organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-4-iodo-2-methyl­aniline

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bHenan Hospital of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: liuyanju886@163.com

(Received 17 January 2012; accepted 1 March 2012; online 10 March 2012)

The asymmetric unit of the title compound, C7H7BrIN, contains two independent mol­ecules, which are linked by weak N—H⋯N hydro­den-bonding inter­actions between the amino groups.

Related literature

For the synthetic procedure, see: Lee et al. (2005[Lee, S. H., Jang, B. B. & Kafafi, Z. H. (2005). J. Am. Chem. Soc. 25, 9071-9078.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7BrIN

  • Mr = 311.94

  • Monoclinic, P 21 /c

  • a = 26.831 (5) Å

  • b = 5.3920 (11) Å

  • c = 12.217 (2) Å

  • β = 98.05 (3)°

  • V = 1750.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 8.15 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.292, Tmax = 0.496

  • 3177 measured reflections

  • 3177 independent reflections

  • 2057 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.163

  • S = 1.01

  • 3177 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1 0.86 2.67 3.300 (15) 131

Data collection: CAD-4 Software (Enraf–Nonius, 1989)[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound, 5-bromo-4-iodo-2-methylaniline is an important intermediate, which can be utilized to synthesize highly fluorescent solid-state asymmetric spirosilabifluorene derivatives (Lee et al., 2005). And we report here the crystal structure of the title compound (I), see Fig. 1.

The asymmetric unit contains two title molecules of 5-bromo-4-iodo-2-methylaniline. Weak hydroden bonding interactions link them together with N···N distance 3.300 (14) Å. The bromo, iodo and amino substituents lie in the mean plane of the phenyl rings, with mean deviation of 0.0040 (1) Å from the plane (C2—C7), and 0.0120 (1) Å from the plane (C9—C14). The bond lengths and angles are within normal ranges (Allen et al., 1987).

Related literature top

For the synthetic procedure, see: Lee et al. (2005). F for bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Lee et al., 2005). The crystals were obtained by dissolving (I) (0.5 g) in methanol (50 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement top

H atoms were positioned geometrically and refined as riding, with N—H = 0.86 Å and C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C, N).

Structure description top

The tittle compound, 5-bromo-4-iodo-2-methylaniline is an important intermediate, which can be utilized to synthesize highly fluorescent solid-state asymmetric spirosilabifluorene derivatives (Lee et al., 2005). And we report here the crystal structure of the title compound (I), see Fig. 1.

The asymmetric unit contains two title molecules of 5-bromo-4-iodo-2-methylaniline. Weak hydroden bonding interactions link them together with N···N distance 3.300 (14) Å. The bromo, iodo and amino substituents lie in the mean plane of the phenyl rings, with mean deviation of 0.0040 (1) Å from the plane (C2—C7), and 0.0120 (1) Å from the plane (C9—C14). The bond lengths and angles are within normal ranges (Allen et al., 1987).

For the synthetic procedure, see: Lee et al. (2005). F for bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
5-Bromo-4-iodo-2-methylaniline top
Crystal data top
C7H7BrINF(000) = 1152
Mr = 311.94Dx = 2.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 26.831 (5) Åθ = 9–13°
b = 5.3920 (11) ŵ = 8.15 mm1
c = 12.217 (2) ÅT = 293 K
β = 98.05 (3)°Block, colourless
V = 1750.1 (6) Å30.20 × 0.10 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2057 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 3231
Absorption correction: ψ scan
(North et al., 1968)
k = 06
Tmin = 0.292, Tmax = 0.496l = 014
3177 measured reflections3 standard reflections every 200 reflections
3177 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0946P)2]
where P = (Fo2 + 2Fc2)/3
3177 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
C7H7BrINV = 1750.1 (6) Å3
Mr = 311.94Z = 8
Monoclinic, P21/cMo Kα radiation
a = 26.831 (5) ŵ = 8.15 mm1
b = 5.3920 (11) ÅT = 293 K
c = 12.217 (2) Å0.20 × 0.10 × 0.10 mm
β = 98.05 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2057 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.292, Tmax = 0.4963 standard reflections every 200 reflections
3177 measured reflections intensity decay: 1%
3177 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.01Δρmax = 0.97 e Å3
3177 reflectionsΔρmin = 1.03 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.05030 (3)0.37033 (14)0.72451 (7)0.0542 (3)
Br10.18159 (5)0.3594 (2)0.82076 (10)0.0583 (4)
N10.2022 (4)0.3506 (17)0.5418 (9)0.058 (3)
H1A0.23370.34680.56790.069*
H1B0.19140.45380.49020.069*
C10.0968 (5)0.373 (2)0.4509 (9)0.053 (3)
H1C0.11250.34760.38590.080*
H1D0.10260.54040.47650.080*
H1E0.06120.34470.43360.080*
C20.1187 (4)0.1958 (19)0.5397 (9)0.041 (3)
C30.1691 (4)0.191 (2)0.5825 (9)0.043 (3)
C40.1864 (4)0.025 (2)0.6653 (10)0.049 (3)
H4A0.22040.02510.69400.059*
C50.1542 (4)0.1415 (19)0.7070 (9)0.042 (3)
C60.1033 (4)0.1352 (17)0.6651 (8)0.036 (2)
C70.0864 (4)0.030 (2)0.5818 (9)0.044 (3)
H7A0.05240.03090.55300.052*
I20.45125 (3)0.34995 (15)0.68253 (7)0.0534 (3)
Br20.31999 (5)0.3860 (2)0.68824 (9)0.0502 (3)
N20.2915 (4)0.2963 (19)0.3831 (9)0.060 (3)
H2A0.25990.27260.38400.072*
H2B0.30140.40560.33950.072*
C80.3973 (6)0.385 (2)0.3750 (11)0.067 (4)
H8A0.38580.54530.39430.100*
H8B0.38410.34820.29960.100*
H8C0.43340.38370.38360.100*
C90.3795 (4)0.1937 (19)0.4488 (9)0.044 (3)
C100.4119 (5)0.039 (2)0.5159 (9)0.048 (3)
H10A0.44630.05390.51350.057*
C110.3960 (4)0.137 (2)0.5865 (8)0.041 (3)
C120.3454 (4)0.1580 (18)0.5898 (8)0.038 (2)
C130.3108 (4)0.019 (2)0.5224 (8)0.040 (3)
H13A0.27650.04210.52370.048*
C140.3270 (4)0.157 (2)0.4527 (9)0.043 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0587 (5)0.0456 (5)0.0631 (6)0.0017 (4)0.0249 (4)0.0019 (4)
Br10.0684 (8)0.0578 (8)0.0482 (8)0.0159 (6)0.0067 (6)0.0058 (6)
N10.050 (6)0.065 (7)0.061 (7)0.002 (5)0.015 (5)0.007 (6)
C10.073 (8)0.045 (7)0.043 (7)0.002 (6)0.013 (6)0.003 (6)
C20.053 (7)0.037 (6)0.033 (6)0.004 (5)0.012 (5)0.006 (5)
C30.050 (7)0.050 (7)0.034 (6)0.002 (6)0.020 (5)0.006 (5)
C40.046 (7)0.050 (7)0.053 (7)0.008 (6)0.013 (6)0.017 (6)
C50.050 (6)0.030 (6)0.046 (6)0.011 (5)0.008 (5)0.004 (5)
C60.046 (6)0.025 (5)0.038 (6)0.001 (5)0.012 (5)0.008 (5)
C70.050 (7)0.041 (6)0.039 (6)0.008 (5)0.003 (5)0.010 (5)
I20.0509 (5)0.0515 (5)0.0565 (5)0.0043 (4)0.0028 (4)0.0006 (4)
Br20.0534 (7)0.0530 (8)0.0453 (7)0.0088 (6)0.0104 (5)0.0087 (6)
N20.052 (6)0.063 (7)0.061 (7)0.006 (5)0.002 (5)0.024 (6)
C80.082 (10)0.056 (9)0.064 (9)0.014 (7)0.019 (7)0.008 (7)
C90.064 (8)0.032 (6)0.039 (6)0.001 (5)0.020 (6)0.002 (5)
C100.060 (7)0.052 (7)0.033 (6)0.002 (6)0.009 (5)0.016 (6)
C110.046 (6)0.051 (7)0.028 (5)0.002 (5)0.016 (5)0.003 (5)
C120.053 (6)0.036 (6)0.028 (5)0.006 (5)0.015 (5)0.005 (5)
C130.050 (7)0.046 (7)0.025 (5)0.000 (5)0.012 (5)0.007 (5)
C140.050 (6)0.040 (6)0.042 (6)0.007 (5)0.012 (5)0.005 (5)
Geometric parameters (Å, º) top
I1—C62.108 (10)I2—C112.098 (11)
Br1—C51.889 (11)Br2—C121.911 (10)
N1—C31.378 (14)N2—C141.405 (14)
N1—H1A0.8600N2—H2A0.8600
N1—H1B0.8600N2—H2B0.8600
C1—C21.503 (15)C8—C91.490 (14)
C1—H1C0.9600C8—H8A0.9600
C1—H1D0.9600C8—H8B0.9600
C1—H1E0.9600C8—H8C0.9600
C2—C31.381 (15)C9—C101.388 (15)
C2—C71.392 (15)C9—C141.430 (15)
C3—C41.381 (16)C10—C111.391 (15)
C4—C51.393 (16)C10—H10A0.9300
C4—H4A0.9300C11—C121.369 (15)
C5—C61.390 (14)C12—C131.375 (15)
C6—C71.380 (14)C13—C141.383 (15)
C7—H7A0.9300C13—H13A0.9300
C3—N1—H1A120.0C14—N2—H2A120.0
C3—N1—H1B120.0C14—N2—H2B120.0
H1A—N1—H1B120.0H2A—N2—H2B120.0
C2—C1—H1C109.5C9—C8—H8A109.5
C2—C1—H1D109.5C9—C8—H8B109.5
H1C—C1—H1D109.5H8A—C8—H8B109.5
C2—C1—H1E109.5C9—C8—H8C109.5
H1C—C1—H1E109.5H8A—C8—H8C109.5
H1D—C1—H1E109.5H8B—C8—H8C109.5
C3—C2—C7118.5 (10)C10—C9—C14115.8 (10)
C3—C2—C1123.2 (11)C10—C9—C8123.1 (12)
C7—C2—C1118.3 (10)C14—C9—C8121.1 (11)
N1—C3—C4120.1 (11)C9—C10—C11123.7 (11)
N1—C3—C2120.0 (11)C9—C10—H10A118.1
C4—C3—C2119.9 (11)C11—C10—H10A118.1
C3—C4—C5121.7 (11)C12—C11—C10117.8 (10)
C3—C4—H4A119.2C12—C11—I2124.5 (8)
C5—C4—H4A119.2C10—C11—I2117.7 (8)
C6—C5—C4118.5 (10)C11—C12—C13121.9 (10)
C6—C5—Br1123.2 (8)C11—C12—Br2120.8 (8)
C4—C5—Br1118.3 (9)C13—C12—Br2117.3 (8)
C7—C6—C5119.5 (10)C12—C13—C14119.8 (10)
C7—C6—I1118.3 (8)C12—C13—H13A120.1
C5—C6—I1122.2 (8)C14—C13—H13A120.1
C6—C7—C2122.0 (10)C13—C14—N2119.5 (11)
C6—C7—H7A119.0C13—C14—C9120.9 (10)
C2—C7—H7A119.0N2—C14—C9119.6 (10)
C7—C2—C3—N1179.2 (10)C14—C9—C10—C112.2 (16)
C1—C2—C3—N11.6 (16)C8—C9—C10—C11178.9 (11)
C7—C2—C3—C40.2 (16)C9—C10—C11—C120.1 (16)
C1—C2—C3—C4179.0 (10)C9—C10—C11—I2179.3 (8)
N1—C3—C4—C5178.8 (10)C10—C11—C12—C132.9 (16)
C2—C3—C4—C50.6 (16)I2—C11—C12—C13178.0 (8)
C3—C4—C5—C61.4 (16)C10—C11—C12—Br2177.6 (8)
C3—C4—C5—Br1179.7 (8)I2—C11—C12—Br21.4 (13)
C4—C5—C6—C71.7 (15)C11—C12—C13—C143.2 (16)
Br1—C5—C6—C7180.0 (7)Br2—C12—C13—C14177.4 (8)
C4—C5—C6—I1178.1 (7)C12—C13—C14—N2179.2 (10)
Br1—C5—C6—I10.1 (12)C12—C13—C14—C90.6 (16)
C5—C6—C7—C21.4 (15)C10—C9—C14—C131.9 (15)
I1—C6—C7—C2178.5 (8)C8—C9—C14—C13179.1 (11)
C3—C2—C7—C60.6 (16)C10—C9—C14—N2176.6 (10)
C1—C2—C7—C6178.6 (9)C8—C9—C14—N22.3 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.862.673.300 (15)131

Experimental details

Crystal data
Chemical formulaC7H7BrIN
Mr311.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)26.831 (5), 5.3920 (11), 12.217 (2)
β (°) 98.05 (3)
V3)1750.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)8.15
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.292, 0.496
No. of measured, independent and
observed [I > 2σ(I)] reflections
3177, 3177, 2057
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.163, 1.01
No. of reflections3177
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 1.03

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.862.673.300 (15)131
 

Acknowledgements

This work was supported by the Doctoral Research Fund of Henan Chinese Medicine (BSJJ2009–38) and the Science and Technology Department of Henan Province (102102310321).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLee, S. H., Jang, B. B. & Kafafi, Z. H. (2005). J. Am. Chem. Soc. 25, 9071–9078.  Web of Science CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds