organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1104-o1105

(2-Oxo-2H-benzo[h]chromen-4-yl)methyl morpholine-4-carbodi­thio­ate

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 9 March 2012; accepted 13 March 2012; online 17 March 2012)

In the title compound, C19H17NO3S2, the morpholine ring is in a chair conformation. In the coumarin ring system, the dihedral angle between the benzene and pyran rings is 3.9 (1)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into corrugated layers parallel to (102). The crystal packing also exhibits ππ inter­actions, with distances of 3.644 (1) and 3.677 (1) Å between the centroids of the benzene rings of neighbouring mol­ecules.

Related literature

For the biological activity of coumarins, see: Kontogiorgis & Hadjipavlou-Litina (2004[Kontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2004). Bioorg. Med. Chem. Lett. 14, 611-614.]). For a related structure, see: Kumar et al. (2012[Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878-o879.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17NO3S2

  • Mr = 371.46

  • Monoclinic, P 21 /c

  • a = 13.0928 (4) Å

  • b = 11.6978 (3) Å

  • c = 11.3673 (3) Å

  • β = 99.232 (3)°

  • V = 1718.43 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.818, Tmax = 1.000

  • 18655 measured reflections

  • 3017 independent reflections

  • 2457 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.05

  • 3017 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O3i 0.93 2.42 3.346 (3) 173
C18—H18A⋯O2ii 0.97 2.56 3.466 (3) 155
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarins (2H-1-benzopyran-2-ones) form a distinct class of oxygen containing heterocycles and are widely distributed in nature. Coumarins represent a class of naturally and synthetically obtained compounds that possess a wide variety of biological activities. Specifically coumarins are reported to possess antiallergic, anticoagulant, antidiabetic activities and analgesic properties (Kontogiorgis & Hadjipavlou-Litina, 2004). In continuation of our interest on crystal structures study of coumarin derivatives (Kumar et al., 2012), we report the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are within normal ranges (Allen et al., 1987) and are in a good agreement with those in related structure (Kumar et al., 2012). The morpholine ring adopts a chair conformation. The dihedral angle bewteen the pyran and benzene rings in the coumarin fragment is 3.9 (1)°. Weak intermolecular C—H···O interactions (Table 1)link the molecules into corrugated layers parallel to (102) plane. The crystal packing exhibits π-π stacking interactions. The first of these is between the benzene ring C4/C5/C10-C13 and its symmetry-related partner at (1-x, 1-y, -z) with a distance of 3.644 (1) Å between the ring centroids. Another π-π interaction is between the benzene ring C4/C5/C10-C13 and the benzene ring C5-C10 at (1-x, 1-y,-z) with a distance of 3.677 (1) Å between the ring centroids.

Related literature top

For the biological activity of coumarins, see: Kontogiorgis & Hadjipavlou-Litina (2004). For a related structure, see: Kumar et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 2.73g (0.01 mol) of 7,8-benzo- 4-bromomethyl coumarin and 2.00g (0.01 mol) of potassium salt of morpholine-1-dithiocarbomate in 30 ml dry alcohol was stirrer for 12 hours at room temperature (the reaction was monitored by TLC). The solvent was evaporated and the solid was extracted twice with MDC –water mixture. The organic solvent was dried over CaCl2, evaporated the solvent and recrystallised from ethanol-chloroform. A slow evaporation technique was used to grow crystals suitable for diffraction studies in an ethanol-chloroform mixture. Yield=89%, m.p.-182-84oC. IR(KBr): 1717cm-1(C=O), 1423.8cm-1 (C=S), 849cm-1(C-N), 1111.7 (C-O-C).GCMS: m/e: 371.06. 1H- NMR(300MHz, CdCl3,δppm):2.81(s, 4H, C13 & C17-H), 1.73(s, 8H, C16,C17, C18 & C19-H), 4.32 (s,2H, C4-CH2), 7.26 (s,1H, C2-H), 7.45 (d,1H, C12-H), 7.63 (t,1H, C11-H), 7.66 (t,1H, C8-H), 7.91 (d,1H, C7-H), 7.97 (d,1H, C9-H), 8.47 (d,1H C6-H).Elemental analysis: C, 61.40; H, 4.56; N, 3.73; O, 12.90; S, 16.8 M.P.:

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Coumarins (2H-1-benzopyran-2-ones) form a distinct class of oxygen containing heterocycles and are widely distributed in nature. Coumarins represent a class of naturally and synthetically obtained compounds that possess a wide variety of biological activities. Specifically coumarins are reported to possess antiallergic, anticoagulant, antidiabetic activities and analgesic properties (Kontogiorgis & Hadjipavlou-Litina, 2004). In continuation of our interest on crystal structures study of coumarin derivatives (Kumar et al., 2012), we report the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are within normal ranges (Allen et al., 1987) and are in a good agreement with those in related structure (Kumar et al., 2012). The morpholine ring adopts a chair conformation. The dihedral angle bewteen the pyran and benzene rings in the coumarin fragment is 3.9 (1)°. Weak intermolecular C—H···O interactions (Table 1)link the molecules into corrugated layers parallel to (102) plane. The crystal packing exhibits π-π stacking interactions. The first of these is between the benzene ring C4/C5/C10-C13 and its symmetry-related partner at (1-x, 1-y, -z) with a distance of 3.644 (1) Å between the ring centroids. Another π-π interaction is between the benzene ring C4/C5/C10-C13 and the benzene ring C5-C10 at (1-x, 1-y,-z) with a distance of 3.677 (1) Å between the ring centroids.

For the biological activity of coumarins, see: Kontogiorgis & Hadjipavlou-Litina (2004). For a related structure, see: Kumar et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
(2-Oxo-2H-benzo[h]chromen-4-yl)methyl morpholine-4-carbodithioate top
Crystal data top
C19H17NO3S2F(000) = 776
Mr = 371.46Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9000 reflections
a = 13.0928 (4) Åθ = 3.5–29.0°
b = 11.6978 (3) ŵ = 0.33 mm1
c = 11.3673 (3) ÅT = 293 K
β = 99.232 (3)°Plate shaped, light yellow
V = 1718.43 (8) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3017 independent reflections
Radiation source: fine-focus sealed tube2457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.818, Tmax = 1.000l = 1313
18655 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.803P]
where P = (Fo2 + 2Fc2)/3
3017 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H17NO3S2V = 1718.43 (8) Å3
Mr = 371.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0928 (4) ŵ = 0.33 mm1
b = 11.6978 (3) ÅT = 293 K
c = 11.3673 (3) Å0.3 × 0.2 × 0.1 mm
β = 99.232 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3017 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2457 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 1.000Rint = 0.034
18655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
3017 reflectionsΔρmin = 0.19 e Å3
226 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.85592 (4)0.20784 (5)0.78872 (5)0.04418 (18)
S20.82222 (5)0.40595 (6)0.61667 (6)0.0577 (2)
O10.74719 (10)0.50873 (12)1.10256 (12)0.0393 (3)
O20.90505 (12)0.56115 (14)1.08171 (15)0.0528 (4)
O31.20360 (13)0.26933 (17)0.65798 (18)0.0683 (5)
N10.98691 (14)0.26938 (16)0.65122 (16)0.0461 (5)
C10.74297 (15)0.35148 (17)0.91788 (17)0.0359 (5)
C20.82708 (16)0.41668 (18)0.95188 (18)0.0399 (5)
H20.88380.40790.91280.048*
C30.83295 (16)0.49940 (18)1.04603 (19)0.0392 (5)
C40.66310 (15)0.43868 (17)1.07426 (18)0.0342 (4)
C50.58582 (15)0.45029 (18)1.14826 (18)0.0375 (5)
C60.59575 (18)0.5245 (2)1.2473 (2)0.0478 (6)
H60.65390.57081.26540.057*
C70.5195 (2)0.5279 (2)1.3166 (2)0.0594 (7)
H70.52700.57581.38280.071*
C80.4307 (2)0.4611 (2)1.2901 (2)0.0594 (7)
H80.37950.46541.33790.071*
C90.41879 (17)0.3897 (2)1.1947 (2)0.0523 (6)
H90.35920.34561.17760.063*
C100.49592 (15)0.38159 (18)1.12088 (19)0.0405 (5)
C110.48607 (16)0.30730 (19)1.0208 (2)0.0460 (5)
H110.42570.26501.00020.055*
C120.56292 (16)0.29700 (19)0.9549 (2)0.0426 (5)
H120.55490.24630.89100.051*
C130.65541 (15)0.36174 (17)0.98100 (18)0.0346 (4)
C140.73585 (16)0.2666 (2)0.8168 (2)0.0455 (5)
H14A0.70220.30370.74450.055*
H14B0.69160.20400.83340.055*
C150.89538 (16)0.29882 (18)0.67899 (18)0.0389 (5)
C161.03585 (19)0.3310 (3)0.5620 (2)0.0592 (7)
H16A0.99530.39810.53490.071*
H16B1.03860.28200.49370.071*
C171.1420 (2)0.3656 (3)0.6158 (3)0.0657 (7)
H17A1.17430.40580.55680.079*
H17B1.13850.41750.68150.079*
C181.15784 (19)0.2117 (2)0.7477 (2)0.0595 (7)
H18A1.15550.26320.81420.071*
H18B1.20040.14660.77700.071*
C191.05149 (17)0.1718 (2)0.7007 (2)0.0521 (6)
H19A1.05400.11520.63890.063*
H19B1.02130.13640.76420.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0474 (3)0.0374 (3)0.0509 (3)0.0035 (2)0.0176 (3)0.0012 (2)
S20.0595 (4)0.0539 (4)0.0601 (4)0.0195 (3)0.0114 (3)0.0097 (3)
O10.0370 (8)0.0371 (8)0.0459 (8)0.0050 (6)0.0130 (6)0.0069 (6)
O20.0448 (9)0.0505 (10)0.0661 (11)0.0162 (8)0.0178 (8)0.0156 (8)
O30.0451 (10)0.0716 (13)0.0908 (13)0.0030 (9)0.0190 (9)0.0225 (11)
N10.0415 (10)0.0494 (11)0.0487 (11)0.0067 (9)0.0109 (8)0.0093 (9)
C10.0365 (11)0.0320 (11)0.0400 (11)0.0015 (9)0.0087 (9)0.0001 (9)
C20.0394 (12)0.0378 (12)0.0455 (12)0.0019 (10)0.0159 (9)0.0023 (9)
C30.0372 (11)0.0357 (11)0.0466 (12)0.0024 (10)0.0124 (9)0.0001 (9)
C40.0310 (10)0.0299 (10)0.0423 (11)0.0002 (8)0.0074 (9)0.0047 (9)
C50.0363 (11)0.0339 (11)0.0434 (11)0.0075 (9)0.0101 (9)0.0071 (9)
C60.0471 (13)0.0464 (13)0.0523 (13)0.0020 (11)0.0157 (11)0.0034 (11)
C70.0645 (17)0.0640 (17)0.0547 (15)0.0105 (14)0.0241 (12)0.0039 (12)
C80.0524 (15)0.0662 (17)0.0668 (17)0.0141 (13)0.0317 (13)0.0105 (14)
C90.0368 (12)0.0556 (15)0.0679 (16)0.0036 (11)0.0184 (11)0.0114 (13)
C100.0320 (11)0.0395 (12)0.0513 (13)0.0073 (9)0.0104 (9)0.0111 (10)
C110.0314 (11)0.0433 (13)0.0631 (15)0.0039 (10)0.0066 (10)0.0032 (11)
C120.0373 (11)0.0397 (12)0.0505 (12)0.0032 (10)0.0059 (9)0.0035 (10)
C130.0313 (10)0.0315 (10)0.0412 (11)0.0013 (9)0.0062 (8)0.0034 (9)
C140.0392 (12)0.0473 (13)0.0521 (13)0.0058 (10)0.0142 (10)0.0126 (10)
C150.0411 (12)0.0394 (12)0.0365 (11)0.0011 (9)0.0076 (9)0.0043 (9)
C160.0541 (15)0.0763 (18)0.0482 (14)0.0025 (13)0.0117 (11)0.0168 (13)
C170.0595 (16)0.0668 (18)0.0714 (17)0.0074 (14)0.0129 (13)0.0187 (14)
C180.0513 (15)0.0550 (16)0.0717 (16)0.0093 (12)0.0079 (12)0.0117 (13)
C190.0487 (14)0.0452 (14)0.0657 (15)0.0080 (11)0.0193 (12)0.0051 (11)
Geometric parameters (Å, º) top
S1—C151.778 (2)C7—H70.9300
S1—C141.791 (2)C8—C91.358 (4)
S2—C151.665 (2)C8—H80.9300
O1—C41.369 (2)C9—C101.416 (3)
O1—C31.385 (2)C9—H90.9300
O2—C31.206 (2)C10—C111.421 (3)
O3—C171.422 (3)C11—C121.353 (3)
O3—C181.432 (3)C11—H110.9300
N1—C151.333 (3)C12—C131.419 (3)
N1—C161.472 (3)C12—H120.9300
N1—C191.477 (3)C14—H14A0.9700
C1—C21.344 (3)C14—H14B0.9700
C1—C131.452 (3)C16—C171.482 (3)
C1—C141.511 (3)C16—H16A0.9700
C2—C31.436 (3)C16—H16B0.9700
C2—H20.9300C17—H17A0.9700
C4—C131.382 (3)C17—H17B0.9700
C4—C51.422 (3)C18—C191.484 (3)
C5—C61.411 (3)C18—H18A0.9700
C5—C101.418 (3)C18—H18B0.9700
C6—C71.369 (3)C19—H19A0.9700
C6—H60.9300C19—H19B0.9700
C7—C81.392 (4)
C15—S1—C14104.92 (11)C11—C12—C13121.5 (2)
C4—O1—C3121.69 (16)C11—C12—H12119.3
C17—O3—C18109.50 (18)C13—C12—H12119.3
C15—N1—C16122.97 (19)C4—C13—C12117.56 (18)
C15—N1—C19126.25 (18)C4—C13—C1117.83 (18)
C16—N1—C19110.76 (18)C12—C13—C1124.60 (19)
C2—C1—C13119.11 (19)C1—C14—S1116.03 (15)
C2—C1—C14122.65 (18)C1—C14—H14A108.3
C13—C1—C14118.24 (18)S1—C14—H14A108.3
C1—C2—C3122.69 (19)C1—C14—H14B108.3
C1—C2—H2118.7S1—C14—H14B108.3
C3—C2—H2118.7H14A—C14—H14B107.4
O2—C3—O1116.48 (19)N1—C15—S2124.86 (16)
O2—C3—C2126.85 (19)N1—C15—S1112.65 (15)
O1—C3—C2116.66 (18)S2—C15—S1122.47 (12)
O1—C4—C13121.80 (17)N1—C16—C17109.4 (2)
O1—C4—C5115.18 (18)N1—C16—H16A109.8
C13—C4—C5123.01 (19)C17—C16—H16A109.8
C6—C5—C10119.38 (19)N1—C16—H16B109.8
C6—C5—C4123.2 (2)C17—C16—H16B109.8
C10—C5—C4117.41 (19)H16A—C16—H16B108.2
C7—C6—C5119.7 (2)O3—C17—C16111.5 (2)
C7—C6—H6120.2O3—C17—H17A109.3
C5—C6—H6120.2C16—C17—H17A109.3
C6—C7—C8121.3 (2)O3—C17—H17B109.3
C6—C7—H7119.4C16—C17—H17B109.3
C8—C7—H7119.4H17A—C17—H17B108.0
C9—C8—C7120.2 (2)O3—C18—C19111.5 (2)
C9—C8—H8119.9O3—C18—H18A109.3
C7—C8—H8119.9C19—C18—H18A109.3
C8—C9—C10120.8 (2)O3—C18—H18B109.3
C8—C9—H9119.6C19—C18—H18B109.3
C10—C9—H9119.6H18A—C18—H18B108.0
C9—C10—C5118.6 (2)N1—C19—C18110.0 (2)
C9—C10—C11122.2 (2)N1—C19—H19A109.7
C5—C10—C11119.20 (19)C18—C19—H19A109.7
C12—C11—C10121.2 (2)N1—C19—H19B109.7
C12—C11—H11119.4C18—C19—H19B109.7
C10—C11—H11119.4H19A—C19—H19B108.2
C13—C1—C2—C32.1 (3)C5—C4—C13—C123.8 (3)
C14—C1—C2—C3178.4 (2)O1—C4—C13—C14.1 (3)
C4—O1—C3—O2176.30 (18)C5—C4—C13—C1175.22 (18)
C4—O1—C3—C23.2 (3)C11—C12—C13—C42.0 (3)
C1—C2—C3—O2179.9 (2)C11—C12—C13—C1177.0 (2)
C1—C2—C3—O10.7 (3)C2—C1—C13—C40.2 (3)
C3—O1—C4—C135.7 (3)C14—C1—C13—C4179.26 (19)
C3—O1—C4—C5173.65 (17)C2—C1—C13—C12179.2 (2)
O1—C4—C5—C62.7 (3)C14—C1—C13—C120.3 (3)
C13—C4—C5—C6176.6 (2)C2—C1—C14—S127.7 (3)
O1—C4—C5—C10178.51 (17)C13—C1—C14—S1151.80 (16)
C13—C4—C5—C102.2 (3)C15—S1—C14—C192.49 (18)
C10—C5—C6—C71.0 (3)C16—N1—C15—S21.3 (3)
C4—C5—C6—C7177.8 (2)C19—N1—C15—S2177.02 (18)
C5—C6—C7—C81.3 (4)C16—N1—C15—S1179.49 (18)
C6—C7—C8—C90.7 (4)C19—N1—C15—S11.2 (3)
C7—C8—C9—C100.2 (4)C14—S1—C15—N1177.39 (16)
C8—C9—C10—C50.4 (3)C14—S1—C15—S24.34 (16)
C8—C9—C10—C11179.6 (2)C15—N1—C16—C17126.5 (2)
C6—C5—C10—C90.1 (3)C19—N1—C16—C1755.0 (3)
C4—C5—C10—C9178.67 (19)C18—O3—C17—C1660.7 (3)
C6—C5—C10—C11179.8 (2)N1—C16—C17—O358.7 (3)
C4—C5—C10—C111.4 (3)C17—O3—C18—C1959.6 (3)
C9—C10—C11—C12176.9 (2)C15—N1—C19—C18127.2 (2)
C5—C10—C11—C123.2 (3)C16—N1—C19—C1854.3 (3)
C10—C11—C12—C131.5 (3)O3—C18—C19—N156.7 (3)
O1—C4—C13—C12176.88 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O3i0.932.423.346 (3)173
C18—H18A···O2ii0.972.563.466 (3)155
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC19H17NO3S2
Mr371.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.0928 (4), 11.6978 (3), 11.3673 (3)
β (°) 99.232 (3)
V3)1718.43 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.818, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18655, 3017, 2457
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.05
No. of reflections3017
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O3i0.932.423.346 (3)173
C18—H18A···O2ii0.972.563.466 (3)155
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+2, y+1, z+2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu, Jammu, India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2004). Bioorg. Med. Chem. Lett. 14, 611–614.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1104-o1105
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds