organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1-Methyl-1H-pyrrol-2-yl)methyl­­idene]propane­di­nitrile

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 March 2012; accepted 20 March 2012; online 24 March 2012)

In the title compound, C9H7N3, the N-bound methyl group and vinyl H atom are syn. The 12 non-H atoms comprising the mol­ecule are essentially coplanar (r.m.s. deviation = 0.071 Å). Supra­molecular tapes feature in the crystal packing, orientated perpendicular to [10-1], and are formed by C—H⋯N inter­actions involving each cyano N atom. The tapes are connected into layers via ππ inter­actions occurring between translationally related pyrrole rings [ring centroid–centroid distance = 3.8754 (10) Å]; the layers stack along the b axis.

Related literature

For the anti-cancer effects of related compounds, see: Rostom et al. (2011[Rostom, S. A. F., Faidallah, H. M. & Al Saadi, M. S. M. (2011). Med. Chem. Res. 20, 1260-1272.]). For structural studies of di-carbonitrile compounds, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2449.]); Al-Youbi et al. (2012[Al-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027-o1028.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N3

  • Mr = 157.18

  • Triclinic, [P \overline 1]

  • a = 3.8754 (2) Å

  • b = 8.7795 (5) Å

  • c = 12.1773 (7) Å

  • α = 97.517 (5)°

  • β = 90.962 (5)°

  • γ = 98.689 (5)°

  • V = 405.76 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.980, Tmax = 0.996

  • 5871 measured reflections

  • 1866 independent reflections

  • 1463 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.01

  • 1866 reflections

  • 137 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N3i 0.976 (19) 2.612 (19) 3.579 (2) 170.8 (16)
C6—H6⋯N2ii 0.969 (17) 2.515 (17) 3.469 (2) 167.8 (14)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Arylidenes are considered as key intermediates for the synthesis of a variety of heterocycles of biological importance, such as pyridine, pyridazine and quinoline derivatives. Previous studies have shown that the derived compounds exhibit a variety of biological activities, including anti-cancer effects (Rostom et al., 2011). In continuation of structural studies of di-carbonitrile compounds (Asiri et al., 2011; Al-Youbi et al., 2012), the title compound, (I), was investigated.

In (I), Fig. 1, the N-bound methyl group and vinyl-H atom are syn. The 12 non-hydrogen atoms are co-planar having a r.m.s. deviation = 0.071 Å, with the maximum deviations being 0.118 (2) Å for the C1 atom and -0.084 (2) Å for the N2 atom.

In the crystal packing, each cyano-N atom participates in a C—H···N interaction, Table 1, with a centrosymmetrically related molecule to form a supramolecular tape. The tape is orientated along [101] and comprises alternating 10-membered {···HC3N}2 and 16-membered {···HC6N}2 synthons, Fig. 2. The tapes are connected into layers via ππ interactions occurring between translationally related pyrrazole rings [ring centroid..centroid distance = 3.8754 (10) Å for symmetry operation 1 + x, y, z]. The layers stack along the b axis, Fig. 3.

Related literature top

For the anti-cancer effects of related compounds, see: Rostom et al. (2011). For structural studies of di-carbonitrile compounds, see: Asiri et al. (2011); Al-Youbi et al. (2012).

Experimental top

A mixture of 1-methylpyrrole-2-carboxaldehyde (1.1 g, 0.01 mmol) and malononitrile (1.1 g, 0.01 mmol) in absolute ethanol (50 ml) was refluxed for 2 h. The reaction mixture was allowed to cool, and the formed precipitate was filtered, washed with water, dried and recrystallized from ethanol. Yield: 72%. M.pt: 427–229 K.

Refinement top

All H-atoms were located in a difference map and were refined freely, the range of C—H bond lengths = 0.952 (19) to 1.002 (19) Å.

Structure description top

Arylidenes are considered as key intermediates for the synthesis of a variety of heterocycles of biological importance, such as pyridine, pyridazine and quinoline derivatives. Previous studies have shown that the derived compounds exhibit a variety of biological activities, including anti-cancer effects (Rostom et al., 2011). In continuation of structural studies of di-carbonitrile compounds (Asiri et al., 2011; Al-Youbi et al., 2012), the title compound, (I), was investigated.

In (I), Fig. 1, the N-bound methyl group and vinyl-H atom are syn. The 12 non-hydrogen atoms are co-planar having a r.m.s. deviation = 0.071 Å, with the maximum deviations being 0.118 (2) Å for the C1 atom and -0.084 (2) Å for the N2 atom.

In the crystal packing, each cyano-N atom participates in a C—H···N interaction, Table 1, with a centrosymmetrically related molecule to form a supramolecular tape. The tape is orientated along [101] and comprises alternating 10-membered {···HC3N}2 and 16-membered {···HC6N}2 synthons, Fig. 2. The tapes are connected into layers via ππ interactions occurring between translationally related pyrrazole rings [ring centroid..centroid distance = 3.8754 (10) Å for symmetry operation 1 + x, y, z]. The layers stack along the b axis, Fig. 3.

For the anti-cancer effects of related compounds, see: Rostom et al. (2011). For structural studies of di-carbonitrile compounds, see: Asiri et al. (2011); Al-Youbi et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the supramolecular tape in (I) with C—H···N interactions shown as blue dashed lines.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents of (I) showing the stacking of layers along the b axis. The C—H···N and ππ interactions are shown as blue and purple dashed lines, respectively.
2-[(1-Methyl-1H-pyrrol-2-yl)methylidene]propanedinitrile top
Crystal data top
C9H7N3Z = 2
Mr = 157.18F(000) = 164
Triclinic, P1Dx = 1.286 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8754 (2) ÅCell parameters from 1724 reflections
b = 8.7795 (5) Åθ = 2.4–27.5°
c = 12.1773 (7) ŵ = 0.08 mm1
α = 97.517 (5)°T = 100 K
β = 90.962 (5)°Prism, light-brown
γ = 98.689 (5)°0.25 × 0.15 × 0.05 mm
V = 405.76 (4) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1866 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1463 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1111
Tmin = 0.980, Tmax = 0.996l = 1515
5871 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.1622P]
where P = (Fo2 + 2Fc2)/3
1866 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C9H7N3γ = 98.689 (5)°
Mr = 157.18V = 405.76 (4) Å3
Triclinic, P1Z = 2
a = 3.8754 (2) ÅMo Kα radiation
b = 8.7795 (5) ŵ = 0.08 mm1
c = 12.1773 (7) ÅT = 100 K
α = 97.517 (5)°0.25 × 0.15 × 0.05 mm
β = 90.962 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1866 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1463 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.996Rint = 0.039
5871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124All H-atom parameters refined
S = 1.01Δρmax = 0.24 e Å3
1866 reflectionsΔρmin = 0.29 e Å3
137 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3583 (3)0.18886 (15)0.26433 (10)0.0202 (3)
N20.2317 (4)0.71488 (16)0.02337 (11)0.0267 (3)
N30.8617 (4)0.78536 (16)0.32981 (11)0.0267 (3)
C10.1644 (5)0.0922 (2)0.16953 (14)0.0250 (4)
C20.4697 (4)0.13538 (19)0.35574 (13)0.0234 (4)
C30.6539 (4)0.25848 (19)0.42647 (13)0.0246 (4)
C40.6548 (4)0.39208 (19)0.37650 (12)0.0220 (4)
C50.4681 (4)0.34899 (17)0.27400 (12)0.0188 (3)
C60.3763 (4)0.43469 (17)0.19062 (12)0.0185 (3)
C70.4655 (4)0.59152 (18)0.18566 (12)0.0190 (3)
C80.3370 (4)0.65898 (17)0.09541 (12)0.0202 (3)
C90.6828 (4)0.69787 (17)0.26673 (12)0.0196 (3)
H110.106 (5)0.015 (3)0.1842 (17)0.041 (6)*
H120.308 (5)0.090 (2)0.1053 (17)0.038 (5)*
H130.050 (5)0.132 (2)0.1524 (16)0.033 (5)*
H20.412 (5)0.027 (2)0.3608 (15)0.025 (4)*
H30.763 (5)0.250 (2)0.4978 (16)0.031 (5)*
H40.769 (5)0.500 (2)0.4051 (14)0.024 (4)*
H60.220 (4)0.378 (2)0.1311 (14)0.020 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0225 (7)0.0198 (7)0.0189 (6)0.0031 (5)0.0018 (5)0.0047 (5)
N20.0320 (8)0.0269 (7)0.0215 (7)0.0040 (6)0.0007 (6)0.0056 (6)
N30.0310 (8)0.0241 (7)0.0245 (7)0.0008 (6)0.0021 (6)0.0062 (6)
C10.0282 (9)0.0221 (8)0.0235 (8)0.0002 (7)0.0013 (7)0.0037 (6)
C20.0255 (8)0.0227 (8)0.0244 (8)0.0054 (6)0.0050 (6)0.0097 (6)
C30.0254 (8)0.0301 (9)0.0201 (8)0.0054 (7)0.0008 (6)0.0089 (6)
C40.0209 (8)0.0249 (8)0.0204 (8)0.0024 (6)0.0018 (6)0.0046 (6)
C50.0188 (7)0.0196 (7)0.0182 (7)0.0022 (6)0.0029 (6)0.0045 (6)
C60.0179 (7)0.0213 (8)0.0163 (7)0.0034 (6)0.0018 (6)0.0023 (6)
C70.0195 (7)0.0221 (8)0.0162 (7)0.0042 (6)0.0023 (6)0.0041 (6)
C80.0214 (8)0.0201 (7)0.0191 (8)0.0028 (6)0.0022 (6)0.0023 (6)
C90.0208 (7)0.0201 (7)0.0198 (8)0.0041 (6)0.0037 (6)0.0079 (6)
Geometric parameters (Å, º) top
N1—C21.352 (2)C3—C41.390 (2)
N1—C51.3949 (19)C3—H30.977 (19)
N1—C11.463 (2)C4—C51.410 (2)
N2—C81.157 (2)C4—H41.002 (19)
N3—C91.152 (2)C5—C61.412 (2)
C1—H110.97 (2)C6—C71.378 (2)
C1—H120.97 (2)C6—H60.969 (17)
C1—H130.98 (2)C7—C81.431 (2)
C2—C31.386 (2)C7—C91.431 (2)
C2—H20.952 (19)
C2—N1—C5108.97 (13)C3—C4—C5107.69 (14)
C2—N1—C1124.98 (13)C3—C4—H4127.8 (10)
C5—N1—C1126.02 (13)C5—C4—H4124.5 (10)
N1—C1—H11110.6 (12)N1—C5—C4106.64 (13)
N1—C1—H12109.7 (11)N1—C5—C6120.42 (13)
H11—C1—H12106.9 (17)C4—C5—C6132.91 (14)
N1—C1—H13111.0 (11)C7—C6—C5128.23 (14)
H11—C1—H13109.4 (17)C7—C6—H6115.2 (10)
H12—C1—H13109.2 (16)C5—C6—H6116.5 (10)
N1—C2—C3109.17 (14)C6—C7—C8120.18 (13)
N1—C2—H2118.3 (11)C6—C7—C9124.54 (13)
C3—C2—H2132.5 (11)C8—C7—C9115.29 (13)
C2—C3—C4107.53 (14)N2—C8—C7179.15 (16)
C2—C3—H3125.1 (11)N3—C9—C7178.23 (16)
C4—C3—H3127.3 (11)
C5—N1—C2—C30.11 (17)C1—N1—C5—C63.9 (2)
C1—N1—C2—C3177.99 (14)C3—C4—C5—N10.10 (17)
N1—C2—C3—C40.05 (18)C3—C4—C5—C6177.75 (16)
C2—C3—C4—C50.04 (18)N1—C5—C6—C7178.89 (14)
C2—N1—C5—C40.13 (17)C4—C5—C6—C73.5 (3)
C1—N1—C5—C4177.94 (14)C5—C6—C7—C8177.93 (14)
C2—N1—C5—C6178.05 (13)C5—C6—C7—C91.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N3i0.976 (19)2.612 (19)3.579 (2)170.8 (16)
C6—H6···N2ii0.969 (17)2.515 (17)3.469 (2)167.8 (14)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H7N3
Mr157.18
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)3.8754 (2), 8.7795 (5), 12.1773 (7)
α, β, γ (°)97.517 (5), 90.962 (5), 98.689 (5)
V3)405.76 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.980, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
5871, 1866, 1463
Rint0.039
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.01
No. of reflections1866
No. of parameters137
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N3i0.976 (19)2.612 (19)3.579 (2)170.8 (16)
C6—H6···N2ii0.969 (17)2.515 (17)3.469 (2)167.8 (14)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027–o1028.  CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRostom, S. A. F., Faidallah, H. M. & Al Saadi, M. S. M. (2011). Med. Chem. Res. 20, 1260–1272.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds