metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di-2-pyridyl­amine-κ2N2,N2')platinum(II) dibromide monohydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 19 March 2012; accepted 25 March 2012; online 31 March 2012)

The asymmetric unit of the title compound, [Pt(C10H9N3)2]Br2·H2O, contains two crystallographically independent half-mol­ecules of the cationic PtII complex, two Br anions and a lattice water mol­ecule; an inversion centre is located at the centroid of each complex. Each PtII ion is four-coordinated in an essentially square-planar environment by four pyridine N atoms derived from the two chelating di-2-pyridyl­amine (dpa) ligands, and the PtN4 unit is exactly planar. The chelate ring formed by the dpa ligand displays a boat conformation, with dihedral angles between the pyridine rings of 35.9 (2) and 41.0 (2)°. The complex cations, Br anions and solvent water mol­ecules are linked by O—H⋯Br, N—H⋯Br, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network.

Related literature

For the crystal structures of the related PdII and PtII complexes, see: Živković et al. (2007[Živković, M. D., Rajković, S., Rychlewska, U., Warżajtis, B. & Djuran, M. (2007). Polyhedron, 26, 1541-1549.]); Antonioli et al. (2008[Antonioli, B., Bray, D. J., Clegg, J. K., Gloe, K., Gloe, K., Jäger, A., Jolliffe, K. A., Kataeva, O., Lindoy, L. F., Steel, P. J., Sumby, C. J. & Wenzel, M. (2008). Polyhedron, 27, 2889-2898.]); Guney et al. (2010[Guney, E., Yılmaz, V. T. & Büyükgüngör, O. (2010). Inorg. Chim. Acta, 363, 2416-2424.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C10H9N3)2]Br2·H2O

  • Mr = 715.33

  • Triclinic, [P \overline 1]

  • a = 9.7870 (9) Å

  • b = 11.059 (1) Å

  • c = 12.1151 (12) Å

  • α = 109.448 (2)°

  • β = 104.538 (2)°

  • γ = 107.980 (2)°

  • V = 1080.70 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.21 mm−1

  • T = 200 K

  • 0.27 × 0.17 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.745, Tmax = 1.000

  • 6721 measured reflections

  • 4109 independent reflections

  • 3411 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 1.05

  • 4109 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −1.21 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—N1 2.013 (5)
Pt1—N3 2.030 (5)
Pt2—N6 2.014 (4)
Pt2—N4 2.024 (4)
N1—Pt1—N3 87.10 (19)
N6—Pt2—N4 86.65 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Br1i 0.84 2.58 3.399 (6) 166
O1—H1B⋯Br1ii 0.84 2.54 3.374 (5) 171
N2—H2N⋯Br1iii 0.92 2.38 3.289 (4) 171
N5—H5N⋯Br2 0.92 2.35 3.267 (4) 174
C2—H2⋯O1iv 0.95 2.58 3.302 (8) 133
C11—H11⋯Br2ii 0.95 2.87 3.635 (6) 138
C13—H13⋯Br2v 0.95 2.76 3.712 (6) 177
C20—H20⋯O1vi 0.95 2.56 3.464 (8) 160
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z; (v) -x+2, -y+1, -z+1; (vi) -x+2, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, [Pt(dpa)2]Br2.H2O (dpa = di-2-pyridylamine), was unexpected obtained from the reaction of K2PtBr6 with dpa. It seems that the PtIV ion reduced to the PtII ion in the reaction. Crystal structures of the related cationic PdII and PtII complexes, such as [Pd(dpa)2](X)2 (X = Cl or PF6) (Živković et al., 2007; Antonioli et al., 2008) and [M(dpa)2](sac)2 (M = Pd or Pt; sac = saccharinate) (Guney et al., 2010), have been investigated previously.

The asymmetric unit contains two crystallographically independent half-molecules of the cationic PtII complex, two Br- anions and a lattice water molecule; an inversion centre is located at the centroid of each complex (Fig. 1). The two complexes are chemically identical, but slightly different in geometry. The PtII ion in each complex is four-coordinated in an essentially square-planar environment by four pyridine N atoms derived from the two chelating dpa ligands, and the PtN4 unit is exactly planar. The dpa ligands display a boat conformation with dihedral angles between the least-squares planes of the two pyridine rings of 35.9 (2)° in complex with Pt1 and 41.0 (2)° in complex with Pt2. The Pt—N bond lengths are nearly equivalent [Pt—N: 2.013 (5)–2.030 (5) Å] (Table 1). The complex cations, Br- anions and solvent water molecules are linked by intermolecular O—H···Br, N—H···Br, C—H···O and C—H···Br hydrogen bonds, forming a three-dimensional network (Fig. 2 and Table 2). The complex cations are stacked into columns along the a axis and show a number of intermolecular π-π interactions between the pyridine rings, with a shortest ring centroid-centroid distance of 3.951 (4) Å.

Related literature top

For the crystal structures of the related cationic PdII and PtII complexes, see: Živković et al. (2007); Antonioli et al. (2008); Guney et al. (2010).

Experimental top

To a solution of K2PtBr6 (0.1016 g, 0.135 mmol) in H2O (10 ml) and MeOH (10 ml) was added di-2-pyridylamine (0.0479 g, 0.280 mmol) and stirred for 7 h at room temperature. The formed precipitate was separated by filtration and washed with H2O and MeOH, and dried at 50 °C, to give an orange powder (0.0450 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an N,N-dimethylformamide (DMF) solution at 60 °C.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C). Nitrogen- and oxygen-bound H atoms were located from the difference Fourier map then allowed to ride on their parent atoms in the final cycles of refinement with N—H = 0.92 Å, O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(N, O). The highest peak (1.43 e Å-3) and the deepest hole (-1.21 e Å-3) in the difference Fourier map are located 1.64 Å and 0.83 Å from the atoms Br1 and Pt1, respectively.

Structure description top

The title compound, [Pt(dpa)2]Br2.H2O (dpa = di-2-pyridylamine), was unexpected obtained from the reaction of K2PtBr6 with dpa. It seems that the PtIV ion reduced to the PtII ion in the reaction. Crystal structures of the related cationic PdII and PtII complexes, such as [Pd(dpa)2](X)2 (X = Cl or PF6) (Živković et al., 2007; Antonioli et al., 2008) and [M(dpa)2](sac)2 (M = Pd or Pt; sac = saccharinate) (Guney et al., 2010), have been investigated previously.

The asymmetric unit contains two crystallographically independent half-molecules of the cationic PtII complex, two Br- anions and a lattice water molecule; an inversion centre is located at the centroid of each complex (Fig. 1). The two complexes are chemically identical, but slightly different in geometry. The PtII ion in each complex is four-coordinated in an essentially square-planar environment by four pyridine N atoms derived from the two chelating dpa ligands, and the PtN4 unit is exactly planar. The dpa ligands display a boat conformation with dihedral angles between the least-squares planes of the two pyridine rings of 35.9 (2)° in complex with Pt1 and 41.0 (2)° in complex with Pt2. The Pt—N bond lengths are nearly equivalent [Pt—N: 2.013 (5)–2.030 (5) Å] (Table 1). The complex cations, Br- anions and solvent water molecules are linked by intermolecular O—H···Br, N—H···Br, C—H···O and C—H···Br hydrogen bonds, forming a three-dimensional network (Fig. 2 and Table 2). The complex cations are stacked into columns along the a axis and show a number of intermolecular π-π interactions between the pyridine rings, with a shortest ring centroid-centroid distance of 3.951 (4) Å.

For the crystal structures of the related cationic PdII and PtII complexes, see: Živković et al. (2007); Antonioli et al. (2008); Guney et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structure detail of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Unlabelled atoms are generated by the application of the inversion centers.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Bis(di-2-pyridylamine-κ2N2,N2')platinum(II) dibromide monohydrate top
Crystal data top
[Pt(C10H9N3)2]Br2·H2OZ = 2
Mr = 715.33F(000) = 676
Triclinic, P1Dx = 2.198 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7870 (9) ÅCell parameters from 4253 reflections
b = 11.059 (1) Åθ = 2.2–26.0°
c = 12.1151 (12) ŵ = 10.21 mm1
α = 109.448 (2)°T = 200 K
β = 104.538 (2)°Block, yellow
γ = 107.980 (2)°0.27 × 0.17 × 0.12 mm
V = 1080.70 (18) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
4109 independent reflections
Radiation source: fine-focus sealed tube3411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1112
Tmin = 0.745, Tmax = 1.000k = 1313
6721 measured reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.3123P]
where P = (Fo2 + 2Fc2)/3
4109 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 1.21 e Å3
Crystal data top
[Pt(C10H9N3)2]Br2·H2Oγ = 107.980 (2)°
Mr = 715.33V = 1080.70 (18) Å3
Triclinic, P1Z = 2
a = 9.7870 (9) ÅMo Kα radiation
b = 11.059 (1) ŵ = 10.21 mm1
c = 12.1151 (12) ÅT = 200 K
α = 109.448 (2)°0.27 × 0.17 × 0.12 mm
β = 104.538 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4109 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3411 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 1.000Rint = 0.024
6721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.05Δρmax = 1.43 e Å3
4109 reflectionsΔρmin = 1.21 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.00000.50000.00000.02139 (9)
N10.1711 (5)0.4350 (5)0.0277 (4)0.0240 (11)
N20.3215 (5)0.6364 (5)0.2257 (5)0.0269 (11)
H2N0.41830.70040.28900.040*
N30.0561 (5)0.5768 (5)0.1905 (4)0.0246 (11)
C10.1575 (7)0.3112 (6)0.0598 (6)0.0298 (14)
H10.05810.24630.12640.036*
C20.2805 (7)0.2766 (6)0.0557 (6)0.0312 (15)
H20.26760.19070.11940.037*
C30.4250 (8)0.3699 (7)0.0437 (6)0.0344 (15)
H30.51360.35060.04700.041*
C40.4381 (7)0.4897 (6)0.1368 (6)0.0291 (14)
H40.53540.55270.20670.035*
C50.3093 (7)0.5189 (6)0.1287 (5)0.0243 (13)
C60.2076 (7)0.6479 (6)0.2715 (5)0.0244 (13)
C70.2502 (7)0.7317 (6)0.4000 (6)0.0298 (14)
H70.35750.78400.45600.036*
C80.1366 (8)0.7384 (7)0.4452 (6)0.0372 (16)
H80.16430.79990.53170.045*
C90.0200 (7)0.6543 (6)0.3636 (6)0.0329 (15)
H90.10020.65290.39460.039*
C100.0555 (7)0.5748 (6)0.2397 (6)0.0302 (14)
H100.16210.51500.18450.036*
Pt21.00000.00000.00000.01798 (9)
N41.0831 (5)0.1819 (4)0.1611 (4)0.0220 (11)
N50.8237 (5)0.1494 (5)0.1336 (4)0.0235 (11)
H5N0.76980.18680.17630.035*
N60.8306 (5)0.0536 (4)0.0701 (4)0.0203 (10)
C111.2399 (7)0.2590 (6)0.2295 (5)0.0245 (13)
H111.30900.23340.19440.029*
C121.3011 (7)0.3710 (6)0.3461 (5)0.0267 (14)
H121.41100.42350.39180.032*
C131.1976 (7)0.4073 (6)0.3976 (6)0.0295 (14)
H131.23710.48320.48030.035*
C141.0396 (7)0.3330 (5)0.3281 (5)0.0247 (13)
H140.96860.35700.36170.030*
C150.9845 (6)0.2211 (5)0.2068 (5)0.0203 (12)
C160.7593 (6)0.1050 (5)0.0029 (5)0.0208 (12)
C170.6218 (7)0.1153 (6)0.0491 (6)0.0260 (13)
H170.57040.14720.00330.031*
C180.5612 (7)0.0790 (6)0.1767 (6)0.0288 (14)
H180.46530.08210.21390.035*
C190.6406 (7)0.0379 (6)0.2507 (6)0.0272 (14)
H190.60470.01920.33780.033*
C200.7725 (7)0.0247 (5)0.1956 (5)0.0243 (13)
H200.82580.00570.24690.029*
Br10.31515 (7)0.15218 (7)0.57090 (7)0.04448 (19)
Br20.63618 (7)0.30058 (6)0.27528 (6)0.02942 (15)
O10.9598 (6)0.0001 (6)0.3324 (5)0.0680 (17)
H1A0.90560.03430.36760.102*
H1B1.04330.04100.39750.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01682 (16)0.02405 (17)0.01970 (17)0.00604 (13)0.00550 (13)0.00954 (14)
N10.020 (2)0.023 (2)0.021 (3)0.005 (2)0.006 (2)0.007 (2)
N20.018 (3)0.024 (2)0.029 (3)0.003 (2)0.004 (2)0.010 (2)
N30.019 (3)0.027 (3)0.022 (3)0.006 (2)0.007 (2)0.009 (2)
C10.033 (4)0.027 (3)0.023 (3)0.008 (3)0.008 (3)0.010 (3)
C20.037 (4)0.029 (3)0.026 (3)0.015 (3)0.013 (3)0.009 (3)
C30.039 (4)0.041 (4)0.035 (4)0.025 (3)0.019 (3)0.020 (3)
C40.028 (3)0.037 (3)0.024 (3)0.016 (3)0.008 (3)0.015 (3)
C50.024 (3)0.024 (3)0.020 (3)0.008 (2)0.007 (2)0.008 (3)
C60.028 (3)0.020 (3)0.025 (3)0.011 (2)0.009 (3)0.011 (3)
C70.028 (3)0.025 (3)0.023 (3)0.002 (3)0.005 (3)0.008 (3)
C80.054 (5)0.036 (4)0.025 (3)0.022 (3)0.017 (3)0.014 (3)
C90.031 (4)0.043 (4)0.031 (3)0.016 (3)0.016 (3)0.021 (3)
C100.026 (3)0.036 (3)0.029 (3)0.013 (3)0.011 (3)0.015 (3)
Pt20.01701 (16)0.01930 (16)0.01565 (16)0.00789 (12)0.00733 (12)0.00487 (13)
N40.028 (3)0.014 (2)0.023 (3)0.009 (2)0.009 (2)0.006 (2)
N50.026 (3)0.031 (3)0.014 (2)0.018 (2)0.011 (2)0.003 (2)
N60.024 (3)0.015 (2)0.018 (2)0.0069 (19)0.009 (2)0.003 (2)
C110.028 (3)0.024 (3)0.026 (3)0.011 (3)0.016 (3)0.012 (3)
C120.020 (3)0.024 (3)0.021 (3)0.003 (2)0.003 (3)0.004 (3)
C130.036 (4)0.025 (3)0.019 (3)0.011 (3)0.009 (3)0.003 (3)
C140.035 (3)0.023 (3)0.023 (3)0.017 (3)0.015 (3)0.009 (3)
C150.022 (3)0.020 (3)0.020 (3)0.011 (2)0.009 (2)0.007 (2)
C160.021 (3)0.016 (3)0.019 (3)0.009 (2)0.006 (2)0.002 (2)
C170.031 (3)0.021 (3)0.027 (3)0.013 (3)0.015 (3)0.008 (3)
C180.026 (3)0.030 (3)0.026 (3)0.015 (3)0.005 (3)0.010 (3)
C190.032 (3)0.025 (3)0.024 (3)0.011 (3)0.008 (3)0.013 (3)
C200.030 (3)0.019 (3)0.021 (3)0.009 (2)0.012 (3)0.006 (3)
Br10.0234 (3)0.0497 (4)0.0373 (4)0.0048 (3)0.0039 (3)0.0099 (3)
Br20.0253 (3)0.0343 (3)0.0247 (3)0.0157 (3)0.0101 (3)0.0058 (3)
O10.051 (4)0.093 (4)0.036 (3)0.007 (3)0.009 (3)0.032 (3)
Geometric parameters (Å, º) top
Pt1—N1i2.013 (5)Pt2—N6ii2.014 (4)
Pt1—N12.013 (5)Pt2—N4ii2.024 (4)
Pt1—N3i2.030 (5)Pt2—N42.024 (4)
Pt1—N32.030 (5)N4—C151.339 (7)
N1—C51.351 (7)N4—C111.361 (7)
N1—C11.366 (7)N5—C161.391 (7)
N2—C51.379 (7)N5—C151.397 (7)
N2—C61.384 (7)N5—H5N0.9200
N2—H2N0.9200N6—C161.346 (7)
N3—C61.348 (7)N6—C201.367 (7)
N3—C101.367 (8)C11—C121.356 (7)
C1—C21.366 (8)C11—H110.9500
C1—H10.9500C12—C131.406 (8)
C2—C31.389 (8)C12—H120.9500
C2—H20.9500C13—C141.370 (8)
C3—C41.368 (8)C13—H130.9500
C3—H30.9500C14—C151.401 (7)
C4—C51.384 (8)C14—H140.9500
C4—H40.9500C16—C171.392 (7)
C6—C71.390 (8)C17—C181.372 (8)
C7—C81.369 (9)C17—H170.9500
C7—H70.9500C18—C191.383 (8)
C8—C91.392 (9)C18—H180.9500
C8—H80.9500C19—C201.371 (8)
C9—C101.348 (8)C19—H190.9500
C9—H90.9500C20—H200.9500
C10—H100.9500O1—H1A0.8400
Pt2—N62.014 (4)O1—H1B0.8400
N1i—Pt1—N1180.000 (1)N6—Pt2—N4ii93.35 (17)
N1i—Pt1—N3i87.10 (19)N6ii—Pt2—N4ii86.65 (17)
N1—Pt1—N3i92.90 (19)N6—Pt2—N486.65 (17)
N1i—Pt1—N392.90 (19)N6ii—Pt2—N493.35 (17)
N1—Pt1—N387.10 (19)N4ii—Pt2—N4180.0 (3)
N3i—Pt1—N3180.00 (11)C15—N4—C11119.4 (5)
C5—N1—C1117.5 (5)C15—N4—Pt2120.3 (4)
C5—N1—Pt1120.7 (4)C11—N4—Pt2120.2 (4)
C1—N1—Pt1121.6 (4)C16—N5—C15123.2 (5)
C5—N2—C6127.0 (5)C16—N5—H5N113.7
C5—N2—H2N119.1C15—N5—H5N111.0
C6—N2—H2N109.0C16—N6—C20117.8 (5)
C6—N3—C10118.5 (5)C16—N6—Pt2120.3 (4)
C6—N3—Pt1119.5 (4)C20—N6—Pt2121.6 (4)
C10—N3—Pt1121.4 (4)C12—C11—N4122.4 (5)
C2—C1—N1122.9 (5)C12—C11—H11118.8
C2—C1—H1118.5N4—C11—H11118.8
N1—C1—H1118.5C11—C12—C13118.3 (5)
C1—C2—C3118.5 (6)C11—C12—H12120.9
C1—C2—H2120.7C13—C12—H12120.9
C3—C2—H2120.7C14—C13—C12119.8 (5)
C4—C3—C2119.3 (6)C14—C13—H13120.1
C4—C3—H3120.4C12—C13—H13120.1
C2—C3—H3120.4C13—C14—C15118.9 (5)
C3—C4—C5119.8 (6)C13—C14—H14120.5
C3—C4—H4120.1C15—C14—H14120.5
C5—C4—H4120.1N4—C15—N5120.0 (5)
N1—C5—N2118.9 (5)N4—C15—C14121.0 (5)
N1—C5—C4121.6 (5)N5—C15—C14118.9 (5)
N2—C5—C4119.5 (5)N6—C16—N5119.7 (5)
N3—C6—N2119.4 (5)N6—C16—C17121.6 (5)
N3—C6—C7120.7 (6)N5—C16—C17118.7 (5)
N2—C6—C7119.9 (5)C18—C17—C16119.5 (6)
C8—C7—C6119.5 (6)C18—C17—H17120.3
C8—C7—H7120.3C16—C17—H17120.3
C6—C7—H7120.3C17—C18—C19119.5 (5)
C7—C8—C9119.5 (6)C17—C18—H18120.2
C7—C8—H8120.2C19—C18—H18120.2
C9—C8—H8120.2C20—C19—C18118.5 (6)
C10—C9—C8118.7 (6)C20—C19—H19120.8
C10—C9—H9120.7C18—C19—H19120.8
C8—C9—H9120.7N6—C20—C19122.8 (6)
C9—C10—N3122.5 (6)N6—C20—H20118.6
C9—C10—H10118.7C19—C20—H20118.6
N3—C10—H10118.7H1A—O1—H1B93.7
N6—Pt2—N6ii180.0 (2)
N3i—Pt1—N1—C5138.4 (5)N6—Pt2—N4—C1541.4 (4)
N3—Pt1—N1—C541.6 (5)N6ii—Pt2—N4—C15138.6 (4)
N3i—Pt1—N1—C135.8 (5)N6—Pt2—N4—C11144.2 (4)
N3—Pt1—N1—C1144.2 (5)N6ii—Pt2—N4—C1135.8 (4)
N1i—Pt1—N3—C6136.6 (4)N4ii—Pt2—N6—C16136.8 (4)
N1—Pt1—N3—C643.4 (4)N4—Pt2—N6—C1643.2 (4)
N1i—Pt1—N3—C1034.7 (5)N4ii—Pt2—N6—C2035.8 (4)
N1—Pt1—N3—C10145.3 (5)N4—Pt2—N6—C20144.2 (4)
C5—N1—C1—C26.6 (9)C15—N4—C11—C123.2 (8)
Pt1—N1—C1—C2167.8 (5)Pt2—N4—C11—C12171.2 (4)
N1—C1—C2—C31.7 (10)N4—C11—C12—C130.4 (9)
C1—C2—C3—C42.7 (9)C11—C12—C13—C142.2 (9)
C2—C3—C4—C52.1 (9)C12—C13—C14—C150.4 (9)
C1—N1—C5—N2172.9 (5)C11—N4—C15—N5175.4 (5)
Pt1—N1—C5—N212.7 (7)Pt2—N4—C15—N510.2 (7)
C1—N1—C5—C47.2 (8)C11—N4—C15—C145.1 (8)
Pt1—N1—C5—C4167.2 (5)Pt2—N4—C15—C14169.4 (4)
C6—N2—C5—N136.1 (8)C16—N5—C15—N440.2 (7)
C6—N2—C5—C4144.0 (6)C16—N5—C15—C14140.2 (5)
C3—C4—C5—N13.0 (9)C13—C14—C15—N43.3 (8)
C3—C4—C5—N2177.1 (6)C13—C14—C15—N5177.2 (5)
C10—N3—C6—N2171.8 (5)C20—N6—C16—N5173.5 (5)
Pt1—N3—C6—N216.6 (7)Pt2—N6—C16—N513.6 (7)
C10—N3—C6—C78.0 (8)C20—N6—C16—C176.4 (8)
Pt1—N3—C6—C7163.6 (4)Pt2—N6—C16—C17166.5 (4)
C5—N2—C6—N333.6 (8)C15—N5—C16—N638.2 (7)
C5—N2—C6—C7146.2 (6)C15—N5—C16—C17141.6 (5)
N3—C6—C7—C82.1 (9)N6—C16—C17—C183.3 (9)
N2—C6—C7—C8177.7 (5)N5—C16—C17—C18176.6 (5)
C6—C7—C8—C94.0 (9)C16—C17—C18—C192.4 (9)
C7—C8—C9—C104.1 (9)C17—C18—C19—C204.7 (9)
C8—C9—C10—N32.0 (10)C16—N6—C20—C194.0 (8)
C6—N3—C10—C98.0 (9)Pt2—N6—C20—C19168.8 (4)
Pt1—N3—C10—C9163.3 (5)C18—C19—C20—N61.5 (9)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br1iii0.842.583.399 (6)166
O1—H1B···Br1iv0.842.543.374 (5)171
N2—H2N···Br1v0.922.383.289 (4)171
N5—H5N···Br20.922.353.267 (4)174
C2—H2···O1vi0.952.583.302 (8)133
C11—H11···Br2iv0.952.873.635 (6)138
C13—H13···Br2vii0.952.763.712 (6)177
C20—H20···O1ii0.952.563.464 (8)160
Symmetry codes: (ii) x+2, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pt(C10H9N3)2]Br2·H2O
Mr715.33
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.7870 (9), 11.059 (1), 12.1151 (12)
α, β, γ (°)109.448 (2), 104.538 (2), 107.980 (2)
V3)1080.70 (18)
Z2
Radiation typeMo Kα
µ (mm1)10.21
Crystal size (mm)0.27 × 0.17 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.745, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6721, 4109, 3411
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.05
No. of reflections4109
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 1.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pt1—N12.013 (5)Pt2—N62.014 (4)
Pt1—N32.030 (5)Pt2—N42.024 (4)
N1—Pt1—N387.10 (19)N6—Pt2—N486.65 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br1i0.842.583.399 (6)166.4
O1—H1B···Br1ii0.842.543.374 (5)171.1
N2—H2N···Br1iii0.922.383.289 (4)170.6
N5—H5N···Br20.922.353.267 (4)173.5
C2—H2···O1iv0.952.583.302 (8)133.0
C11—H11···Br2ii0.952.873.635 (6)138.4
C13—H13···Br2v0.952.763.712 (6)177.1
C20—H20···O1vi0.952.563.464 (8)160.1
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+2, y+1, z+1; (vi) x+2, y, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

References

First citationAntonioli, B., Bray, D. J., Clegg, J. K., Gloe, K., Gloe, K., Jäger, A., Jolliffe, K. A., Kataeva, O., Lindoy, L. F., Steel, P. J., Sumby, C. J. & Wenzel, M. (2008). Polyhedron, 27, 2889–2898.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGuney, E., Yılmaz, V. T. & Büyükgüngör, O. (2010). Inorg. Chim. Acta, 363, 2416–2424.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŽivković, M. D., Rajković, S., Rychlewska, U., Warżajtis, B. & Djuran, M. (2007). Polyhedron, 26, 1541–1549.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds