organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-Benzyl­ideneadamantan-1-amine

aCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China, and bLiaoning Provincial Institute of Measurement, Shenyang 110004, People's Republic of China
*Correspondence e-mail: jinxudong@yahoo.com

(Received 13 December 2011; accepted 15 March 2012; online 21 March 2012)

In the title compound, C17H21N, the dihedral angle between the benzene ring and the imine group (—N=) is 5.1 (4)°. In the adamantane group, the C—C—C bond angles range from 107.88 (19) to 111.33 (17)°. Only weak van der Waals inter­actions contribute to the contribute to the packing of the molecules in the crystal..

Related literature

For the synthesis and crystal structure of N-(4-chloro­benzyl­idene)-1-adamantyl­amine, see: Zhao & Feng (2005[Zhao, G.-L. & Feng, Y.-L. (2005). Z. Kristallogr. New Cryst. Struct. 220, 197-198.]). For the synthesis and application of metal complexes with adamantane-ring-containing Schiff bases, see: Jin et al. (2011[Jin, X.-D., Jin, Y.-H., Zou, Z.-Y., Cui, Z.-G., Wang, H.-B., Kang, P.-L., Ge, C.-H. & Li, K. (2011). J. Coord. Chem. 64, 1533-1543.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21N

  • Mr = 239.35

  • Orthorhombic, P 21 21 21

  • a = 6.480 (2) Å

  • b = 7.141 (2) Å

  • c = 29.674 (11) Å

  • V = 1373.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.33 × 0.29 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.986

  • 4971 measured reflections

  • 2726 independent reflections

  • 1981 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.140

  • S = 0.99

  • 2726 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The field of Schiff bases and their complexes was rapidly developing mainly owing to facile synthesis and technological applications in many areas, such as biological activity (Jin et al., 2011). As an extension of our work on the structural characterization of Schiff base compounds containing an adamantane group, we synthesized the title compound (Fig.2). In the crystal of title compound (see Fig.2), the carbon atoms from the adamantane cage are sp3 hybridized with C—C—C angles ranging from 107.88 (19)° to 111.33 (17)°. The N1=C11 double bond length of 1.240 (3) Å and the C11—C12 single bond length [1.480 (3) Å] are roughly close to another set of conjugation system with C=N group [1.266 (2) Å] and Caryl—C(=C) bond length [1.474 (2) Å] (Zhao & Feng, 2005), respectively.

Related literature top

For the synthesis and crystal structure of N-(4-chlorobenzylidene)-1-adamantylamine, see: Zhao & Feng (2005). For the synthesis and application of metal complexes with adamantane-ring-containing Schiff bases, see: Jin et al. (2011).

Experimental top

Amantadine hydrochloride (0.56 g, 3.0 mmol) and KOH (0.17 g, 3.0 mmol) in 50 ml anhydrous alcohol were stirred for 2 h. The produce white precipitate was filtered out and the transparent liquid was added dropwise to benzaldehyde (0.32 g, 3.0 mmol) in 30 ml anhydrous alcohol under constant stirring. The resulting solution was refluxed for ca. 4 h, concentrated to about 20 ml through reduced pressure distillation and then stood at room temperature. Colorless plate-shaped crystals suitable for X-ray analysis were obtained after one week by the slow solvent evaporation method.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93–0.98 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C).

Structure description top

The field of Schiff bases and their complexes was rapidly developing mainly owing to facile synthesis and technological applications in many areas, such as biological activity (Jin et al., 2011). As an extension of our work on the structural characterization of Schiff base compounds containing an adamantane group, we synthesized the title compound (Fig.2). In the crystal of title compound (see Fig.2), the carbon atoms from the adamantane cage are sp3 hybridized with C—C—C angles ranging from 107.88 (19)° to 111.33 (17)°. The N1=C11 double bond length of 1.240 (3) Å and the C11—C12 single bond length [1.480 (3) Å] are roughly close to another set of conjugation system with C=N group [1.266 (2) Å] and Caryl—C(=C) bond length [1.474 (2) Å] (Zhao & Feng, 2005), respectively.

For the synthesis and crystal structure of N-(4-chlorobenzylidene)-1-adamantylamine, see: Zhao & Feng (2005). For the synthesis and application of metal complexes with adamantane-ring-containing Schiff bases, see: Jin et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthetic route to the title compound.
[Figure 2] Fig. 2. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
(E)-N-Benzylideneadamantan-1-amine top
Crystal data top
C17H21NDx = 1.158 Mg m3
Mr = 239.35Melting point: 320.5 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5300 reflections
a = 6.480 (2) Åθ = 2.8–26.4°
b = 7.141 (2) ŵ = 0.07 mm1
c = 29.674 (11) ÅT = 296 K
V = 1373.1 (8) Å3Plate-shaped, colourless
Z = 40.33 × 0.29 × 0.22 mm
F(000) = 520
Data collection top
Bruker SMART CCD area-detector
diffractometer
2726 independent reflections
Radiation source: fine-focus sealed tube1981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 58
Tmin = 0.978, Tmax = 0.986k = 86
4971 measured reflectionsl = 3037
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.1812P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2726 reflectionsΔρmax = 0.18 e Å3
163 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881, 1097 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 3 (5)
Crystal data top
C17H21NV = 1373.1 (8) Å3
Mr = 239.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.480 (2) ŵ = 0.07 mm1
b = 7.141 (2) ÅT = 296 K
c = 29.674 (11) Å0.33 × 0.29 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2726 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1981 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.986Rint = 0.025
4971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.140Δρmax = 0.18 e Å3
S = 0.99Δρmin = 0.17 e Å3
2726 reflectionsAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881, 1097 Friedel pairs
163 parametersAbsolute structure parameter: 3 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1858 (3)0.5833 (3)0.14354 (7)0.0372 (5)
C20.3828 (4)0.5357 (3)0.16995 (9)0.0527 (6)
H2A0.49530.51360.14900.063*
H2B0.36110.42220.18720.063*
C30.2221 (4)0.7625 (3)0.11730 (8)0.0479 (6)
H3A0.09820.79450.10070.057*
H3B0.33260.74290.09570.057*
C40.0121 (3)0.6168 (3)0.17747 (8)0.0456 (6)
H4A0.01070.50390.19500.055*
H4B0.11460.64580.16150.055*
C50.0674 (4)0.7804 (3)0.20945 (7)0.0474 (6)
H50.04530.80110.23090.057*
C60.2638 (4)0.7272 (4)0.23476 (9)0.0570 (7)
H6A0.29930.82590.25580.068*
H6B0.24020.61330.25180.068*
C70.4407 (4)0.6974 (3)0.20206 (8)0.0514 (6)
H70.56710.66640.21860.062*
C80.4736 (4)0.8731 (3)0.17412 (9)0.0539 (6)
H8A0.51350.97550.19380.065*
H8B0.58480.85220.15280.065*
C90.2796 (4)0.9257 (3)0.14885 (8)0.0471 (6)
H90.30311.03980.13120.057*
C100.1026 (4)0.9556 (3)0.18180 (9)0.0513 (6)
H10A0.13481.05950.20160.062*
H10B0.02210.98650.16530.062*
C110.0168 (4)0.3554 (3)0.10652 (8)0.0476 (6)
H110.12260.39140.12580.057*
C120.0603 (4)0.2091 (3)0.07252 (8)0.0490 (6)
C130.0838 (4)0.1560 (3)0.04071 (8)0.0554 (7)
H130.21330.21210.04040.067*
C140.0355 (6)0.0188 (3)0.00920 (9)0.0681 (8)
H140.13220.01630.01240.082*
C150.1551 (6)0.0648 (4)0.00991 (9)0.0731 (9)
H150.18700.15770.01090.088*
C160.2978 (5)0.0116 (4)0.04126 (10)0.0740 (9)
H160.42740.06760.04160.089*
C170.2507 (4)0.1241 (4)0.07226 (9)0.0610 (7)
H170.34900.15920.09350.073*
N10.1537 (3)0.4325 (2)0.11053 (6)0.0480 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0310 (11)0.0377 (11)0.0429 (11)0.0010 (9)0.0002 (9)0.0021 (9)
C20.0429 (13)0.0489 (14)0.0663 (16)0.0083 (10)0.0030 (12)0.0003 (12)
C30.0482 (14)0.0500 (13)0.0455 (12)0.0002 (11)0.0021 (10)0.0020 (11)
C40.0390 (12)0.0479 (12)0.0498 (13)0.0016 (11)0.0036 (10)0.0002 (10)
C50.0378 (12)0.0591 (13)0.0453 (12)0.0008 (11)0.0085 (10)0.0021 (11)
C60.0570 (16)0.0657 (16)0.0482 (13)0.0072 (14)0.0023 (12)0.0035 (12)
C70.0349 (12)0.0594 (14)0.0597 (14)0.0034 (10)0.0114 (12)0.0059 (12)
C80.0377 (13)0.0601 (14)0.0637 (15)0.0106 (12)0.0016 (12)0.0006 (13)
C90.0449 (13)0.0422 (12)0.0544 (13)0.0013 (10)0.0013 (11)0.0072 (10)
C100.0425 (14)0.0469 (13)0.0644 (14)0.0046 (10)0.0021 (11)0.0056 (12)
C110.0428 (13)0.0448 (12)0.0552 (14)0.0031 (11)0.0020 (11)0.0013 (11)
C120.0612 (15)0.0374 (11)0.0486 (12)0.0024 (11)0.0054 (12)0.0021 (10)
C130.0636 (16)0.0423 (13)0.0604 (15)0.0039 (11)0.0016 (13)0.0039 (12)
C140.103 (2)0.0458 (14)0.0551 (15)0.0063 (16)0.0102 (16)0.0020 (12)
C150.114 (3)0.0505 (15)0.0543 (15)0.0180 (17)0.0164 (18)0.0031 (13)
C160.083 (2)0.0658 (17)0.0730 (19)0.0313 (16)0.0089 (17)0.0048 (15)
C170.0646 (17)0.0592 (15)0.0592 (15)0.0128 (13)0.0007 (14)0.0028 (13)
N10.0479 (11)0.0420 (10)0.0541 (11)0.0021 (9)0.0033 (10)0.0048 (9)
Geometric parameters (Å, º) top
C1—N11.471 (3)C8—C91.511 (3)
C1—C31.516 (3)C8—H8A0.9700
C1—C41.529 (3)C8—H8B0.9700
C1—C21.536 (3)C9—C101.522 (3)
C2—C71.543 (3)C9—H90.9800
C2—H2A0.9700C10—H10A0.9700
C2—H2B0.9700C10—H10B0.9700
C3—C91.541 (3)C11—N11.240 (3)
C3—H3A0.9700C11—C121.480 (3)
C3—H3B0.9700C11—H110.9300
C4—C51.547 (3)C12—C171.375 (3)
C4—H4A0.9700C12—C131.381 (3)
C4—H4B0.9700C13—C141.390 (3)
C5—C101.514 (3)C13—H130.9300
C5—C61.525 (3)C14—C151.371 (5)
C5—H50.9800C14—H140.9300
C6—C71.517 (3)C15—C161.366 (4)
C6—H6A0.9700C15—H150.9300
C6—H6B0.9700C16—C171.371 (4)
C7—C81.519 (3)C16—H160.9300
C7—H70.9800C17—H170.9300
N1—C1—C3107.34 (16)C2—C7—H7110.1
N1—C1—C4116.69 (17)C9—C8—C7111.07 (19)
C3—C1—C4108.70 (17)C9—C8—H8A109.4
N1—C1—C2107.17 (17)C7—C8—H8A109.4
C3—C1—C2108.63 (18)C9—C8—H8B109.4
C4—C1—C2108.08 (18)C7—C8—H8B109.4
C1—C2—C7110.58 (18)H8A—C8—H8B108.0
C1—C2—H2A109.5C8—C9—C10110.04 (19)
C7—C2—H2A109.5C8—C9—C3108.37 (19)
C1—C2—H2B109.5C10—C9—C3108.3 (2)
C7—C2—H2B109.5C8—C9—H9110.0
H2A—C2—H2B108.1C10—C9—H9110.0
C1—C3—C9111.33 (17)C3—C9—H9110.0
C1—C3—H3A109.4C5—C10—C9110.23 (19)
C9—C3—H3A109.4C5—C10—H10A109.6
C1—C3—H3B109.4C9—C10—H10A109.6
C9—C3—H3B109.4C5—C10—H10B109.6
H3A—C3—H3B108.0C9—C10—H10B109.6
C1—C4—C5110.57 (18)H10A—C10—H10B108.1
C1—C4—H4A109.5N1—C11—C12123.3 (2)
C5—C4—H4A109.5N1—C11—H11118.4
C1—C4—H4B109.5C12—C11—H11118.4
C5—C4—H4B109.5C17—C12—C13118.8 (2)
H4A—C4—H4B108.1C17—C12—C11119.1 (2)
C10—C5—C6110.3 (2)C13—C12—C11122.1 (2)
C10—C5—C4109.06 (18)C12—C13—C14120.1 (3)
C6—C5—C4107.88 (19)C12—C13—H13120.0
C10—C5—H5109.9C14—C13—H13120.0
C6—C5—H5109.9C15—C14—C13120.0 (3)
C4—C5—H5109.9C15—C14—H14120.0
C7—C6—C5110.52 (19)C13—C14—H14120.0
C7—C6—H6A109.5C16—C15—C14119.9 (3)
C5—C6—H6A109.5C16—C15—H15120.0
C7—C6—H6B109.5C14—C15—H15120.0
C5—C6—H6B109.5C15—C16—C17120.2 (3)
H6A—C6—H6B108.1C15—C16—H16119.9
C6—C7—C8109.8 (2)C17—C16—H16119.9
C6—C7—C2108.4 (2)C16—C17—C12121.1 (3)
C8—C7—C2108.38 (19)C16—C17—H17119.5
C6—C7—H7110.1C12—C17—H17119.5
C8—C7—H7110.1C11—N1—C1120.97 (19)

Experimental details

Crystal data
Chemical formulaC17H21N
Mr239.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.480 (2), 7.141 (2), 29.674 (11)
V3)1373.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.33 × 0.29 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4971, 2726, 1981
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.140, 0.99
No. of reflections2726
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17
Absolute structureFlack, H. D. (1983). Acta Cryst. A39, 876–881, 1097 Friedel pairs
Absolute structure parameter3 (5)

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the Foundation of Liaoning Educational Department (grant No. 2008 T073), the Science and Technology Foundation of Liaoning Province (grant No. 20071027), the Scientific Research Foundation for Returned Overseas Chinese Scholars (grant No. 2005546), Liaoning University `211' Engineering Construction Foundation and the Technology major projects Research Foundation (grant No. 2011ZX09102-007-02), China.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, X.-D., Jin, Y.-H., Zou, Z.-Y., Cui, Z.-G., Wang, H.-B., Kang, P.-L., Ge, C.-H. & Li, K. (2011). J. Coord. Chem. 64, 1533–1543.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, G.-L. & Feng, Y.-L. (2005). Z. Kristallogr. New Cryst. Struct. 220, 197–198.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds