organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Bis(di­phenyl­phosphan­yl)-2,8-di­methyl­phenoxathiin di­chloro­methane monosolvate

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 22 February 2012; accepted 6 March 2012; online 10 March 2012)

The title compound, C38H30OP2S·CH2Cl2, belongs to the xanthene family of ligands containing S- and O-donor atoms in the central heterocylic ring. Positions 2 and 8 on the xanthene backbone are functionalized with methyl groups to allow for the selective functionalization of the backbone at positions 4 and 6 with diphenyl­phosphanyl units. The title compound shows a significant `roof-like' bending along the axis of planarity involving the O- and S-donor atoms and the benzene rings, resulting in a dihedral angle between the mean planes of the benzene rings of 32.88 (13)°.

Related literature

For a closely related compound, see: Goertz et al. (1998[Goertz, W., Keim, W., Vogt, D., Englert, U., Boele, M. D. K., van der Veen, L. A., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (1998). J. Chem. Soc. Dalton Trans. pp. 2981-2988.]). For complexation to metal centre and catalysis, see: Kranenburg et al. (1995[Kranenburg, M., Vanderburgt, Y. E. M., Kamer, P. C. J., van Leeuwen, P. W. N. M., Goubitz, K. & Fraanje, J. (1995). Organometallics, 14, 3081-3089.]). For related P-donor ligands, see: Marimuthu et al. (2008[Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2008). Acta Cryst. E64, o711.]). For a related structure, see: Hillebrand et al. (1995[Hillebrand, S., Bruckmann, J., Kruger, C. & Haenel, M. W. (1995). Tetrahedron Lett. 36, 75-78.]).

[Scheme 1]

Experimental

Crystal data
  • C38H30OP2S·CH2Cl2

  • Mr = 681.55

  • Monoclinic, P 21 /n

  • a = 9.3605 (7) Å

  • b = 20.6796 (15) Å

  • c = 18.1360 (15) Å

  • β = 104.955 (1)°

  • V = 3391.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 173 K

  • 0.47 × 0.36 × 0.28 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 46059 measured reflections

  • 8183 independent reflections

  • 6527 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.07

  • 8183 reflections

  • 408 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 4,6-bis(diphenylphosphanyl)-2,8-dimethylphenoxathiin (I) (Fig. 1), has been reported as a ligand on rhodium for hydroformylation of olefins and on nickel for hydrocyanation of styrene (Kranenburg et al., 1995). Compound (I) consists of two very nearly regular planar hexagonal carbocyclic rings joined to a non-planar heterocyclic ring. The planes of the aromatic rings of the xanthene backbone bisect at an angle of 147.12° with the S atom lying out of the ring planes.

A comparison of (I) with the closely related structure reported by Goertz et al. (1998) shows that sixantphos can adopt two different conformations in the solid state with different crystallographic parameters and cell contents. The conformational differences were due to the presence of an incorporated solvent molecule in (I) and the significant roof-like bending of the backbone framework along the axis of planarity involving the O and S heterocyclic atoms and the aromatic rings. The dihedral angle of 32.88° between the least-squares planes of the aromatic rings of (I) is significant when compared to the essentially co-planar aromatic rings in the phenoxazine backbone of the Goertz et al. (1998) compound. The title compound crystallizes in the P21/n space group, while the previously reported structure was in the P21/c space group. A similar difference in conformation was reported by (Hillebrand et al., 1995) for two separate crystals of xantphos. The bond lengths for (I) are in good agreement with those in the reported structure, but the internal bond angles of the heterocyclic ring are slightly shorter in (I). This is consistent with a bent geometry of the heterocyle in (I) [C11—S1—C5] 98.28 (7) and [C12—O1—C6] 117.5 (1)° compared to 101.4 (1) and 124.4 (2)° for similar bond angles in the previously reported crystal structure.

Upon complexation to a metal centre the backbone of sixantphos tends to bend to accommodate the extra steric congestion around the metal centre (Goertz et al., 1998). Therefore when compound (I) is used as a ligand, the backbone needs little tilting in order to coordinate to a metal centre. The bond angles at the P atoms range from 100.04 (6) to 102.95 (7)° which are similar to those found for a realated P donor ligand [99.93 (10) to 103.02 (10)°] (Marimuthu et al., 2008).

Related literature top

For a closely related compound, see: Goertz et al. (1998). For complexation to metal centre and catalysis, see: Kranenburg et al. (1995). For related P-donor ligands, see: Marimuthu et al. (2008). For a related structure, see: Hillebrand et al. (1995).

Experimental top

A solution of 2,8-dimethylphenoxathiin (1.5 g, 6.6 mmol) and TMEDA (2.5 ml, 16.8 mmol) in 45 ml of dry degassed Et2O was cooled to 0 °C. To the chilled solution, nBuLi (10.3 ml, 16.8 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and left to stir for 16 h. The resulting dark orange reaction mixture was cooled to 0 °C and PPh2Cl (3.1 ml, 16.8 mmol) in hexane (6 ml) added dropwise. The reaction mixture slowly decolourized and a fine precipitate formed. The reaction was allowed to stir for a further 16 h. Thereafter, the reaction was slowly hydroylsed with 40 ml of 10% HCl/brine mixture (1/1). The organic layer was removed, and the aqueous layer extracted with dichloromethane. The combined fractions were dried over MgSO4, filtered, and the volume reduced to give a yellow oil. The crude product was washed with hexane (3 x 20 ml), the oil dissolved in dichloromethane, and an equal volume of ethanol added slowly. The solution was left to recrystalize at room temperature and the crystals filtered and dried under vacuum. Recrystallization from dichloromethane/ethanol (1:1) afforded colourless crystals of (I) suitable for X-ray analysis. [yield: 2.2 g, 62%; m.p. 457 K]. Spectroscopic analysis: 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 7.29 – 7.12 (m, 20H), 6.86 (apparent d, J = 1.0 Hz, 2H), 6.22 (bs, 2H), 2.05 (s, 6H); 13C NMR (101 MHz, CDCl3, δ, p.p.m.): 152.2(t, J(P,C) = 24.4 Hz, CO), 137.2 (t, J(P,C) = 13.1 Hz phenyl C-ipso, PC), 133.9 (t, J (P,C) =21 Hz, CH phenyl), 133.5 (C), 132.7 (CH), 128.2 (CH phenyl), 128.1 (t, J(P,C) = 3.5 Hz, CH phenyl), 127.6 (CH) 127.3 (dd, J(P,C) = 12.6, 11 Hz, CHCHC–P), 119.5 (CS), 20.6 (CH3); 31P NMR (243 MHz, CDCl3 δ, p.p.m.): -17.9; IR (neat, νmax, cm-1): 3050 (w), 2961 (w), 2921 (w), 1556 (m), 1476 (m), 1432 (m), 1402 (s), 1238 (m), 1221 (m) 1199 (m), 742 (s), 692 (s); HR—MS (ESI) (m/z): 597.1559 [M + H]+ calcd. for C38H31OP2S, 597.1565.

Refinement top

All H-atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Structure description top

The title compound, 4,6-bis(diphenylphosphanyl)-2,8-dimethylphenoxathiin (I) (Fig. 1), has been reported as a ligand on rhodium for hydroformylation of olefins and on nickel for hydrocyanation of styrene (Kranenburg et al., 1995). Compound (I) consists of two very nearly regular planar hexagonal carbocyclic rings joined to a non-planar heterocyclic ring. The planes of the aromatic rings of the xanthene backbone bisect at an angle of 147.12° with the S atom lying out of the ring planes.

A comparison of (I) with the closely related structure reported by Goertz et al. (1998) shows that sixantphos can adopt two different conformations in the solid state with different crystallographic parameters and cell contents. The conformational differences were due to the presence of an incorporated solvent molecule in (I) and the significant roof-like bending of the backbone framework along the axis of planarity involving the O and S heterocyclic atoms and the aromatic rings. The dihedral angle of 32.88° between the least-squares planes of the aromatic rings of (I) is significant when compared to the essentially co-planar aromatic rings in the phenoxazine backbone of the Goertz et al. (1998) compound. The title compound crystallizes in the P21/n space group, while the previously reported structure was in the P21/c space group. A similar difference in conformation was reported by (Hillebrand et al., 1995) for two separate crystals of xantphos. The bond lengths for (I) are in good agreement with those in the reported structure, but the internal bond angles of the heterocyclic ring are slightly shorter in (I). This is consistent with a bent geometry of the heterocyle in (I) [C11—S1—C5] 98.28 (7) and [C12—O1—C6] 117.5 (1)° compared to 101.4 (1) and 124.4 (2)° for similar bond angles in the previously reported crystal structure.

Upon complexation to a metal centre the backbone of sixantphos tends to bend to accommodate the extra steric congestion around the metal centre (Goertz et al., 1998). Therefore when compound (I) is used as a ligand, the backbone needs little tilting in order to coordinate to a metal centre. The bond angles at the P atoms range from 100.04 (6) to 102.95 (7)° which are similar to those found for a realated P donor ligand [99.93 (10) to 103.02 (10)°] (Marimuthu et al., 2008).

For a closely related compound, see: Goertz et al. (1998). For complexation to metal centre and catalysis, see: Kranenburg et al. (1995). For related P-donor ligands, see: Marimuthu et al. (2008). For a related structure, see: Hillebrand et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of compound (I). Thermal ellipsoids are represented at the 50% probability level
4,6-Bis(diphenylphosphanyl)-2,8-dimethylphenoxathiin dichloromethane monosolvate top
Crystal data top
C38H30OP2S·CH2Cl2F(000) = 1416
Mr = 681.55Dx = 1.335 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9922 reflections
a = 9.3605 (7) Åθ = 2.3–28.3°
b = 20.6796 (15) ŵ = 0.38 mm1
c = 18.1360 (15) ÅT = 173 K
β = 104.955 (1)°Prism, colourless
V = 3391.7 (5) Å30.47 × 0.36 × 0.28 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6527 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 28.0°, θmin = 1.5°
φ and ω scansh = 1212
46059 measured reflectionsk = 2727
8183 independent reflectionsl = 1523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.4429P]
where P = (Fo2 + 2Fc2)/3
8183 reflections(Δ/σ)max = 0.001
408 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C38H30OP2S·CH2Cl2V = 3391.7 (5) Å3
Mr = 681.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3605 (7) ŵ = 0.38 mm1
b = 20.6796 (15) ÅT = 173 K
c = 18.1360 (15) Å0.47 × 0.36 × 0.28 mm
β = 104.955 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6527 reflections with I > 2σ(I)
46059 measured reflectionsRint = 0.039
8183 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
8183 reflectionsΔρmin = 0.51 e Å3
408 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67489 (15)0.01794 (7)0.12353 (8)0.0246 (3)
C20.61337 (16)0.07280 (7)0.08142 (8)0.0275 (3)
H20.67800.10310.06750.033*
C30.46158 (16)0.08469 (7)0.05916 (8)0.0282 (3)
C40.36781 (16)0.04140 (7)0.08135 (8)0.0274 (3)
H40.26410.04860.06710.033*
C50.42542 (15)0.01272 (7)0.12445 (8)0.0245 (3)
C60.57712 (15)0.02502 (7)0.14406 (8)0.0234 (3)
C70.63835 (15)0.19416 (7)0.18215 (8)0.0240 (3)
C80.55781 (16)0.25217 (7)0.17171 (8)0.0272 (3)
H80.61010.29200.17700.033*
C90.40319 (16)0.25350 (7)0.15383 (9)0.0295 (3)
C100.32755 (16)0.19526 (7)0.14747 (9)0.0302 (3)
H100.22250.19520.13510.036*
C110.40387 (16)0.13687 (7)0.15907 (8)0.0260 (3)
C120.55822 (15)0.13654 (7)0.17502 (7)0.0233 (3)
C130.39974 (19)0.14374 (8)0.01255 (10)0.0377 (4)
H13A0.37030.17590.04550.057*
H13B0.47540.16230.00970.057*
H13C0.31340.13130.02840.057*
C140.31804 (19)0.31613 (8)0.14184 (11)0.0410 (4)
H14A0.24630.31550.09180.062*
H14B0.38670.35230.14410.062*
H14C0.26570.32130.18180.062*
C210.93204 (15)0.01030 (7)0.25149 (8)0.0249 (3)
C220.83985 (17)0.03259 (8)0.29494 (9)0.0319 (3)
H220.73940.04240.27100.038*
C230.89407 (18)0.04055 (9)0.37329 (9)0.0376 (4)
H230.82970.05560.40240.045*
C241.04062 (18)0.02698 (8)0.40987 (9)0.0353 (4)
H241.07630.03260.46350.042*
C251.13368 (18)0.00517 (8)0.36723 (10)0.0362 (4)
H251.23450.00380.39130.043*
C261.07971 (17)0.00357 (8)0.28947 (9)0.0328 (3)
H261.14420.01940.26090.039*
C310.94616 (16)0.07369 (7)0.11622 (9)0.0270 (3)
C320.9978 (2)0.12632 (8)0.16371 (10)0.0425 (4)
H320.99800.12420.21610.051*
C331.0489 (2)0.18156 (9)0.13569 (12)0.0523 (5)
H331.08400.21690.16880.063*
C341.0487 (2)0.18526 (9)0.05995 (11)0.0451 (4)
H341.08360.22320.04080.054*
C350.99786 (18)0.13374 (8)0.01163 (9)0.0372 (4)
H350.99710.13650.04080.045*
C360.94815 (16)0.07838 (8)0.03957 (9)0.0308 (3)
H360.91480.04290.00620.037*
C410.89248 (15)0.27288 (7)0.18795 (8)0.0268 (3)
C420.86834 (18)0.29087 (8)0.11127 (9)0.0360 (4)
H420.81920.26190.07230.043*
C430.91518 (19)0.35028 (9)0.09168 (11)0.0425 (4)
H430.89690.36220.03950.051*
C440.98901 (19)0.39268 (8)0.14815 (11)0.0428 (4)
H441.02230.43330.13460.051*
C451.0138 (2)0.37585 (8)0.22366 (11)0.0429 (4)
H451.06390.40500.26220.051*
C460.96594 (18)0.31636 (8)0.24391 (10)0.0343 (3)
H460.98340.30520.29630.041*
C510.88289 (17)0.19002 (7)0.31191 (9)0.0297 (3)
C520.7990 (2)0.22244 (9)0.35306 (10)0.0415 (4)
H520.71450.24640.32700.050*
C530.8384 (2)0.21988 (11)0.43235 (11)0.0525 (5)
H530.78030.24210.46010.063*
C540.9611 (3)0.18540 (10)0.47112 (11)0.0568 (6)
H540.98730.18390.52530.068*
C551.0442 (3)0.15360 (10)0.43126 (12)0.0649 (6)
H551.12890.12990.45770.078*
C561.0059 (2)0.15565 (9)0.35211 (11)0.0495 (5)
H561.06470.13320.32500.059*
O10.63781 (10)0.07871 (4)0.18809 (6)0.0254 (2)
P10.87456 (4)0.001195 (17)0.14751 (2)0.02475 (9)
P20.84253 (4)0.189890 (18)0.20739 (2)0.02557 (9)
S10.30570 (4)0.064058 (19)0.15779 (2)0.03050 (10)
C570.5549 (3)0.08998 (11)0.36408 (12)0.0588 (5)
H57A0.53050.05670.32350.071*
H57B0.64100.11490.35740.071*
Cl10.40384 (9)0.14207 (3)0.35502 (3)0.07616 (19)
Cl20.60096 (7)0.05229 (3)0.45321 (3)0.06801 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0241 (7)0.0248 (7)0.0251 (7)0.0002 (5)0.0067 (5)0.0043 (5)
C20.0296 (7)0.0257 (7)0.0280 (7)0.0009 (6)0.0091 (6)0.0003 (6)
C30.0308 (7)0.0282 (7)0.0247 (7)0.0043 (6)0.0057 (6)0.0014 (6)
C40.0249 (7)0.0309 (7)0.0253 (7)0.0040 (6)0.0047 (6)0.0032 (6)
C50.0248 (7)0.0258 (7)0.0227 (7)0.0007 (5)0.0059 (5)0.0038 (5)
C60.0251 (7)0.0229 (7)0.0214 (6)0.0011 (5)0.0045 (5)0.0027 (5)
C70.0238 (7)0.0282 (7)0.0198 (6)0.0004 (6)0.0052 (5)0.0020 (5)
C80.0293 (7)0.0249 (7)0.0272 (7)0.0013 (6)0.0068 (6)0.0024 (6)
C90.0291 (7)0.0298 (7)0.0293 (8)0.0061 (6)0.0070 (6)0.0013 (6)
C100.0233 (7)0.0352 (8)0.0322 (8)0.0030 (6)0.0075 (6)0.0019 (6)
C110.0244 (7)0.0295 (7)0.0246 (7)0.0011 (6)0.0074 (6)0.0007 (6)
C120.0246 (7)0.0260 (7)0.0191 (6)0.0031 (5)0.0051 (5)0.0008 (5)
C130.0369 (9)0.0360 (9)0.0406 (9)0.0076 (7)0.0107 (7)0.0098 (7)
C140.0365 (9)0.0333 (9)0.0520 (11)0.0091 (7)0.0092 (8)0.0033 (7)
C210.0251 (7)0.0226 (7)0.0275 (7)0.0001 (5)0.0077 (6)0.0006 (5)
C220.0248 (7)0.0389 (8)0.0326 (8)0.0013 (6)0.0083 (6)0.0037 (7)
C230.0347 (8)0.0482 (10)0.0329 (8)0.0002 (7)0.0143 (7)0.0074 (7)
C240.0381 (8)0.0388 (9)0.0275 (8)0.0037 (7)0.0056 (7)0.0012 (7)
C250.0290 (8)0.0400 (9)0.0366 (9)0.0044 (7)0.0028 (7)0.0006 (7)
C260.0278 (7)0.0366 (8)0.0344 (8)0.0057 (6)0.0090 (6)0.0021 (7)
C310.0239 (7)0.0295 (7)0.0295 (7)0.0012 (6)0.0100 (6)0.0010 (6)
C320.0623 (12)0.0354 (9)0.0346 (9)0.0130 (8)0.0213 (8)0.0060 (7)
C330.0747 (14)0.0362 (10)0.0512 (11)0.0197 (9)0.0256 (10)0.0075 (8)
C340.0497 (11)0.0378 (9)0.0529 (11)0.0042 (8)0.0222 (9)0.0104 (8)
C350.0331 (8)0.0480 (10)0.0332 (8)0.0062 (7)0.0133 (7)0.0104 (7)
C360.0262 (7)0.0366 (8)0.0295 (8)0.0028 (6)0.0070 (6)0.0014 (6)
C410.0230 (7)0.0286 (7)0.0307 (8)0.0013 (6)0.0103 (6)0.0018 (6)
C420.0326 (8)0.0440 (9)0.0329 (8)0.0032 (7)0.0109 (7)0.0005 (7)
C430.0360 (9)0.0503 (10)0.0437 (10)0.0030 (8)0.0146 (8)0.0166 (8)
C440.0377 (9)0.0320 (8)0.0648 (12)0.0037 (7)0.0244 (9)0.0092 (8)
C450.0466 (10)0.0309 (8)0.0563 (11)0.0075 (7)0.0224 (9)0.0110 (8)
C460.0391 (9)0.0325 (8)0.0340 (8)0.0034 (7)0.0141 (7)0.0045 (6)
C510.0310 (7)0.0262 (7)0.0288 (7)0.0041 (6)0.0022 (6)0.0022 (6)
C520.0394 (9)0.0540 (11)0.0308 (8)0.0005 (8)0.0084 (7)0.0023 (8)
C530.0611 (12)0.0645 (13)0.0334 (10)0.0123 (10)0.0150 (9)0.0037 (9)
C540.0847 (16)0.0486 (11)0.0274 (9)0.0151 (11)0.0030 (9)0.0046 (8)
C550.0803 (16)0.0536 (12)0.0421 (11)0.0176 (11)0.0182 (11)0.0022 (10)
C560.0538 (11)0.0435 (10)0.0405 (10)0.0141 (9)0.0069 (8)0.0034 (8)
O10.0243 (5)0.0226 (5)0.0271 (5)0.0010 (4)0.0027 (4)0.0005 (4)
P10.02381 (18)0.02421 (18)0.02701 (19)0.00075 (14)0.00797 (14)0.00316 (14)
P20.02309 (18)0.02554 (19)0.02756 (19)0.00042 (14)0.00558 (14)0.00296 (14)
S10.02473 (18)0.0316 (2)0.0379 (2)0.00240 (14)0.01310 (15)0.00110 (16)
C570.0696 (14)0.0653 (13)0.0483 (12)0.0136 (11)0.0277 (11)0.0025 (10)
Cl10.1172 (6)0.0525 (3)0.0529 (3)0.0151 (3)0.0113 (3)0.0040 (2)
Cl20.0751 (4)0.0842 (4)0.0416 (3)0.0195 (3)0.0094 (3)0.0037 (3)
Geometric parameters (Å, º) top
C1—C61.393 (2)C26—H260.9500
C1—C21.405 (2)C31—C321.395 (2)
C1—P11.8492 (14)C31—C361.399 (2)
C2—C31.395 (2)C31—P11.8345 (15)
C2—H20.9500C32—C331.384 (2)
C3—C41.384 (2)C32—H320.9500
C3—C131.513 (2)C33—C341.375 (3)
C4—C51.392 (2)C33—H330.9500
C4—H40.9500C34—C351.384 (3)
C5—C61.3953 (19)C34—H340.9500
C5—S11.7601 (14)C35—C361.380 (2)
C6—O11.3996 (16)C35—H350.9500
C7—C121.3961 (19)C36—H360.9500
C7—C81.4035 (19)C41—C461.397 (2)
C7—P21.8489 (14)C41—C421.400 (2)
C8—C91.399 (2)C41—P21.8367 (15)
C8—H80.9500C42—C431.381 (2)
C9—C101.387 (2)C42—H420.9500
C9—C141.507 (2)C43—C441.389 (3)
C10—C111.391 (2)C43—H430.9500
C10—H100.9500C44—C451.373 (3)
C11—C121.3983 (19)C44—H440.9500
C11—S11.7610 (15)C45—C461.391 (2)
C12—O11.3966 (16)C45—H450.9500
C13—H13A0.9800C46—H460.9500
C13—H13B0.9800C51—C521.387 (2)
C13—H13C0.9800C51—C561.389 (2)
C14—H14A0.9800C51—P21.8349 (16)
C14—H14B0.9800C52—C531.390 (2)
C14—H14C0.9800C52—H520.9500
C21—C221.389 (2)C53—C541.380 (3)
C21—C261.406 (2)C53—H530.9500
C21—P11.8381 (15)C54—C551.360 (3)
C22—C231.390 (2)C54—H540.9500
C22—H220.9500C55—C561.387 (3)
C23—C241.390 (2)C55—H550.9500
C23—H230.9500C56—H560.9500
C24—C251.381 (2)C57—Cl21.745 (2)
C24—H240.9500C57—Cl11.751 (2)
C25—C261.382 (2)C57—H57A0.9900
C25—H250.9500C57—H57B0.9900
C6—C1—C2117.04 (13)C32—C31—P1124.33 (12)
C6—C1—P1119.63 (11)C36—C31—P1117.76 (11)
C2—C1—P1123.24 (11)C33—C32—C31120.99 (16)
C3—C2—C1122.92 (13)C33—C32—H32119.5
C3—C2—H2118.5C31—C32—H32119.5
C1—C2—H2118.5C34—C33—C32120.07 (17)
C4—C3—C2118.47 (13)C34—C33—H33120.0
C4—C3—C13120.31 (14)C32—C33—H33120.0
C2—C3—C13121.22 (14)C33—C34—C35120.08 (16)
C3—C4—C5120.04 (13)C33—C34—H34120.0
C3—C4—H4120.0C35—C34—H34120.0
C5—C4—H4120.0C36—C35—C34119.97 (15)
C4—C5—C6120.73 (13)C36—C35—H35120.0
C4—C5—S1119.29 (11)C34—C35—H35120.0
C6—C5—S1119.92 (11)C35—C36—C31120.98 (15)
C1—C6—C5120.74 (13)C35—C36—H36119.5
C1—C6—O1117.41 (12)C31—C36—H36119.5
C5—C6—O1121.77 (12)C46—C41—C42118.26 (14)
C12—C7—C8117.39 (13)C46—C41—P2124.34 (12)
C12—C7—P2118.59 (10)C42—C41—P2117.07 (12)
C8—C7—P2124.00 (11)C43—C42—C41120.73 (16)
C9—C8—C7122.37 (14)C43—C42—H42119.6
C9—C8—H8118.8C41—C42—H42119.6
C7—C8—H8118.8C42—C43—C44120.15 (16)
C10—C9—C8118.53 (13)C42—C43—H43119.9
C10—C9—C14119.65 (14)C44—C43—H43119.9
C8—C9—C14121.81 (14)C45—C44—C43119.93 (16)
C9—C10—C11120.66 (13)C45—C44—H44120.0
C9—C10—H10119.7C43—C44—H44120.0
C11—C10—H10119.7C44—C45—C46120.29 (16)
C10—C11—C12119.89 (13)C44—C45—H45119.9
C10—C11—S1119.63 (11)C46—C45—H45119.9
C12—C11—S1120.42 (11)C45—C46—C41120.62 (16)
C7—C12—O1117.70 (12)C45—C46—H46119.7
C7—C12—C11121.12 (13)C41—C46—H46119.7
O1—C12—C11121.11 (12)C52—C51—C56118.19 (16)
C3—C13—H13A109.5C52—C51—P2124.20 (12)
C3—C13—H13B109.5C56—C51—P2117.61 (13)
H13A—C13—H13B109.5C51—C52—C53120.12 (18)
C3—C13—H13C109.5C51—C52—H52119.9
H13A—C13—H13C109.5C53—C52—H52119.9
H13B—C13—H13C109.5C54—C53—C52120.7 (2)
C9—C14—H14A109.5C54—C53—H53119.7
C9—C14—H14B109.5C52—C53—H53119.7
H14A—C14—H14B109.5C55—C54—C53119.59 (18)
C9—C14—H14C109.5C55—C54—H54120.2
H14A—C14—H14C109.5C53—C54—H54120.2
H14B—C14—H14C109.5C54—C55—C56120.28 (19)
C22—C21—C26117.78 (14)C54—C55—H55119.9
C22—C21—P1124.39 (11)C56—C55—H55119.9
C26—C21—P1117.83 (11)C55—C56—C51121.12 (19)
C21—C22—C23120.19 (14)C55—C56—H56119.4
C21—C22—H22119.9C51—C56—H56119.4
C23—C22—H22119.9C12—O1—C6117.53 (10)
C24—C23—C22121.29 (15)C31—P1—C21100.06 (7)
C24—C23—H23119.4C31—P1—C1100.04 (6)
C22—C23—H23119.4C21—P1—C1102.95 (6)
C25—C24—C23119.08 (15)C51—P2—C41101.66 (7)
C25—C24—H24120.5C51—P2—C7100.36 (7)
C23—C24—H24120.5C41—P2—C7101.89 (6)
C24—C25—C26119.79 (15)C5—S1—C1198.28 (7)
C24—C25—H25120.1Cl2—C57—Cl1111.22 (11)
C26—C25—H25120.1Cl2—C57—H57A109.4
C25—C26—C21121.85 (14)Cl1—C57—H57A109.4
C25—C26—H26119.1Cl2—C57—H57B109.4
C21—C26—H26119.1Cl1—C57—H57B109.4
C32—C31—C36117.91 (14)H57A—C57—H57B108.0
C6—C1—C2—C31.0 (2)C46—C41—C42—C430.4 (2)
P1—C1—C2—C3175.58 (11)P2—C41—C42—C43174.05 (13)
C1—C2—C3—C41.8 (2)C41—C42—C43—C440.9 (2)
C1—C2—C3—C13178.82 (14)C42—C43—C44—C450.8 (3)
C2—C3—C4—C50.4 (2)C43—C44—C45—C460.3 (3)
C13—C3—C4—C5179.78 (14)C44—C45—C46—C410.2 (3)
C3—C4—C5—C61.7 (2)C42—C41—C46—C450.1 (2)
C3—C4—C5—S1175.53 (11)P2—C41—C46—C45173.01 (13)
C2—C1—C6—C51.2 (2)C56—C51—C52—C530.2 (3)
P1—C1—C6—C5177.91 (10)P2—C51—C52—C53179.86 (14)
C2—C1—C6—O1178.01 (12)C51—C52—C53—C540.2 (3)
P1—C1—C6—O15.27 (17)C52—C53—C54—C550.0 (3)
C4—C5—C6—C12.6 (2)C53—C54—C55—C560.1 (3)
S1—C5—C6—C1174.68 (11)C54—C55—C56—C510.1 (3)
C4—C5—C6—O1179.26 (12)C52—C51—C56—C550.0 (3)
S1—C5—C6—O12.00 (18)P2—C51—C56—C55179.73 (17)
C12—C7—C8—C90.8 (2)C7—C12—O1—C6145.15 (12)
P2—C7—C8—C9178.94 (11)C11—C12—O1—C637.94 (17)
C7—C8—C9—C101.0 (2)C1—C6—O1—C12145.19 (12)
C7—C8—C9—C14179.24 (14)C5—C6—O1—C1238.02 (17)
C8—C9—C10—C110.4 (2)C32—C31—P1—C2111.81 (16)
C14—C9—C10—C11179.35 (14)C36—C31—P1—C21168.59 (11)
C9—C10—C11—C122.0 (2)C32—C31—P1—C193.41 (15)
C9—C10—C11—S1175.18 (12)C36—C31—P1—C186.19 (12)
C8—C7—C12—O1177.71 (12)C22—C21—P1—C3198.97 (13)
P2—C7—C12—O10.51 (17)C26—C21—P1—C3180.13 (12)
C8—C7—C12—C110.8 (2)C22—C21—P1—C13.88 (14)
P2—C7—C12—C11177.42 (10)C26—C21—P1—C1177.02 (12)
C10—C11—C12—C72.2 (2)C6—C1—P1—C31174.71 (11)
S1—C11—C12—C7174.93 (10)C2—C1—P1—C318.79 (13)
C10—C11—C12—O1178.99 (13)C6—C1—P1—C2171.84 (12)
S1—C11—C12—O11.87 (18)C2—C1—P1—C21111.66 (12)
C26—C21—C22—C230.0 (2)C52—C51—P2—C4171.69 (15)
P1—C21—C22—C23179.12 (12)C56—C51—P2—C41107.97 (14)
C21—C22—C23—C240.4 (3)C52—C51—P2—C732.88 (15)
C22—C23—C24—C250.0 (3)C56—C51—P2—C7147.46 (13)
C23—C24—C25—C260.8 (2)C46—C41—P2—C519.70 (14)
C24—C25—C26—C211.2 (2)C42—C41—P2—C51177.11 (12)
C22—C21—C26—C250.8 (2)C46—C41—P2—C7113.06 (13)
P1—C21—C26—C25178.36 (12)C42—C41—P2—C773.75 (12)
C36—C31—C32—C330.3 (3)C12—C7—P2—C5188.24 (12)
P1—C31—C32—C33179.32 (15)C8—C7—P2—C5189.85 (13)
C31—C32—C33—C340.2 (3)C12—C7—P2—C41167.38 (11)
C32—C33—C34—C350.1 (3)C8—C7—P2—C4114.54 (13)
C33—C34—C35—C360.5 (3)C4—C5—S1—C11150.31 (12)
C34—C35—C36—C311.0 (2)C6—C5—S1—C1132.39 (12)
C32—C31—C36—C350.9 (2)C10—C11—S1—C5150.43 (12)
P1—C31—C36—C35178.76 (12)C12—C11—S1—C532.45 (13)

Experimental details

Crystal data
Chemical formulaC38H30OP2S·CH2Cl2
Mr681.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.3605 (7), 20.6796 (15), 18.1360 (15)
β (°) 104.955 (1)
V3)3391.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.47 × 0.36 × 0.28
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
46059, 8183, 6527
Rint0.039
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.07
No. of reflections8183
No. of parameters408
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.51

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank Dr Manuel Fernandes for the data collection and SASOL, THRIP and the University of KwaZulu-Natal for financial support.

References

First citationBruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoertz, W., Keim, W., Vogt, D., Englert, U., Boele, M. D. K., van der Veen, L. A., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (1998). J. Chem. Soc. Dalton Trans. pp. 2981–2988.  Web of Science CSD CrossRef Google Scholar
First citationHillebrand, S., Bruckmann, J., Kruger, C. & Haenel, M. W. (1995). Tetrahedron Lett. 36, 75–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationKranenburg, M., Vanderburgt, Y. E. M., Kamer, P. C. J., van Leeuwen, P. W. N. M., Goubitz, K. & Fraanje, J. (1995). Organometallics, 14, 3081–3089.  CrossRef CAS Web of Science Google Scholar
First citationMarimuthu, T., Bala, M. D. & Friedrich, H. B. (2008). Acta Cryst. E64, o711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds