metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(nitrato-κ2O,O′)[N,N′-1,4-phenyl­enebis(pyridine-4-carboxamide)-κN1](4-{[4-(pyridine-4-carboxamido-κN1)phen­yl]carbamo­yl}pyridin-1-ium)neodymium(III)

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 14 March 2012; accepted 15 March 2012; online 21 March 2012)

In the title compound, [Nd(NO3)4(C18H15N4O2)(C18H14N4O2)], the NdIII centre is located on a twofold axis and exhibits a ten-coordinated distorted bicapped square-anti­prismatic geometry. The pyridinium NH H atom is disordered over the two ligands. Adjacent mononuclear clusters are linked through N—H⋯O and N—H⋯N hydrogen-bonding inter­actions, generating layers in the (102) plane.

Related literature

For general background to octa­cyano­metallate-based compounds, see: Sieklucka et al. (2011[Sieklucka, B., Podgajny, R., Korzeniak, T., Nowicka, B., Pinkowicz, D. & Kozieł, M. (2011). Eur. J. Inorg. Chem. pp. 305-326.]); Zhou et al. (2010[Zhou, H., Yuan, A. H., Qian, S. Y., Song, Y. & Diao, G. W. (2010). Inorg. Chem. 49, 5971-5976.]); Bok et al. (1975[Bok, L. D. C., Leipoldt, J. G. & Basson, S. S. (1975). Z. Anorg. Allg. Chem. 415, 81-83.]). For background to N,N′-bis­(4-pyridyl­formamide)-1,4-benzene, see: Niu et al. (2004[Niu, Y. Y., Song, Y. L., Wu, J., Hou, H. W., Zhu, Y. & Wang, X. (2004). Inorg. Chem. Commun. 7, 471-474.]); Pansanel et al. (2006[Pansanel, J., Jouaiti, A., Ferlay, S., Hosseini, M. W., Planeix, J. M. & Kyritsakas, N. (2006). New J. Chem. 30, 683-688.]); Song et al. (2009[Song, L., Chai, W. & Lan, J. (2009). Acta Cryst. E65, o1749.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(NO3)4(C18H15N4O2)(C18H14N4O2)]

  • Mr = 1029.95

  • Monoclinic, C 2/c

  • a = 19.856 (4) Å

  • b = 7.8491 (14) Å

  • c = 25.338 (5) Å

  • β = 95.153 (2)°

  • V = 3933.0 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.746

  • 14547 measured reflections

  • 3853 independent reflections

  • 3510 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 0.99

  • 3853 reflections

  • 294 parameters

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.89 2.43 3.285 (4) 160
N5—H5A⋯O7i 0.89 2.23 2.966 (4) 140
N6—H6⋯N6ii 0.89 1.86 2.742 (5) 168
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+4, -z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, octacyanide-bearing precursors [M(CN)8]3/4- (M = Mo, W) are frequently utilized in the construction of various dimensional structures, and the resulting materials have displayed rich magnetic properties (Sieklucka et al., 2011). However, the [M(CN)8]3/4--based lanthanide assemblies are relatively limited and poorly investigated, because of the liability of the lanthanide centers, the rather large anisotropic magnetic moments, and the absence of design strategies for the 4f-4 d/5 d system (Zhou et al., 2010). Recently, we have used [Mo(CN)8]3- as building block to react with Nd3+ and pillar ligand N,N'-bis(4-pyridylformamide)-1,4-benzene, in order to construct high-dimensional bimetallic assemblies. Unexpectedly, a new mononuclear culster, Nd(H0.5((N,N'-bis(4-pyridylformamide)-1,4-benzene))2(NO3)4, has been obtained. In the structure, the NdIII ion is ten-coordinated by eight oxygen atoms of four NO3- anions and two nitrogen atoms of two N,N'-bis(4-pyridylformamide)-1,4-benzene. The Nd—O bond lengths range from 2.513 (2) to 2.554 (2) Å, with an average value of 2.538 Å, compared to 2.671 (2) Å of Nd—N bond. Each NdIII center displays a distorted bicapped square-antiprismic geometry. The first square is constructed by three oxygen atoms (O2, O4i and O5; symmetry code: (i) -x, y, -z + 1/2) and one nitrogen atom (N1), and the second square comprises of O2i, O4, O5i, and N3i atoms. The two oxygen atoms (O1 and O1i) occupy the two capping positions. The Nd atoms are located on a twofold axis. Thus, the adjacent mononuclear clusters are linked through the hydrogen-bonding interactions (N4—H4A···O1ii, N5—H5A···O7ii, N6—H6···N6iii; symmetry codes: (ii) x, y + 1, z; (iii) -x + 1, -y + 4, -z), resulting in the formation of a two layered structure.

Related literature top

For general background to octacyanometallate-based compounds, see: Sieklucka et al. (2011); Zhou et al. (2010); Bok et al. (1975). For background to N,N'-bis(4-pyridylformamide)-1,4-benzene, see: Niu et al. (2004); Pansanel et al. (2006); Song et al. (2009).

Experimental top

Single crystals of the title compound were prepared at room temperature in the dark by slow diffusion of an acetonitrile solution (3 ml) containing Nd(NO3)3.6H2O (0.05 mmol) and N,N'-bis(4-pyridylformamide)-1,4-benzene (0.05 mmol) into an acetonitrile solution (15 ml) of [HN(n-C4H9)3]3[Mo(CN)8] (0.05 mmol) (Bok et al., 1975). After two weeks, yellow block crystals were obtained.

Refinement top

The (C)H atoms of N,N'-bis(4-pyridylformamide)-1,4-benzene were calculated at idealized positions and included in the refinement in a riding mode. The (N)H atoms (H4A, H5A and H6) were located from difference Fourier maps and refined as riding modes with N—H = 0.89 Å and U(H) set to 1.2Ueq(N). The H6 atom has an occupancy factor of 50% because it is disordered over two ligand molecules.

Structure description top

In the past few years, octacyanide-bearing precursors [M(CN)8]3/4- (M = Mo, W) are frequently utilized in the construction of various dimensional structures, and the resulting materials have displayed rich magnetic properties (Sieklucka et al., 2011). However, the [M(CN)8]3/4--based lanthanide assemblies are relatively limited and poorly investigated, because of the liability of the lanthanide centers, the rather large anisotropic magnetic moments, and the absence of design strategies for the 4f-4 d/5 d system (Zhou et al., 2010). Recently, we have used [Mo(CN)8]3- as building block to react with Nd3+ and pillar ligand N,N'-bis(4-pyridylformamide)-1,4-benzene, in order to construct high-dimensional bimetallic assemblies. Unexpectedly, a new mononuclear culster, Nd(H0.5((N,N'-bis(4-pyridylformamide)-1,4-benzene))2(NO3)4, has been obtained. In the structure, the NdIII ion is ten-coordinated by eight oxygen atoms of four NO3- anions and two nitrogen atoms of two N,N'-bis(4-pyridylformamide)-1,4-benzene. The Nd—O bond lengths range from 2.513 (2) to 2.554 (2) Å, with an average value of 2.538 Å, compared to 2.671 (2) Å of Nd—N bond. Each NdIII center displays a distorted bicapped square-antiprismic geometry. The first square is constructed by three oxygen atoms (O2, O4i and O5; symmetry code: (i) -x, y, -z + 1/2) and one nitrogen atom (N1), and the second square comprises of O2i, O4, O5i, and N3i atoms. The two oxygen atoms (O1 and O1i) occupy the two capping positions. The Nd atoms are located on a twofold axis. Thus, the adjacent mononuclear clusters are linked through the hydrogen-bonding interactions (N4—H4A···O1ii, N5—H5A···O7ii, N6—H6···N6iii; symmetry codes: (ii) x, y + 1, z; (iii) -x + 1, -y + 4, -z), resulting in the formation of a two layered structure.

For general background to octacyanometallate-based compounds, see: Sieklucka et al. (2011); Zhou et al. (2010); Bok et al. (1975). For background to N,N'-bis(4-pyridylformamide)-1,4-benzene, see: Niu et al. (2004); Pansanel et al. (2006); Song et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound. All hydrogen atoms bonded to carbon atoms have been omitted for clarity and thermal ellipsoids are presented at the 30% probability level. Symmetry code: (i) -x, y, -z + 1/2.
[Figure 2] Fig. 2. Perspective view of the title compound, showing the hydrogen-bonding interactions between adjacent mononuclear clusters.
Tetrakis(nitrato-κ2O,O')[N,N'-1,4- phenylenebis(pyridine-4-carboxamide)-κN1](4-{[4-(pyridine-4- carboxamido-κN1)phenyl]carbamoyl}pyridin-1-ium)neodymium(III) top
Crystal data top
[Nd(NO3)4(C18H15N4O2)(C18H14N4O2)]F(000) = 2068
Mr = 1029.95Dx = 1.739 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5566 reflections
a = 19.856 (4) Åθ = 2.5–25.6°
b = 7.8491 (14) ŵ = 1.41 mm1
c = 25.338 (5) ÅT = 291 K
β = 95.153 (2)°Block, yellow
V = 3933.0 (13) Å30.28 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3853 independent reflections
Radiation source: fine-focus sealed tube3510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2424
Tmin = 0.693, Tmax = 0.746k = 89
14547 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0368P)2 + 4.9413P]
where P = (Fo2 + 2Fc2)/3
3853 reflections(Δ/σ)max < 0.001
294 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Nd(NO3)4(C18H15N4O2)(C18H14N4O2)]V = 3933.0 (13) Å3
Mr = 1029.95Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.856 (4) ŵ = 1.41 mm1
b = 7.8491 (14) ÅT = 291 K
c = 25.338 (5) Å0.28 × 0.24 × 0.22 mm
β = 95.153 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3853 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3510 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.746Rint = 0.040
14547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 0.99Δρmax = 1.29 e Å3
3853 reflectionsΔρmin = 0.36 e Å3
294 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.00000.03144 (3)0.25000.02816 (8)
O10.12544 (12)0.0024 (3)0.23734 (10)0.0500 (6)
N10.05042 (13)0.2942 (3)0.19938 (10)0.0375 (6)
C10.08058 (16)0.4270 (4)0.22500 (13)0.0410 (7)
H10.07360.44210.26050.049*
O20.10174 (13)0.1272 (3)0.30864 (9)0.0541 (6)
N20.14665 (14)0.0697 (4)0.28005 (13)0.0522 (8)
C20.12163 (16)0.5434 (4)0.20184 (12)0.0391 (7)
H20.14110.63390.22140.047*
O30.20657 (14)0.0853 (5)0.29318 (15)0.0981 (12)
N30.02515 (13)0.2346 (3)0.16730 (10)0.0386 (6)
C30.13313 (14)0.5224 (4)0.14925 (12)0.0345 (6)
O40.05520 (12)0.2346 (3)0.20850 (9)0.0493 (6)
N40.18418 (12)0.7980 (3)0.13715 (10)0.0390 (6)
H4A0.16150.82850.16440.047*
C40.10281 (17)0.3846 (4)0.12217 (12)0.0412 (7)
H40.10970.36520.08680.049*
O50.01619 (12)0.1125 (3)0.16218 (9)0.0497 (6)
N50.32465 (13)1.3637 (3)0.06645 (11)0.0425 (6)
H5A0.30671.45840.07850.051*
C50.06243 (16)0.2773 (4)0.14848 (12)0.0413 (7)
H50.04200.18660.12960.050*
O60.03444 (14)0.3447 (4)0.13396 (10)0.0657 (7)
N60.45861 (13)1.8629 (3)0.00603 (11)0.0449 (7)
H60.48151.96000.00450.054*0.50
C60.17860 (15)0.6371 (4)0.11988 (12)0.0358 (7)
O70.20613 (13)0.5820 (3)0.08216 (10)0.0566 (6)
C70.22349 (15)0.9311 (4)0.11767 (13)0.0366 (7)
O80.38974 (12)1.2586 (3)0.00483 (10)0.0542 (6)
C80.23701 (19)1.0708 (4)0.15034 (14)0.0516 (9)
H80.22311.07080.18440.062*
C90.27096 (19)1.2096 (5)0.13266 (14)0.0525 (9)
H90.27901.30350.15470.063*
C100.29314 (15)1.2111 (4)0.08252 (12)0.0384 (7)
C110.28130 (16)1.0710 (4)0.05014 (13)0.0404 (7)
H110.29661.07030.01650.048*
C120.24663 (16)0.9308 (4)0.06760 (13)0.0401 (7)
H120.23890.83660.04560.048*
C130.36928 (15)1.3780 (4)0.02994 (12)0.0376 (7)
C140.39656 (15)1.5559 (4)0.02252 (12)0.0363 (7)
C150.39694 (17)1.6835 (4)0.05940 (13)0.0445 (8)
H150.37611.66790.09050.053*
C160.42859 (18)1.8357 (4)0.04990 (14)0.0490 (8)
H160.42881.92190.07510.059*
C170.45621 (16)1.7421 (5)0.03105 (13)0.0470 (8)
H170.47571.76300.06240.056*
C180.42595 (16)1.5886 (4)0.02424 (13)0.0432 (7)
H180.42501.50630.05070.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.03137 (12)0.02393 (12)0.03054 (12)0.0000.01028 (8)0.000
O10.0389 (12)0.0579 (16)0.0550 (15)0.0037 (10)0.0140 (11)0.0070 (11)
N10.0421 (14)0.0277 (14)0.0441 (15)0.0043 (11)0.0117 (11)0.0039 (11)
C10.0498 (18)0.0317 (18)0.0434 (17)0.0036 (14)0.0149 (14)0.0018 (13)
O20.0614 (16)0.0571 (16)0.0424 (13)0.0094 (12)0.0036 (11)0.0003 (11)
N20.0366 (15)0.058 (2)0.061 (2)0.0048 (13)0.0022 (14)0.0215 (15)
C20.0446 (17)0.0303 (16)0.0434 (17)0.0051 (13)0.0097 (13)0.0034 (13)
O30.0409 (16)0.122 (3)0.126 (3)0.0114 (17)0.0256 (17)0.027 (2)
N30.0445 (15)0.0312 (14)0.0406 (14)0.0007 (11)0.0067 (11)0.0052 (11)
C30.0329 (14)0.0270 (15)0.0445 (17)0.0001 (12)0.0085 (12)0.0048 (12)
O40.0651 (15)0.0403 (13)0.0457 (13)0.0136 (11)0.0228 (11)0.0057 (10)
N40.0403 (14)0.0321 (15)0.0472 (15)0.0051 (11)0.0187 (11)0.0033 (11)
C40.0526 (19)0.0349 (18)0.0373 (16)0.0075 (15)0.0105 (14)0.0009 (13)
O50.0597 (14)0.0437 (14)0.0494 (13)0.0146 (12)0.0247 (11)0.0082 (11)
N50.0478 (15)0.0272 (14)0.0557 (16)0.0075 (11)0.0226 (13)0.0010 (11)
C50.0478 (18)0.0334 (17)0.0430 (18)0.0086 (14)0.0050 (14)0.0015 (13)
O60.0768 (18)0.0620 (18)0.0598 (16)0.0183 (14)0.0153 (13)0.0294 (13)
N60.0406 (15)0.0378 (16)0.0565 (17)0.0121 (12)0.0053 (12)0.0087 (13)
C60.0349 (15)0.0312 (17)0.0424 (17)0.0015 (12)0.0102 (13)0.0020 (12)
O70.0724 (17)0.0382 (13)0.0647 (16)0.0087 (12)0.0373 (13)0.0040 (11)
C70.0339 (15)0.0279 (17)0.0495 (18)0.0045 (12)0.0117 (13)0.0043 (12)
O80.0538 (14)0.0405 (14)0.0723 (16)0.0109 (11)0.0276 (12)0.0106 (12)
C80.067 (2)0.043 (2)0.049 (2)0.0161 (17)0.0284 (17)0.0039 (15)
C90.066 (2)0.042 (2)0.053 (2)0.0170 (17)0.0239 (17)0.0108 (16)
C100.0352 (15)0.0317 (17)0.0498 (18)0.0056 (13)0.0123 (13)0.0026 (13)
C110.0438 (17)0.0389 (19)0.0396 (17)0.0097 (14)0.0100 (13)0.0025 (13)
C120.0432 (17)0.0326 (18)0.0451 (18)0.0092 (13)0.0081 (14)0.0016 (13)
C130.0333 (15)0.0381 (19)0.0422 (17)0.0051 (13)0.0074 (13)0.0019 (14)
C140.0320 (15)0.0371 (18)0.0405 (16)0.0055 (12)0.0074 (12)0.0030 (13)
C150.0502 (19)0.043 (2)0.0416 (17)0.0131 (15)0.0125 (14)0.0019 (14)
C160.053 (2)0.0404 (19)0.054 (2)0.0121 (16)0.0068 (16)0.0053 (15)
C170.0449 (18)0.050 (2)0.0473 (19)0.0064 (16)0.0122 (15)0.0096 (16)
C180.0439 (18)0.0451 (19)0.0422 (17)0.0077 (15)0.0122 (14)0.0024 (14)
Geometric parameters (Å, º) top
Nd1—O22.513 (2)C4—H40.9300
Nd1—O2i2.513 (2)N5—C131.342 (4)
Nd1—O52.542 (2)N5—C101.428 (4)
Nd1—O5i2.542 (2)N5—H5A0.8900
Nd1—O42.542 (2)C5—H50.9300
Nd1—O4i2.542 (2)N6—C161.325 (4)
Nd1—O1i2.554 (2)N6—C171.333 (4)
Nd1—O12.554 (2)N6—H60.8900
Nd1—N12.671 (2)C6—O71.222 (4)
Nd1—N1i2.671 (2)C7—C81.385 (5)
Nd1—N2i2.958 (3)C7—C121.388 (4)
Nd1—N22.958 (3)O8—C131.222 (4)
O1—N21.260 (4)C8—C91.377 (5)
N1—C11.340 (4)C8—H80.9300
N1—C51.339 (4)C9—C101.382 (4)
C1—C21.389 (4)C9—H90.9300
C1—H10.9300C10—C111.380 (4)
O2—N21.281 (4)C11—C121.391 (4)
N2—O31.213 (4)C11—H110.9300
C2—C31.382 (4)C12—H120.9300
C2—H20.9300C13—C141.516 (4)
N3—O61.211 (3)C14—C151.369 (4)
N3—O41.248 (3)C14—C181.391 (4)
N3—O51.276 (3)C15—C161.381 (5)
C3—C41.389 (4)C15—H150.9300
C3—C61.517 (4)C16—H160.9300
N4—C61.338 (4)C17—C181.364 (5)
N4—C71.419 (4)C17—H170.9300
N4—H4A0.8902C18—H180.9300
C4—C51.376 (4)
O2—Nd1—O2i145.18 (12)O3—N2—O1121.7 (4)
O2—Nd1—O5119.51 (8)O3—N2—O2121.7 (4)
O2i—Nd1—O576.91 (8)O1—N2—O2116.6 (3)
O2—Nd1—O5i76.91 (8)O3—N2—Nd1179.0 (3)
O2i—Nd1—O5i119.51 (8)O1—N2—Nd159.20 (15)
O5—Nd1—O5i127.20 (11)O2—N2—Nd157.46 (15)
O2—Nd1—O4141.65 (8)C3—C2—C1118.9 (3)
O2i—Nd1—O472.99 (8)C3—C2—H2120.6
O5—Nd1—O449.93 (7)C1—C2—H2120.6
O5i—Nd1—O485.01 (8)O6—N3—O4121.9 (3)
O2—Nd1—O4i72.99 (8)O6—N3—O5121.6 (3)
O2i—Nd1—O4i141.65 (8)O4—N3—O5116.5 (2)
O5—Nd1—O4i85.01 (8)O6—N3—Nd1178.8 (2)
O5i—Nd1—O4i49.93 (7)O4—N3—Nd158.16 (14)
O4—Nd1—O4i69.51 (11)O5—N3—Nd158.30 (14)
O2—Nd1—O1i134.28 (8)C2—C3—C4117.9 (3)
O2i—Nd1—O1i50.51 (8)C2—C3—C6124.0 (3)
O5—Nd1—O1i105.38 (8)C4—C3—C6118.1 (3)
O5i—Nd1—O1i69.04 (8)N3—O4—Nd197.18 (16)
O4—Nd1—O1i65.00 (8)C6—N4—C7127.8 (3)
O4i—Nd1—O1i104.58 (8)C6—N4—H4A118.3
O2—Nd1—O150.51 (8)C7—N4—H4A113.8
O2i—Nd1—O1134.28 (8)C5—C4—C3118.9 (3)
O5—Nd1—O169.04 (8)C5—C4—H4120.6
O5i—Nd1—O1105.38 (8)C3—C4—H4120.6
O4—Nd1—O1104.58 (8)N3—O5—Nd196.42 (16)
O4i—Nd1—O165.00 (8)C13—N5—C10126.9 (3)
O1i—Nd1—O1168.06 (11)C13—N5—H5A118.5
O2—Nd1—N174.74 (8)C10—N5—H5A113.8
O2i—Nd1—N178.52 (8)N1—C5—C4124.6 (3)
O5—Nd1—N180.83 (8)N1—C5—H5117.7
O5i—Nd1—N1147.80 (8)C4—C5—H5117.7
O4—Nd1—N1127.02 (7)C16—N6—C17119.1 (3)
O4i—Nd1—N1131.83 (8)C16—N6—H6116.3
O1i—Nd1—N1123.55 (8)C17—N6—H6124.4
O1—Nd1—N166.92 (8)O7—C6—N4124.1 (3)
O2—Nd1—N1i78.52 (8)O7—C6—C3120.1 (3)
O2i—Nd1—N1i74.74 (8)N4—C6—C3115.8 (3)
O5—Nd1—N1i147.80 (8)C8—C7—C12119.0 (3)
O5i—Nd1—N1i80.83 (8)C8—C7—N4117.3 (3)
O4—Nd1—N1i131.83 (8)C12—C7—N4123.7 (3)
O4i—Nd1—N1i127.02 (7)C9—C8—C7120.4 (3)
O1i—Nd1—N1i66.92 (8)C9—C8—H8119.8
O1—Nd1—N1i123.55 (8)C7—C8—H8119.8
N1—Nd1—N1i78.88 (11)C10—C9—C8120.8 (3)
O2—Nd1—N2i147.38 (8)C10—C9—H9119.6
O2i—Nd1—N2i25.44 (8)C8—C9—H9119.6
O5—Nd1—N2i91.07 (8)C9—C10—C11119.3 (3)
O5i—Nd1—N2i94.10 (9)C9—C10—N5117.0 (3)
O4—Nd1—N2i66.36 (8)C11—C10—N5123.7 (3)
O4i—Nd1—N2i124.59 (9)C10—C11—C12120.3 (3)
O1i—Nd1—N2i25.07 (9)C10—C11—H11119.9
O1—Nd1—N2i157.96 (8)C12—C11—H11119.9
N1—Nd1—N2i101.58 (9)C7—C12—C11120.2 (3)
N1i—Nd1—N2i69.05 (8)C7—C12—H12119.9
O2—Nd1—N225.44 (8)C11—C12—H12119.9
O2i—Nd1—N2147.38 (8)O8—C13—N5124.5 (3)
O5—Nd1—N294.10 (9)O8—C13—C14120.2 (3)
O5i—Nd1—N291.07 (8)N5—C13—C14115.3 (3)
O4—Nd1—N2124.59 (9)C15—C14—C18118.0 (3)
O4i—Nd1—N266.36 (8)C15—C14—C13124.7 (3)
O1i—Nd1—N2157.96 (8)C18—C14—C13117.2 (3)
O1—Nd1—N225.07 (9)C14—C15—C16119.2 (3)
N1—Nd1—N269.05 (8)C14—C15—H15120.4
N1i—Nd1—N2101.58 (9)C16—C15—H15120.4
N2i—Nd1—N2168.35 (12)N6—C16—C15122.1 (3)
N2—O1—Nd195.73 (19)N6—C16—H16118.9
C1—N1—C5115.7 (3)C15—C16—H16118.9
C1—N1—Nd1122.6 (2)N6—C17—C18121.8 (3)
C5—N1—Nd1119.53 (19)N6—C17—H17119.1
N1—C1—C2124.1 (3)C18—C17—H17119.1
N1—C1—H1118.0C17—C18—C14119.6 (3)
C2—C1—H1118.0C17—C18—H18120.2
N2—O2—Nd197.10 (18)C14—C18—H18120.2
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1ii0.892.433.285 (4)160
N5—H5A···O7ii0.892.232.966 (4)140
N6—H6···N6iii0.891.862.742 (5)168
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+4, z.

Experimental details

Crystal data
Chemical formula[Nd(NO3)4(C18H15N4O2)(C18H14N4O2)]
Mr1029.95
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)19.856 (4), 7.8491 (14), 25.338 (5)
β (°) 95.153 (2)
V3)3933.0 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.693, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14547, 3853, 3510
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 0.99
No. of reflections3853
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.36

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.892.433.285 (4)159.9
N5—H5A···O7i0.892.232.966 (4)140.0
N6—H6···N6ii0.891.862.742 (5)168.4
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+4, z.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Jiangsu Province (grant No. BK2011518) and the Project of Jiangsu University of Science and Technology (grant No. 2009 C L152J).

References

First citationBok, L. D. C., Leipoldt, J. G. & Basson, S. S. (1975). Z. Anorg. Allg. Chem. 415, 81–83.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNiu, Y. Y., Song, Y. L., Wu, J., Hou, H. W., Zhu, Y. & Wang, X. (2004). Inorg. Chem. Commun. 7, 471–474.  Web of Science CSD CrossRef CAS Google Scholar
First citationPansanel, J., Jouaiti, A., Ferlay, S., Hosseini, M. W., Planeix, J. M. & Kyritsakas, N. (2006). New J. Chem. 30, 683–688.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieklucka, B., Podgajny, R., Korzeniak, T., Nowicka, B., Pinkowicz, D. & Kozieł, M. (2011). Eur. J. Inorg. Chem. pp. 305–326.  Web of Science CrossRef Google Scholar
First citationSong, L., Chai, W. & Lan, J. (2009). Acta Cryst. E65, o1749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, H., Yuan, A. H., Qian, S. Y., Song, Y. & Diao, G. W. (2010). Inorg. Chem. 49, 5971–5976.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds