organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­methyl­pyrano[2,3-c]pyrazol-6(2H)-one

aDepartment of Chemistry, GC University, Lahore 54000, Pakistan, bApplied Chemistry Research Centre, Pakistan Council of Scientific & Industrial Research Laboratories Complex, Lahore 54600, Pakistan, cDepartment of Chemistry, University of Gujrat (H. H. Campus), Gujrat 57000, Pakistan, and dDepartment of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 22 March 2012; accepted 23 March 2012; online 28 March 2012)

The asymmetric unit of the title compound, C8H8N2O2, comprises two independent mol­ecules in both of which, all non-H atoms lie in a common plane (r.m.s. deviation = 0.014 and 0.017 Å). In the crystal, N—H⋯O hydrogen bonds connect the mol­ecules into zigzag chains running along [10-1]. Weak C—H⋯O inter­actions connect the chains into an infinite network.

Related literature

For related structures, see: Ahmad et al. (2011[Ahmad, N., Tahir, M. N., Khan, M. A., Ather, A. Q. & Khan, M. N. (2011). Acta Cryst. E67, o1021.]); Ramsay & Steel (1985[Ramsay, C. G. & Steel, P. J. (1985). Acta Cryst. C41, 135-136.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N2O2

  • Mr = 164.16

  • Monoclinic, P 21 /n

  • a = 13.6219 (3) Å

  • b = 6.8766 (2) Å

  • c = 16.2369 (4) Å

  • β = 96.091 (2)°

  • V = 1512.36 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.18 × 0.11 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.989

  • 16831 measured reflections

  • 3770 independent reflections

  • 2654 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.02

  • 3770 reflections

  • 228 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O2i 0.91 (2) 1.91 (2) 2.7860 (17) 160.9 (17)
N2—H2N⋯O4ii 0.912 (19) 1.984 (19) 2.8872 (18) 170.4 (17)
C2—H2⋯O2iii 0.93 2.49 3.4082 (19) 171
C7—H7A⋯O3ii 0.96 2.54 3.458 (2) 159
C10—H10⋯O4iv 0.93 2.45 3.3563 (18) 164
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x, -y, -z+1; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of our work on the synthesis and biological evaluation of various heterocyclic compounds, we, herein report the crystal structure of the title compound (I) Fig. 1.

Structure of the title compound is closely related to already published structures of 3,4-dimethyl-1-(2-pyridyl)pyrano(2,3-c)pyrazol-6 (1H)-one (Ramsay & Steel, 1985) and 3,4-dimethyl-1-phenylpyrano [2,3-c]pyrazol-6(1H)-one (Ahmad et al., 2011). There are two asymmetric molecules per unit cell and each molecule comprises of one pyranone ring fused with pyrazole ring. N-H···O hydrogen bonding interactions connect the molecules to zig-zag chains running along [1 0 1]. In addition, weak intermolecular C—H···O interactions connect these infinite chains to a three dimesional network (Table 1, Fig. 2).

Related literature top

For related structures, see: Ahmad et al. (2011); Ramsay & Steel (1985).

Experimental top

A mixture of hydrazine hydrate (1.0 mmole), ethyl acetoacetate (2.0 mmoles) was heated for one hour at 120°C followed by cooling to room temperature. The contents were triturated with diethyl ether, filtered and the residue obtained was crystallized from acetic acid. M.p. 246°C; Yield (87%).

Refinement top

All H-atoms bonded to C were positioned with idealized geometry with C—H = 0.93 Å for aromatic and C—H = 0.96 Å for methyl groups and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic and Uiso(H) = 1.5 Ueq(C) for methyl carbon atoms. The coordinates of the H atoms bonded to N were refined with Uiso(H) = 1.2 Ueq(N).

Structure description top

In continuation of our work on the synthesis and biological evaluation of various heterocyclic compounds, we, herein report the crystal structure of the title compound (I) Fig. 1.

Structure of the title compound is closely related to already published structures of 3,4-dimethyl-1-(2-pyridyl)pyrano(2,3-c)pyrazol-6 (1H)-one (Ramsay & Steel, 1985) and 3,4-dimethyl-1-phenylpyrano [2,3-c]pyrazol-6(1H)-one (Ahmad et al., 2011). There are two asymmetric molecules per unit cell and each molecule comprises of one pyranone ring fused with pyrazole ring. N-H···O hydrogen bonding interactions connect the molecules to zig-zag chains running along [1 0 1]. In addition, weak intermolecular C—H···O interactions connect these infinite chains to a three dimesional network (Table 1, Fig. 2).

For related structures, see: Ahmad et al. (2011); Ramsay & Steel (1985).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The labelled molecular structure of (I) showing molecules A and B with 50% displacement ellipsoids.
[Figure 2] Fig. 2. A perspective view showing hydrogen bond interactions drawn as dashed lines.
3,4-Dimethylpyrano[2,3-c]pyrazol-6(2H)-one top
Crystal data top
C8H8N2O2F(000) = 688
Mr = 164.16Dx = 1.443 Mg m3
Monoclinic, P21/nMelting point: 518 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.6219 (3) ÅCell parameters from 5051 reflections
b = 6.8766 (2) Åθ = 2.5–27.8°
c = 16.2369 (4) ŵ = 0.11 mm1
β = 96.091 (2)°T = 296 K
V = 1512.36 (7) Å3Needle, yellow
Z = 80.30 × 0.18 × 0.11 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3770 independent reflections
Radiation source: fine-focus sealed tube2654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1818
Tmin = 0.970, Tmax = 0.989k = 89
16831 measured reflectionsl = 2118
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.3127P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3770 reflectionsΔρmax = 0.23 e Å3
228 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0060 (10)
Crystal data top
C8H8N2O2V = 1512.36 (7) Å3
Mr = 164.16Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.6219 (3) ŵ = 0.11 mm1
b = 6.8766 (2) ÅT = 296 K
c = 16.2369 (4) Å0.30 × 0.18 × 0.11 mm
β = 96.091 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3770 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2654 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.989Rint = 0.031
16831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.23 e Å3
3770 reflectionsΔρmin = 0.16 e Å3
228 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14791 (7)0.41930 (15)0.44365 (6)0.0399 (3)
O20.13549 (8)0.13137 (18)0.50096 (7)0.0512 (3)
O30.00479 (8)0.23381 (15)0.19680 (7)0.0417 (3)
O40.14510 (8)0.19091 (16)0.27386 (7)0.0493 (3)
N10.14966 (10)0.7225 (2)0.38066 (8)0.0445 (3)
N20.07651 (10)0.8288 (2)0.33725 (9)0.0446 (3)
N30.14217 (10)0.2981 (2)0.11578 (9)0.0480 (4)
N40.17201 (10)0.4537 (2)0.06663 (9)0.0475 (4)
C10.09219 (11)0.2599 (2)0.46042 (9)0.0372 (3)
C20.01109 (11)0.2563 (2)0.43051 (9)0.0375 (3)
H20.04800.14850.44310.045*
C30.05750 (10)0.4004 (2)0.38520 (9)0.0341 (3)
C40.00154 (10)0.5642 (2)0.36819 (8)0.0333 (3)
C50.10172 (10)0.5654 (2)0.39826 (9)0.0351 (3)
C60.01200 (11)0.7428 (2)0.32825 (9)0.0375 (3)
C70.10067 (12)0.8367 (3)0.28407 (10)0.0487 (4)
H7A0.08400.96520.26710.073*
H7B0.15180.84460.32040.073*
H7C0.12360.76100.23620.073*
C80.16479 (11)0.3900 (3)0.35436 (11)0.0473 (4)
H8A0.19210.27110.37290.071*
H8B0.17240.39370.29490.071*
H8C0.19870.49860.37550.071*
C90.09864 (11)0.2979 (2)0.22481 (9)0.0364 (3)
C100.13176 (10)0.4804 (2)0.19482 (9)0.0368 (3)
H100.19600.51960.21210.044*
C110.07528 (10)0.5986 (2)0.14298 (9)0.0332 (3)
C120.02244 (10)0.5304 (2)0.11579 (8)0.0333 (3)
C130.05254 (11)0.3506 (2)0.14382 (9)0.0363 (3)
C140.10441 (11)0.5942 (2)0.06431 (9)0.0380 (3)
C150.12391 (13)0.7747 (3)0.01454 (11)0.0509 (4)
H15A0.18390.75960.02170.076*
H15B0.07000.79800.01780.076*
H15C0.13040.88280.05100.076*
C160.11158 (13)0.7903 (2)0.11518 (11)0.0481 (4)
H16A0.17820.81070.13940.072*
H16B0.07020.89230.13240.072*
H16C0.10970.79110.05590.072*
H2N0.0908 (14)0.948 (3)0.3166 (11)0.058*
H4N0.2329 (15)0.450 (3)0.0380 (11)0.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0295 (5)0.0439 (6)0.0448 (6)0.0013 (4)0.0031 (4)0.0031 (5)
O20.0412 (6)0.0510 (7)0.0590 (7)0.0083 (5)0.0059 (5)0.0141 (6)
O30.0400 (6)0.0337 (5)0.0503 (6)0.0062 (4)0.0005 (5)0.0064 (5)
O40.0461 (7)0.0435 (6)0.0568 (7)0.0067 (5)0.0016 (5)0.0123 (5)
N10.0365 (7)0.0427 (7)0.0533 (8)0.0043 (6)0.0002 (6)0.0018 (6)
N20.0455 (8)0.0362 (7)0.0518 (8)0.0023 (6)0.0037 (6)0.0039 (6)
N30.0368 (7)0.0496 (8)0.0561 (9)0.0102 (6)0.0017 (6)0.0001 (7)
N40.0332 (7)0.0567 (9)0.0504 (8)0.0009 (6)0.0051 (6)0.0039 (7)
C10.0344 (8)0.0406 (8)0.0361 (8)0.0032 (6)0.0014 (6)0.0002 (6)
C20.0318 (7)0.0398 (8)0.0409 (8)0.0023 (6)0.0028 (6)0.0035 (6)
C30.0289 (7)0.0405 (8)0.0330 (7)0.0008 (6)0.0037 (6)0.0025 (6)
C40.0305 (7)0.0368 (7)0.0323 (7)0.0015 (6)0.0022 (6)0.0013 (6)
C50.0307 (7)0.0387 (8)0.0352 (8)0.0001 (6)0.0009 (6)0.0020 (6)
C60.0387 (8)0.0369 (8)0.0371 (8)0.0023 (6)0.0044 (6)0.0008 (6)
C70.0493 (10)0.0450 (9)0.0510 (10)0.0092 (7)0.0017 (8)0.0084 (7)
C80.0304 (8)0.0539 (10)0.0564 (10)0.0017 (7)0.0001 (7)0.0063 (8)
C90.0339 (8)0.0348 (8)0.0404 (8)0.0027 (6)0.0035 (6)0.0002 (6)
C100.0278 (7)0.0380 (8)0.0443 (8)0.0033 (6)0.0021 (6)0.0009 (6)
C110.0333 (7)0.0318 (7)0.0353 (7)0.0013 (6)0.0067 (6)0.0027 (6)
C120.0325 (7)0.0327 (7)0.0351 (8)0.0012 (6)0.0051 (6)0.0025 (6)
C130.0333 (8)0.0367 (8)0.0386 (8)0.0028 (6)0.0023 (6)0.0015 (6)
C140.0351 (8)0.0434 (8)0.0352 (8)0.0053 (7)0.0022 (6)0.0046 (6)
C150.0498 (10)0.0539 (10)0.0477 (10)0.0141 (8)0.0013 (8)0.0043 (8)
C160.0486 (10)0.0381 (9)0.0577 (10)0.0075 (7)0.0059 (8)0.0065 (7)
Geometric parameters (Å, º) top
O1—C51.3603 (17)C6—C71.485 (2)
O1—C11.3768 (18)C7—H7A0.9600
O2—C11.2165 (18)C7—H7B0.9600
O3—C131.3609 (18)C7—H7C0.9600
O3—C91.3828 (18)C8—H8A0.9600
O4—C91.2122 (18)C8—H8B0.9600
N1—C51.3094 (19)C8—H8C0.9600
N1—N21.3695 (19)C9—C101.436 (2)
N2—C61.337 (2)C10—C111.350 (2)
N2—H2N0.912 (19)C10—H100.9300
N3—C131.3076 (19)C11—C121.4361 (19)
N3—N41.370 (2)C11—C161.495 (2)
N4—C141.338 (2)C12—C141.393 (2)
N4—H4N0.91 (2)C12—C131.394 (2)
C1—C21.439 (2)C14—C151.489 (2)
C2—C31.351 (2)C15—H15A0.9600
C2—H20.9300C15—H15B0.9600
C3—C41.428 (2)C15—H15C0.9600
C3—C81.495 (2)C16—H16A0.9600
C4—C61.392 (2)C16—H16B0.9600
C4—C51.3998 (19)C16—H16C0.9600
C5—O1—C1117.54 (11)C3—C8—H8B109.5
C13—O3—C9117.92 (11)H8A—C8—H8B109.5
C5—N1—N2101.55 (12)C3—C8—H8C109.5
C6—N2—N1114.76 (13)H8A—C8—H8C109.5
C6—N2—H2N125.6 (12)H8B—C8—H8C109.5
N1—N2—H2N119.7 (12)O4—C9—O3114.99 (13)
C13—N3—N4101.29 (13)O4—C9—C10126.33 (14)
C14—N4—N3114.69 (13)O3—C9—C10118.68 (13)
C14—N4—H4N126.9 (12)C11—C10—C9123.95 (13)
N3—N4—H4N118.4 (12)C11—C10—H10118.0
O2—C1—O1116.08 (13)C9—C10—H10118.0
O2—C1—C2124.78 (15)C10—C11—C12116.31 (13)
O1—C1—C2119.13 (13)C10—C11—C16122.29 (14)
C3—C2—C1123.74 (14)C12—C11—C16121.39 (13)
C3—C2—H2118.1C14—C12—C13103.33 (13)
C1—C2—H2118.1C14—C12—C11137.69 (14)
C2—C3—C4116.33 (13)C13—C12—C11118.98 (13)
C2—C3—C8122.12 (14)N3—C13—O3120.62 (13)
C4—C3—C8121.55 (13)N3—C13—C12115.28 (14)
C6—C4—C5103.48 (13)O3—C13—C12124.10 (13)
C6—C4—C3137.45 (14)N4—C14—C12105.41 (13)
C5—C4—C3119.05 (13)N4—C14—C15122.24 (14)
N1—C5—O1120.99 (13)C12—C14—C15132.35 (15)
N1—C5—C4114.79 (13)C14—C15—H15A109.5
O1—C5—C4124.21 (13)C14—C15—H15B109.5
N2—C6—C4105.43 (13)H15A—C15—H15B109.5
N2—C6—C7122.57 (14)C14—C15—H15C109.5
C4—C6—C7132.00 (14)H15A—C15—H15C109.5
C6—C7—H7A109.5H15B—C15—H15C109.5
C6—C7—H7B109.5C11—C16—H16A109.5
H7A—C7—H7B109.5C11—C16—H16B109.5
C6—C7—H7C109.5H16A—C16—H16B109.5
H7A—C7—H7C109.5C11—C16—H16C109.5
H7B—C7—H7C109.5H16A—C16—H16C109.5
C3—C8—H8A109.5H16B—C16—H16C109.5
C5—N1—N2—C60.04 (18)C3—C4—C6—C70.6 (3)
C13—N3—N4—C140.15 (18)C13—O3—C9—O4177.73 (13)
C5—O1—C1—O2179.84 (13)C13—O3—C9—C101.88 (19)
C5—O1—C1—C20.76 (19)O4—C9—C10—C11176.82 (15)
O2—C1—C2—C3179.65 (15)O3—C9—C10—C112.8 (2)
O1—C1—C2—C31.0 (2)C9—C10—C11—C121.7 (2)
C1—C2—C3—C40.8 (2)C9—C10—C11—C16178.13 (14)
C1—C2—C3—C8179.23 (14)C10—C11—C12—C14179.24 (16)
C2—C3—C4—C6177.72 (16)C16—C11—C12—C140.9 (3)
C8—C3—C4—C62.3 (3)C10—C11—C12—C130.0 (2)
C2—C3—C4—C50.4 (2)C16—C11—C12—C13179.86 (14)
C8—C3—C4—C5179.65 (14)N4—N3—C13—O3179.70 (13)
N2—N1—C5—O1178.64 (13)N4—N3—C13—C120.08 (17)
N2—N1—C5—C40.29 (17)C9—O3—C13—N3179.50 (13)
C1—O1—C5—N1179.23 (13)C9—O3—C13—C120.3 (2)
C1—O1—C5—C40.4 (2)C14—C12—C13—N30.02 (17)
C6—C4—C5—N10.42 (17)C11—C12—C13—N3179.50 (13)
C3—C4—C5—N1179.09 (13)C14—C12—C13—O3179.79 (13)
C6—C4—C5—O1178.48 (13)C11—C12—C13—O30.7 (2)
C3—C4—C5—O10.2 (2)N3—N4—C14—C120.16 (18)
N1—N2—C6—C40.21 (18)N3—N4—C14—C15179.68 (14)
N1—N2—C6—C7179.12 (14)C13—C12—C14—N40.10 (15)
C5—C4—C6—N20.35 (15)C11—C12—C14—N4179.43 (16)
C3—C4—C6—N2178.62 (16)C13—C12—C14—C15179.54 (16)
C5—C4—C6—C7178.89 (16)C11—C12—C14—C151.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O2i0.91 (2)1.91 (2)2.7860 (17)160.9 (17)
N2—H2N···O4ii0.912 (19)1.984 (19)2.8872 (18)170.4 (17)
C2—H2···O2iii0.932.493.4082 (19)171
C7—H7A···O3ii0.962.543.458 (2)159
C10—H10···O4iv0.932.453.3563 (18)164
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y, z+1; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H8N2O2
Mr164.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.6219 (3), 6.8766 (2), 16.2369 (4)
β (°) 96.091 (2)
V3)1512.36 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.18 × 0.11
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.970, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
16831, 3770, 2654
Rint0.031
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.02
No. of reflections3770
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O2i0.91 (2)1.91 (2)2.7860 (17)160.9 (17)
N2—H2N···O4ii0.912 (19)1.984 (19)2.8872 (18)170.4 (17)
C2—H2···O2iii0.932.493.4082 (19)171.2
C7—H7A···O3ii0.962.543.458 (2)159.3
C10—H10···O4iv0.932.453.3563 (18)163.6
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y, z+1; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the PCSIR Laboratories Complex, Lahore, Pakistan for the provision of facilities necessary to carry out the synthetic work.

References

First citationAhmad, N., Tahir, M. N., Khan, M. A., Ather, A. Q. & Khan, M. N. (2011). Acta Cryst. E67, o1021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRamsay, C. G. & Steel, P. J. (1985). Acta Cryst. C41, 135–136.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds