organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Cyclo­hexyl-2-methyl-3-(4-methyl­phenyl­sulfon­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dongNam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 20 February 2012; accepted 8 March 2012; online 14 March 2012)

In the title compound, C22H24O3S, the cyclo­hexyl ring adopts a chair conformation. The 4-methyl­phenyl ring makes a dihedral angle of 80.95 (4)° with the mean plane [mean deviation = 0.011 (1) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For background information and the crystal structures of the related compounds, see: Choi et al. (2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o767.], 2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o480.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24O3S

  • Mr = 368.47

  • Monoclinic, P 21 /n

  • a = 10.6806 (2) Å

  • b = 12.5869 (3) Å

  • c = 14.2736 (3) Å

  • β = 93.094 (1)°

  • V = 1916.08 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.36 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.956

  • 19350 measured reflections

  • 4762 independent reflections

  • 3810 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.05

  • 4762 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 benzene and the C1/C2/C7/O1/C8 furan rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.52 3.3888 (19) 152
C13—H13B⋯O2ii 0.99 2.55 3.447 (2) 151
C10—H10ACg1iii 0.99 2.73 3.675 (2) 159
C11—H11ACg2iii 0.99 2.95 3.646 (2) 128
C20—H20⋯Cg1iv 0.95 2.82 3.745 (2) 164
C22—H22CCg2iv 0.98 2.96 3.907 (2) 164
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing either 3-(4-fluorophenylsulfonyl) (Choi et al., 2011) or 3-(4-bromophenylsulfonyl) (Choi et al., 2012) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.011 (1) Å from the least-squares plane defined by the nine non-hydrogen constituent atoms. The cyclohexyl ring is in the chair conformation. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofuran fragment is 80.95 (4)°. The crystal packing is stabilized by weak intermolecular C—H···O hydrogen bonds (Fig. 2; Table 1). The crystal packing is further stabilized by intermolecular C—H···π-electron ring interactions (Fig. 3; Table 1, Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively).

Related literature top

For background information and the crystal structures of the related compounds, see: Choi et al. (2011, 2012).

Experimental top

77% 3-chloroperoxybenzoic acid - the product of Aldrich Chemical Co. - (381 mg, 1.7 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-2-methyl-3-(4-methylphenylsulfanyl)-1-benzofuran (269 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated solution of of NaHCO3 and the organic layer was separated, dried over MgSO4, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 72%, m.p. 437–438 K; Rf = 0.48 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature. The average crystal size was approximatly 1.2 × 1.0 × 0.7 mm. (The measureed crystal was cut from the large one.) The crystals are colourless and soluble in polar solvents.

Refinement top

All the hydrogens were discerned in the difference electron density maps. However, they were situated into the idealized positions and refined using a riding model, with C—H = 0.95, 1.0, 0.99 and 0.98 Å for aryl, methine, methylene and methyl H atoms, respectively. Uiso(H) =1.2Ueq(C) for aryl, methine, and methylene, and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As a part of our ongoing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing either 3-(4-fluorophenylsulfonyl) (Choi et al., 2011) or 3-(4-bromophenylsulfonyl) (Choi et al., 2012) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.011 (1) Å from the least-squares plane defined by the nine non-hydrogen constituent atoms. The cyclohexyl ring is in the chair conformation. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofuran fragment is 80.95 (4)°. The crystal packing is stabilized by weak intermolecular C—H···O hydrogen bonds (Fig. 2; Table 1). The crystal packing is further stabilized by intermolecular C—H···π-electron ring interactions (Fig. 3; Table 1, Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively).

For background information and the crystal structures of the related compounds, see: Choi et al. (2011, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O interactions (dotted lines) in the title crystal structure. The H atoms non-participating in the hydrogen-bond pattern were omitted for clarity. [Symmetry codes: (i) x + 1/2, -y + 1/2, z + 1/2; (ii) -x, -y + 1 , -z + 1; (iv) x - 1/2, -y + 1/2, z - 1/2; (v) -x, -y + 1, -z +1.]
[Figure 3] Fig. 3. C—H···π-electron ring interactions (dotted lines) in the title crystal structure. The H atoms non-participating in hydrogen-bond pattern were omitted for clarity. [Symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (vi) x + 1/2, -y + 1/2, z - 1/2; (vii) x - 1/2, -y + 1/2, z + 1/2.]
5-Cyclohexyl-2-methyl-3-(4-methylphenylsulfonyl)-1-benzofuran top
Crystal data top
C22H24O3SF(000) = 784
Mr = 368.47Dx = 1.277 Mg m3
Monoclinic, P21/nMelting point = 437–438 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.6806 (2) ÅCell parameters from 5853 reflections
b = 12.5869 (3) Åθ = 2.2–27.7°
c = 14.2736 (3) ŵ = 0.19 mm1
β = 93.094 (1)°T = 173 K
V = 1916.08 (7) Å3Block, colourless
Z = 40.36 × 0.26 × 0.24 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4762 independent reflections
Radiation source: rotating anode3810 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.034
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.2°
φ and ω scansh = 1413
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1616
Tmin = 0.936, Tmax = 0.956l = 1819
19350 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.6267P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4762 reflectionsΔρmax = 0.29 e Å3
238 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
94 constraintsExtinction coefficient: 0.0052 (10)
Primary atom site location: structure-invariant direct methods
Crystal data top
C22H24O3SV = 1916.08 (7) Å3
Mr = 368.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6806 (2) ŵ = 0.19 mm1
b = 12.5869 (3) ÅT = 173 K
c = 14.2736 (3) Å0.36 × 0.26 × 0.24 mm
β = 93.094 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4762 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3810 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.956Rint = 0.034
19350 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
4762 reflectionsΔρmin = 0.38 e Å3
238 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27825 (3)0.22598 (3)0.23844 (2)0.02775 (12)
O10.44984 (10)0.12891 (8)0.47290 (7)0.0312 (2)
O20.16711 (10)0.28891 (9)0.24653 (8)0.0348 (3)
O30.27066 (12)0.12657 (9)0.18864 (8)0.0392 (3)
C10.34066 (13)0.20282 (11)0.35128 (10)0.0257 (3)
C20.33675 (13)0.27597 (11)0.42945 (10)0.0246 (3)
C30.28562 (13)0.37621 (11)0.44468 (10)0.0262 (3)
H30.23770.41140.39600.031*
C40.30579 (14)0.42369 (12)0.53198 (10)0.0286 (3)
C50.37647 (17)0.36927 (13)0.60298 (11)0.0354 (4)
H50.38970.40240.66250.042*
C60.42743 (16)0.26992 (13)0.58987 (11)0.0349 (4)
H60.47460.23380.63840.042*
C70.40552 (14)0.22645 (11)0.50199 (10)0.0278 (3)
C80.40998 (14)0.11734 (12)0.38090 (11)0.0289 (3)
C90.25195 (15)0.53261 (12)0.54981 (10)0.0293 (3)
H90.22090.56180.48770.035*
C100.34893 (17)0.60968 (14)0.59082 (18)0.0542 (5)
H10A0.41830.61590.54790.065*
H10B0.38410.58180.65150.065*
C110.2925 (2)0.71952 (15)0.60601 (19)0.0599 (6)
H11A0.35720.76700.63540.072*
H11B0.26420.75050.54470.072*
C120.1826 (2)0.71215 (16)0.66823 (14)0.0532 (5)
H12A0.21230.68750.73140.064*
H12B0.14480.78340.67480.064*
C130.08508 (19)0.63650 (15)0.62771 (16)0.0521 (5)
H13A0.04910.66520.56760.063*
H13B0.01640.63020.67130.063*
C140.14023 (17)0.52678 (14)0.61102 (15)0.0443 (4)
H14A0.16670.49430.67210.053*
H14B0.07500.48070.58040.053*
C150.45123 (17)0.01826 (13)0.33566 (13)0.0396 (4)
H15A0.41210.04300.36480.059*
H15B0.54260.01210.34370.059*
H15C0.42620.02020.26860.059*
C160.39138 (14)0.30592 (12)0.18739 (10)0.0289 (3)
C170.38998 (15)0.41549 (13)0.19887 (11)0.0335 (3)
H170.32650.44850.23280.040*
C180.48222 (16)0.47598 (14)0.16024 (12)0.0391 (4)
H180.48120.55100.16780.047*
C190.57661 (16)0.42936 (15)0.11046 (12)0.0397 (4)
C200.57578 (17)0.31987 (16)0.09985 (13)0.0451 (4)
H200.63920.28690.06590.054*
C210.48410 (16)0.25753 (14)0.13786 (12)0.0387 (4)
H210.48480.18260.13010.046*
C220.67779 (19)0.49602 (19)0.07082 (16)0.0586 (6)
H22A0.73880.51660.12130.088*
H22B0.64050.55990.04180.088*
H22C0.72010.45500.02350.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0288 (2)0.0292 (2)0.02484 (19)0.00142 (14)0.00237 (13)0.00406 (13)
O10.0351 (6)0.0265 (5)0.0316 (5)0.0055 (4)0.0032 (4)0.0009 (4)
O20.0266 (5)0.0437 (6)0.0334 (6)0.0046 (5)0.0036 (4)0.0028 (5)
O30.0504 (7)0.0344 (6)0.0324 (6)0.0037 (5)0.0025 (5)0.0098 (5)
C10.0250 (7)0.0257 (7)0.0263 (7)0.0003 (5)0.0009 (5)0.0021 (5)
C20.0245 (7)0.0258 (7)0.0234 (6)0.0020 (5)0.0006 (5)0.0002 (5)
C30.0279 (7)0.0279 (7)0.0228 (6)0.0018 (5)0.0013 (5)0.0018 (5)
C40.0331 (8)0.0264 (7)0.0264 (7)0.0002 (6)0.0042 (6)0.0008 (6)
C50.0490 (10)0.0339 (8)0.0228 (7)0.0011 (7)0.0030 (6)0.0022 (6)
C60.0425 (9)0.0354 (8)0.0261 (7)0.0042 (7)0.0058 (6)0.0038 (6)
C70.0292 (7)0.0253 (7)0.0288 (7)0.0016 (5)0.0005 (6)0.0024 (6)
C80.0274 (7)0.0283 (7)0.0310 (7)0.0013 (6)0.0011 (6)0.0005 (6)
C90.0371 (8)0.0269 (7)0.0243 (7)0.0029 (6)0.0045 (6)0.0002 (6)
C100.0347 (9)0.0336 (9)0.0952 (16)0.0068 (7)0.0131 (10)0.0150 (10)
C110.0483 (11)0.0318 (10)0.1003 (18)0.0080 (8)0.0102 (11)0.0207 (10)
C120.0756 (14)0.0419 (10)0.0426 (10)0.0152 (10)0.0083 (10)0.0107 (8)
C130.0461 (11)0.0418 (10)0.0712 (13)0.0083 (8)0.0295 (10)0.0054 (9)
C140.0369 (9)0.0333 (9)0.0642 (12)0.0006 (7)0.0166 (8)0.0030 (8)
C150.0431 (9)0.0305 (8)0.0445 (9)0.0099 (7)0.0034 (7)0.0066 (7)
C160.0304 (7)0.0321 (8)0.0239 (7)0.0042 (6)0.0000 (6)0.0004 (6)
C170.0341 (8)0.0329 (8)0.0334 (8)0.0054 (6)0.0023 (6)0.0033 (6)
C180.0410 (9)0.0347 (9)0.0416 (9)0.0014 (7)0.0008 (7)0.0002 (7)
C190.0340 (9)0.0502 (10)0.0348 (8)0.0013 (7)0.0007 (7)0.0041 (7)
C200.0390 (9)0.0526 (11)0.0449 (10)0.0085 (8)0.0132 (8)0.0012 (8)
C210.0411 (9)0.0350 (8)0.0406 (9)0.0089 (7)0.0083 (7)0.0029 (7)
C220.0437 (11)0.0731 (15)0.0596 (13)0.0112 (10)0.0084 (9)0.0082 (11)
Geometric parameters (Å, º) top
S1—O21.4368 (11)C11—H11B0.9900
S1—O31.4391 (11)C12—C131.504 (3)
S1—C11.7343 (15)C12—H12A0.9900
S1—C161.7603 (16)C12—H12B0.9900
O1—C81.3663 (18)C13—C141.525 (2)
O1—C71.3874 (17)C13—H13A0.9900
C1—C81.360 (2)C13—H13B0.9900
C1—C21.4490 (19)C14—H14A0.9900
C2—C71.385 (2)C14—H14B0.9900
C2—C31.396 (2)C15—H15A0.9800
C3—C41.388 (2)C15—H15B0.9800
C3—H30.9500C15—H15C0.9800
C4—C51.408 (2)C16—C211.388 (2)
C4—C91.514 (2)C16—C171.389 (2)
C5—C61.381 (2)C17—C181.383 (2)
C5—H50.9500C17—H170.9500
C6—C71.377 (2)C18—C191.394 (2)
C6—H60.9500C18—H180.9500
C8—C151.482 (2)C19—C201.386 (3)
C9—C101.514 (2)C19—C221.503 (3)
C9—C141.518 (2)C20—C211.388 (2)
C9—H91.0000C20—H200.9500
C10—C111.528 (3)C21—H210.9500
C10—H10A0.9900C22—H22A0.9800
C10—H10B0.9900C22—H22B0.9800
C11—C121.512 (3)C22—H22C0.9800
C11—H11A0.9900
O2—S1—O3119.62 (7)C13—C12—C11110.87 (16)
O2—S1—C1107.21 (7)C13—C12—H12A109.5
O3—S1—C1108.73 (7)C11—C12—H12A109.5
O2—S1—C16107.86 (7)C13—C12—H12B109.5
O3—S1—C16108.31 (7)C11—C12—H12B109.5
C1—S1—C16104.03 (7)H12A—C12—H12B108.1
C8—O1—C7106.75 (11)C12—C13—C14111.60 (17)
C8—C1—C2107.52 (13)C12—C13—H13A109.3
C8—C1—S1126.65 (11)C14—C13—H13A109.3
C2—C1—S1125.65 (11)C12—C13—H13B109.3
C7—C2—C3119.11 (13)C14—C13—H13B109.3
C7—C2—C1104.68 (12)H13A—C13—H13B108.0
C3—C2—C1136.20 (13)C9—C14—C13111.61 (14)
C4—C3—C2119.05 (13)C9—C14—H14A109.3
C4—C3—H3120.5C13—C14—H14A109.3
C2—C3—H3120.5C9—C14—H14B109.3
C3—C4—C5119.19 (14)C13—C14—H14B109.3
C3—C4—C9119.93 (13)H14A—C14—H14B108.0
C5—C4—C9120.89 (13)C8—C15—H15A109.5
C6—C5—C4122.88 (14)C8—C15—H15B109.5
C6—C5—H5118.6H15A—C15—H15B109.5
C4—C5—H5118.6C8—C15—H15C109.5
C7—C6—C5115.76 (14)H15A—C15—H15C109.5
C7—C6—H6122.1H15B—C15—H15C109.5
C5—C6—H6122.1C21—C16—C17120.55 (15)
C6—C7—C2124.01 (14)C21—C16—S1118.98 (12)
C6—C7—O1125.47 (14)C17—C16—S1120.45 (11)
C2—C7—O1110.51 (13)C18—C17—C16119.15 (15)
C1—C8—O1110.52 (13)C18—C17—H17120.4
C1—C8—C15134.40 (14)C16—C17—H17120.4
O1—C8—C15115.08 (13)C17—C18—C19121.45 (16)
C4—C9—C10112.78 (13)C17—C18—H18119.3
C4—C9—C14111.75 (13)C19—C18—H18119.3
C10—C9—C14110.55 (14)C20—C19—C18118.27 (16)
C4—C9—H9107.1C20—C19—C22120.96 (17)
C10—C9—H9107.1C18—C19—C22120.76 (18)
C14—C9—H9107.1C19—C20—C21121.32 (16)
C9—C10—C11111.57 (16)C19—C20—H20119.3
C9—C10—H10A109.3C21—C20—H20119.3
C11—C10—H10A109.3C20—C21—C16119.26 (16)
C9—C10—H10B109.3C20—C21—H21120.4
C11—C10—H10B109.3C16—C21—H21120.4
H10A—C10—H10B108.0C19—C22—H22A109.5
C12—C11—C10110.64 (17)C19—C22—H22B109.5
C12—C11—H11A109.5H22A—C22—H22B109.5
C10—C11—H11A109.5C19—C22—H22C109.5
C12—C11—H11B109.5H22A—C22—H22C109.5
C10—C11—H11B109.5H22B—C22—H22C109.5
H11A—C11—H11B108.1
O2—S1—C1—C8151.36 (13)C7—O1—C8—C15178.36 (13)
O3—S1—C1—C820.71 (16)C3—C4—C9—C10128.70 (17)
C16—S1—C1—C894.55 (14)C5—C4—C9—C1051.3 (2)
O2—S1—C1—C234.09 (14)C3—C4—C9—C14106.03 (17)
O3—S1—C1—C2164.74 (12)C5—C4—C9—C1473.9 (2)
C16—S1—C1—C280.00 (13)C4—C9—C10—C11178.75 (17)
C8—C1—C2—C70.40 (16)C14—C9—C10—C1155.3 (2)
S1—C1—C2—C7175.82 (11)C9—C10—C11—C1256.7 (3)
C8—C1—C2—C3178.17 (16)C10—C11—C12—C1356.5 (3)
S1—C1—C2—C32.8 (3)C11—C12—C13—C1456.0 (2)
C7—C2—C3—C40.4 (2)C4—C9—C14—C13179.20 (16)
C1—C2—C3—C4178.05 (15)C10—C9—C14—C1354.3 (2)
C2—C3—C4—C50.4 (2)C12—C13—C14—C955.1 (2)
C2—C3—C4—C9179.60 (13)O2—S1—C16—C21154.15 (13)
C3—C4—C5—C60.1 (3)O3—S1—C16—C2123.34 (15)
C9—C4—C5—C6179.94 (15)C1—S1—C16—C2192.22 (14)
C4—C5—C6—C70.3 (3)O2—S1—C16—C1727.71 (14)
C5—C6—C7—C20.4 (2)O3—S1—C16—C17158.52 (13)
C5—C6—C7—O1178.60 (15)C1—S1—C16—C1785.92 (14)
C3—C2—C7—C60.0 (2)C21—C16—C17—C180.0 (2)
C1—C2—C7—C6178.91 (15)S1—C16—C17—C18178.14 (13)
C3—C2—C7—O1179.07 (12)C16—C17—C18—C190.3 (3)
C1—C2—C7—O10.20 (16)C17—C18—C19—C200.4 (3)
C8—O1—C7—C6178.37 (15)C17—C18—C19—C22178.60 (17)
C8—O1—C7—C20.72 (16)C18—C19—C20—C210.3 (3)
C2—C1—C8—O10.87 (17)C22—C19—C20—C21178.70 (18)
S1—C1—C8—O1176.23 (10)C19—C20—C21—C160.1 (3)
C2—C1—C8—C15178.30 (17)C17—C16—C21—C200.1 (3)
S1—C1—C8—C152.9 (3)S1—C16—C21—C20178.07 (14)
C7—O1—C8—C10.98 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 benzene and the C1/C2/C7/O1/C8 furan rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.523.3888 (19)152
C13—H13B···O2ii0.992.553.447 (2)151
C10—H10A···Cg1iii0.992.733.675 (2)159
C11—H11A···Cg2iii0.992.953.646 (2)128
C20—H20···Cg1iv0.952.823.745 (2)164
C22—H22C···Cg2iv0.982.963.907 (2)164
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H24O3S
Mr368.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.6806 (2), 12.5869 (3), 14.2736 (3)
β (°) 93.094 (1)
V3)1916.08 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.36 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.936, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
19350, 4762, 3810
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.05
No. of reflections4762
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 benzene and the C1/C2/C7/O1/C8 furan rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.523.3888 (19)152.2
C13—H13B···O2ii0.992.553.447 (2)150.5
C10—H10A···Cg1iii0.992.733.675 (2)159.0
C11—H11A···Cg2iii0.992.953.646 (2)127.9
C20—H20···Cg1iv0.952.823.745 (2)163.7
C22—H22C···Cg2iv0.982.963.907 (2)164.0
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds