230.049 (2)0.040 (2)0.068 (2)0.0061 (17)0.0037 (19)0.0036 (18)
C240.050 (2)0.054 (2)0.063 (2)0.0038 (18)0.0073 (18)0.0033 (18)
C250.046 (2)0.057 (2)0.064 (2)0.0010 (17)0.0074 (18)0.0017 (19)
C260.048 (2)0.059 (3)0.063 (2)0.0063 (19)0.0101 (19)0.0017 (19)
C270.044 (2)0.049 (2)0.057 (2)0.0021 (17)0.0105 (17)0.0057 (17)
C280.0420 (19)0.064 (3)0.061 (2)0.0125 (18)0.0138 (18)0.0076 (19)
C290.054 (2)0.067 (3)0.061 (2)0.0157 (19)0.0173 (19)0.0037 (19)
C300.048 (2)0.055 (2)0.052 (2)0.0037 (18)0.0106 (17)0.0018 (17)
C310.0361 (19)0.058 (2)0.061 (2)0.0074 (17)0.0096 (17)0.0031 (18)
C320.047 (2)0.051 (2)0.061 (2)0.0058 (17)0.0146 (18)0.0018 (18)
C330.042 (2)0.077 (3)0.081 (3)0.0096 (19)0.0188 (19)0.002 (2)
C340.096 (3)0.126 (5)0.075 (3)0.026 (3)0.012 (3)0.032 (3)
Geometric parameters (Å, º) top
Br1—C11.892 (5)C16—H16A0.9600
Br2—C181.902 (4)C16—H16B0.9600
O1—C91.217 (4)C16—H16C0.9600
O2—C141.363 (4)C17—H17A0.9600
O2—C161.419 (4)C17—H17B0.9600
O3—C131.367 (4)C17—H17C0.9600
O3—C171.438 (4)C18—C191.367 (6)
O4—C261.214 (4)C18—C231.405 (5)
O5—C311.365 (4)C19—C201.372 (7)
O5—C331.432 (4)C19—H190.9300
O6—C301.358 (4)C20—C211.367 (6)
O6—C341.423 (5)C20—H200.9300
C1—C21.386 (6)C21—C221.379 (5)
C1—C61.399 (5)C21—H210.9300
C2—C31.364 (6)C22—C231.388 (5)
C2—H20.9300C22—H220.9300
C3—C41.368 (6)C23—C241.466 (5)
C3—H30.9300C24—C251.304 (4)
C4—C51.362 (5)C24—H240.9300
C4—H40.9300C25—C261.489 (5)
C5—C61.380 (5)C25—H250.9300
C5—H50.9300C26—C271.481 (5)
C6—C71.466 (5)C27—C281.375 (5)
C7—C81.315 (5)C27—C321.404 (5)
C7—H70.9300C28—C291.381 (5)
C8—C91.474 (5)C28—H280.9300
C8—H80.9300C29—C301.375 (5)
C9—C101.484 (5)C29—H290.9300
C10—C111.368 (5)C30—C311.401 (5)
C10—C151.399 (5)C31—C321.369 (4)
C11—C121.383 (5)C32—H320.9300
C11—H110.9300C33—H33A0.9600
C12—C131.378 (5)C33—H33B0.9600
C12—H120.9300C33—H33C0.9600
C13—C141.392 (5)C34—H34A0.9600
C14—C151.365 (4)C34—H34B0.9600
C15—H150.9300C34—H34C0.9600
C14—O2—C16117.9 (3)H17A—C17—H17C109.5
C13—O3—C17117.2 (3)H17B—C17—H17C109.5
C31—O5—C33118.1 (3)C19—C18—C23122.2 (4)
C30—O6—C34117.9 (3)C19—C18—Br2117.1 (3)
C2—C1—C6120.6 (4)C23—C18—Br2120.7 (3)
C2—C1—Br1118.6 (3)C18—C19—C20119.0 (4)
C6—C1—Br1120.8 (3)C18—C19—H19120.5
C3—C2—C1119.9 (4)C20—C19—H19120.5
C3—C2—H2120.0C21—C20—C19121.0 (4)
C1—C2—H2120.0C21—C20—H20119.5
C2—C3—C4120.6 (4)C19—C20—H20119.5
C2—C3—H3119.7C20—C21—C22119.6 (4)
C4—C3—H3119.7C20—C21—H21120.2
C5—C4—C3119.2 (5)C22—C21—H21120.2
C5—C4—H4120.4C21—C22—C23121.6 (4)
C3—C4—H4120.4C21—C22—H22119.2
C4—C5—C6122.8 (4)C23—C22—H22119.2
C4—C5—H5118.6C22—C23—C18116.5 (3)
C6—C5—H5118.6C22—C23—C24121.3 (3)
C5—C6—C1116.8 (3)C18—C23—C24122.2 (4)
C5—C6—C7121.2 (3)C25—C24—C23127.3 (4)
C1—C6—C7122.0 (4)C25—C24—H24116.3
C8—C7—C6127.2 (4)C23—C24—H24116.3
C8—C7—H7116.4C24—C25—C26122.1 (4)
C6—C7—H7116.4C24—C25—H25119.0
C7—C8—C9121.1 (4)C26—C25—H25119.0
C7—C8—H8119.5O4—C26—C27121.0 (3)
C9—C8—H8119.5O4—C26—C25119.6 (3)
O1—C9—C8119.7 (3)C27—C26—C25119.4 (3)
O1—C9—C10120.5 (3)C28—C27—C32118.7 (3)
C8—C9—C10119.8 (3)C28—C27—C26123.6 (3)
C11—C10—C15118.7 (3)C32—C27—C26117.7 (3)
C11—C10—C9124.2 (3)C27—C28—C29121.4 (3)
C15—C10—C9117.1 (3)C27—C28—H28119.3
C10—C11—C12121.3 (4)C29—C28—H28119.3
C10—C11—H11119.3C30—C29—C28119.8 (3)
C12—C11—H11119.3C30—C29—H29120.1
C13—C12—C11119.4 (4)C28—C29—H29120.1
C13—C12—H12120.3O6—C30—C29124.6 (3)
C11—C12—H12120.3O6—C30—C31115.8 (3)
O3—C13—C12124.6 (3)C29—C30—C31119.7 (3)
O3—C13—C14115.2 (3)O5—C31—C32125.1 (3)
C12—C13—C14120.2 (3)O5—C31—C30114.8 (3)
O2—C14—C15125.1 (3)C32—C31—C30120.1 (3)
O2—C14—C13115.4 (3)C31—C32—C27120.3 (3)
C15—C14—C13119.5 (3)C31—C32—H32119.8
C14—C15—C10120.9 (3)C27—C32—H32119.8
C14—C15—H15119.6O5—C33—H33A109.5
C10—C15—H15119.6O5—C33—H33B109.5
O2—C16—H16A109.5H33A—C33—H33B109.5
O2—C16—H16B109.5O5—C33—H33C109.5
H16A—C16—H16B109.5H33A—C33—H33C109.5
O2—C16—H16C109.5H33B—C33—H33C109.5
H16A—C16—H16C109.5O6—C34—H34A109.5
H16B—C16—H16C109.5O6—C34—H34B109.5
O3—C17—H17A109.5H34A—C34—H34B109.5
O3—C17—H17B109.5O6—C34—H34C109.5
H17A—C17—H17B109.5H34A—C34—H34C109.5
O3—C17—H17C109.5H34B—C34—H34C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O2i0.932.593.256 (5)129
C33—H33A···O1ii0.962.463.323 (5)149
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H15BrO3
Mr347.20
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.574 (6), 11.781 (6), 11.877 (6)
α, β, γ (°)91.857 (9), 107.021 (9), 91.917 (9)
V3)1546.2 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.67
Crystal size (mm)0.49 × 0.34 × 0.24
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.355, 0.567
No. of measured, independent and
observed [I > 2σ(I)] reflections
7968, 5326, 3031
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.00
No. of reflections5326
No. of parameters383
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.75

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O2i0.932.593.256 (5)128.9
C33—H33A···O1ii0.962.463.323 (5)148.8
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1.
 

Acknowledgements

This study was partially supported by a University Students in Zhejiang Science and Technology Innovation Project (grant No. 2010R413019) and by the State Administration of Traditional Chinese Medicine of Zhejiang Province (project No. 2011ZB085).

References

First citationBruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, T., Zhang, D., Yang, Q., Wei, X. & Wu, J. (2010). Acta Cryst. E66, o2518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeng, J., Xu, H., Li, Z., Zhang, Y. & Wu, J. (2010). Acta Cryst. E66, o1156–o1157.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. Z., Li, J. L., Cai, Y. P., Pan, Y., Ye, F. Q., Zhang, Y. L., Zhao, Y. J., Yang, S. L., Li, X. K. & Liang, G. (2011a). J. Med. Chem. 54, 8110–8123.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWu, J. Z., Wang, C., Cai, Y. P., Peng, J., Liang, D. L., Zhao, Y. J., Yang, S. L., Li, X. K., Wu, X. P. & Liang, G. (2011b). Med. Chem. Res. doi: 10.1007/s00044-011-9549-9.  Google Scholar
First citationWu, J. Z., Wang, C., Cai, Y. P., Yang, S. L., Zheng, X. Y., Qiu, P. H., Peng, J., Wu, X. P., Liang, G. & Li, X. K. (2010). Chin. J. Org. Chem. 30, 884–889.  Google Scholar
First citationWu, J. Z., Zhang, L., Wang, J., Yang, S. L. & Li, X. K. (2009). Acta Cryst. E65, o2805.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds