organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1,3-Benzo­thia­zol-2-yl)-3-phenyl-2-pyrazoline

aSchool of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: hrb1018@163.com

(Received 6 March 2012; accepted 26 March 2012; online 31 March 2012)

In the title compound, C16H13N3S, the pyrazoline ring forms dihedral angles of 6.89 (14) and 4.96 (11)° with the benzene ring and the benzothia­zole group, respectively. In the crystal, weak C—H⋯N inter­actions link the mol­ecules into chains extending along the b-axis direction.

Related literature

For background to the title compound, see: Sano et al. (1995[Sano, T., Fuji, T., Nishio, Y., Hamada, Y., Shibata, K. & Kuroki, K. (1995). Jpn J. Appl. Phys. 34, 3124-3127.]); Xian et al. (2008[Xian, Y. F., Li, D. F. & Wang, Y. M. (2008). Spectrosc. Spect. Anal. 28, 1617-1620.]). For details of the synthesis, see: Xian et al. (2008[Xian, Y. F., Li, D. F. & Wang, Y. M. (2008). Spectrosc. Spect. Anal. 28, 1617-1620.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N3S

  • Mr = 279.35

  • Monoclinic, P 21 /c

  • a = 16.946 (8) Å

  • b = 5.449 (3) Å

  • c = 17.306 (11) Å

  • β = 119.96 (2)°

  • V = 1384.4 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 288 K

  • 0.54 × 0.30 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.887, Tmax = 0.938

  • 11972 measured reflections

  • 3141 independent reflections

  • 2227 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.14

  • 3141 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N3i 0.93 2.61 3.340 (3) 135
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (MSC & Rigaku, 2002[MSC & Rigaku (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazoline derivatives have been investigated in many repects due to their blue light emission with high quantum yield, accessibility. They are used as carrier transporting as well as emitting materials (Sano et al., 1995). Recently, Xian reported the synthesis and optical properties of novel pyrazoline derivatives as blue light fluorescence compounds (Xian et al., 2008). In this paper, we describe the crystal structure of the title compound with blue light fluorescence.

The molecular structure of title compound, C16H13N3S, is shown in Fig. 1, all bond lengths and angles are in the normal ranges. The pyrazoline ring and benzothiazole ring are nearly coplanar and make dihedral angle of 4.96 (11)°. The molecules are linked by intermolecular C—H···N hydrogen bonds (Table 1), generating chains along the b direction.

Related literature top

For background to the title compound, see: Sano et al. (1995); Xian et al. (2008). For details of the synthesis, see: Xian et al. (2008).

Experimental top

The title compound was prepared according to the literature (Xian et al., 2008). Single crystals suitable for X-ray diffraction were prepared by slow evaporation method from a solution in dichloromethane/petroleum (60–90 °C) at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 and 0.97 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2 Ueq(C).

Structure description top

Pyrazoline derivatives have been investigated in many repects due to their blue light emission with high quantum yield, accessibility. They are used as carrier transporting as well as emitting materials (Sano et al., 1995). Recently, Xian reported the synthesis and optical properties of novel pyrazoline derivatives as blue light fluorescence compounds (Xian et al., 2008). In this paper, we describe the crystal structure of the title compound with blue light fluorescence.

The molecular structure of title compound, C16H13N3S, is shown in Fig. 1, all bond lengths and angles are in the normal ranges. The pyrazoline ring and benzothiazole ring are nearly coplanar and make dihedral angle of 4.96 (11)°. The molecules are linked by intermolecular C—H···N hydrogen bonds (Table 1), generating chains along the b direction.

For background to the title compound, see: Sano et al. (1995); Xian et al. (2008). For details of the synthesis, see: Xian et al. (2008).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (MSC & Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probalility level.
1-(1,3-Benzothiazol-2-yl)-3-phenyl-2-pyrazoline top
Crystal data top
C16H13N3SF(000) = 584
Mr = 279.35Dx = 1.340 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8759 reflections
a = 16.946 (8) Åθ = 3.6–27.6°
b = 5.449 (3) ŵ = 0.23 mm1
c = 17.306 (11) ÅT = 288 K
β = 119.96 (2)°Block, colorless
V = 1384.4 (14) Å30.54 × 0.30 × 0.28 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3141 independent reflections
Radiation source: fine-focus sealed tube2227 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2121
Tmin = 0.887, Tmax = 0.938k = 76
11972 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.0076P]
where P = (Fo2 + 2Fc2)/3
3141 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H13N3SV = 1384.4 (14) Å3
Mr = 279.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.946 (8) ŵ = 0.23 mm1
b = 5.449 (3) ÅT = 288 K
c = 17.306 (11) Å0.54 × 0.30 × 0.28 mm
β = 119.96 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3141 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2227 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.938Rint = 0.028
11972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.14Δρmax = 0.20 e Å3
3141 reflectionsΔρmin = 0.20 e Å3
181 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50225 (3)0.17993 (8)0.32651 (3)0.05497 (16)
N10.43537 (9)0.1902 (2)0.37317 (10)0.0552 (4)
N20.59086 (9)0.1280 (3)0.46547 (10)0.0569 (4)
N30.66870 (9)0.0055 (2)0.48121 (9)0.0541 (3)
C10.38592 (10)0.1199 (3)0.26333 (11)0.0502 (4)
C20.32007 (12)0.2465 (4)0.18951 (13)0.0617 (5)
H20.33540.38330.16770.074*
C30.23125 (12)0.1641 (4)0.14930 (13)0.0678 (5)
H30.18620.24520.09940.081*
C40.20868 (12)0.0380 (4)0.18261 (13)0.0690 (5)
H40.14850.09130.15440.083*
C50.27335 (12)0.1621 (3)0.25656 (13)0.0629 (5)
H50.25700.29660.27860.075*
C60.36345 (10)0.0836 (3)0.29788 (11)0.0509 (4)
C70.50936 (10)0.0702 (3)0.39398 (11)0.0499 (4)
C80.60831 (11)0.3438 (3)0.52172 (12)0.0554 (4)
H8A0.57700.33290.55570.066*
H8B0.59010.49340.48670.066*
C90.71109 (11)0.3312 (3)0.58214 (12)0.0568 (4)
H9A0.74020.48050.57840.068*
H9B0.72740.30380.64370.068*
C100.73713 (11)0.1147 (3)0.54526 (11)0.0493 (4)
C110.83120 (11)0.0387 (3)0.57541 (12)0.0546 (4)
C120.85070 (13)0.1548 (4)0.53559 (14)0.0704 (5)
H120.80370.24530.49060.085*
C130.94034 (15)0.2128 (5)0.56296 (17)0.0892 (7)
H130.95330.34260.53620.107*
C141.01079 (15)0.0798 (5)0.62958 (18)0.0935 (7)
H141.07090.11830.64710.112*
C150.99182 (13)0.1075 (5)0.66937 (17)0.0882 (7)
H151.03920.19610.71470.106*
C160.90289 (12)0.1677 (4)0.64329 (14)0.0725 (5)
H160.89090.29580.67140.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0594 (3)0.0536 (3)0.0590 (3)0.00083 (18)0.0349 (2)0.00678 (19)
N10.0564 (8)0.0489 (8)0.0602 (9)0.0009 (6)0.0290 (7)0.0076 (6)
N20.0519 (7)0.0566 (8)0.0600 (9)0.0041 (6)0.0262 (7)0.0112 (7)
N30.0600 (8)0.0525 (8)0.0543 (8)0.0057 (6)0.0318 (7)0.0010 (6)
C10.0578 (9)0.0483 (9)0.0526 (9)0.0047 (7)0.0336 (8)0.0014 (7)
C20.0682 (11)0.0625 (10)0.0650 (12)0.0099 (8)0.0413 (9)0.0154 (9)
C30.0627 (10)0.0779 (13)0.0625 (12)0.0164 (9)0.0311 (9)0.0172 (9)
C40.0552 (10)0.0773 (13)0.0703 (13)0.0026 (9)0.0281 (9)0.0058 (10)
C50.0601 (9)0.0554 (11)0.0721 (12)0.0015 (8)0.0322 (9)0.0074 (9)
C60.0569 (9)0.0448 (9)0.0544 (10)0.0052 (7)0.0304 (8)0.0018 (7)
C70.0570 (9)0.0450 (9)0.0533 (10)0.0026 (7)0.0317 (8)0.0020 (7)
C80.0613 (9)0.0485 (9)0.0548 (10)0.0041 (7)0.0279 (8)0.0052 (7)
C90.0593 (9)0.0516 (10)0.0588 (11)0.0004 (7)0.0291 (8)0.0049 (8)
C100.0564 (9)0.0482 (9)0.0478 (9)0.0045 (7)0.0294 (7)0.0060 (7)
C110.0592 (9)0.0552 (10)0.0550 (10)0.0082 (8)0.0327 (8)0.0117 (8)
C120.0716 (11)0.0737 (13)0.0710 (13)0.0159 (9)0.0393 (10)0.0026 (10)
C130.0864 (15)0.0968 (17)0.0963 (18)0.0324 (13)0.0546 (14)0.0062 (14)
C140.0644 (12)0.118 (2)0.1009 (19)0.0243 (13)0.0430 (13)0.0210 (16)
C150.0573 (11)0.0989 (16)0.0930 (17)0.0079 (11)0.0259 (11)0.0044 (14)
C160.0586 (10)0.0765 (13)0.0736 (14)0.0073 (9)0.0264 (10)0.0004 (10)
Geometric parameters (Å, º) top
S1—C11.7424 (18)C8—C91.521 (2)
S1—C71.7591 (18)C8—H8A0.9700
N1—C71.296 (2)C8—H8B0.9700
N1—C61.391 (2)C9—C101.508 (2)
N2—C71.353 (2)C9—H9A0.9700
N2—N31.3788 (18)C9—H9B0.9700
N2—C81.459 (2)C10—C111.468 (2)
N3—C101.282 (2)C11—C121.387 (3)
C1—C21.389 (2)C11—C161.387 (3)
C1—C61.400 (2)C12—C131.383 (3)
C2—C31.380 (3)C12—H120.9300
C2—H20.9300C13—C141.380 (3)
C3—C41.382 (3)C13—H130.9300
C3—H30.9300C14—C151.356 (4)
C4—C51.377 (2)C14—H140.9300
C4—H40.9300C15—C161.379 (3)
C5—C61.391 (2)C15—H150.9300
C5—H50.9300C16—H160.9300
C1—S1—C787.26 (8)N2—C8—H8B111.4
C7—N1—C6108.86 (14)C9—C8—H8B111.4
C7—N2—N3120.46 (14)H8A—C8—H8B109.3
C7—N2—C8124.87 (14)C10—C9—C8102.76 (13)
N3—N2—C8113.78 (13)C10—C9—H9A111.2
C10—N3—N2108.00 (14)C8—C9—H9A111.2
C2—C1—C6121.40 (15)C10—C9—H9B111.2
C2—C1—S1128.44 (14)C8—C9—H9B111.2
C6—C1—S1110.15 (12)H9A—C9—H9B109.1
C3—C2—C1118.38 (17)N3—C10—C11121.95 (15)
C3—C2—H2120.8N3—C10—C9113.54 (13)
C1—C2—H2120.8C11—C10—C9124.44 (15)
C2—C3—C4120.52 (17)C12—C11—C16118.72 (16)
C2—C3—H3119.7C12—C11—C10121.59 (17)
C4—C3—H3119.7C16—C11—C10119.65 (16)
C5—C4—C3121.41 (17)C13—C12—C11119.8 (2)
C5—C4—H4119.3C13—C12—H12120.1
C3—C4—H4119.3C11—C12—H12120.1
C4—C5—C6119.12 (16)C14—C13—C12120.7 (2)
C4—C5—H5120.4C14—C13—H13119.7
C6—C5—H5120.4C12—C13—H13119.7
N1—C6—C5125.20 (15)C15—C14—C13119.6 (2)
N1—C6—C1115.65 (14)C15—C14—H14120.2
C5—C6—C1119.14 (15)C13—C14—H14120.2
N1—C7—N2122.74 (15)C14—C15—C16120.7 (2)
N1—C7—S1118.07 (12)C14—C15—H15119.7
N2—C7—S1119.18 (12)C16—C15—H15119.7
N2—C8—C9101.73 (12)C15—C16—C11120.6 (2)
N2—C8—H8A111.4C15—C16—H16119.7
C9—C8—H8A111.4C11—C16—H16119.7
C7—N2—N3—C10171.82 (15)C8—N2—C7—S1173.69 (13)
C8—N2—N3—C102.14 (19)C1—S1—C7—N10.77 (13)
C7—S1—C1—C2178.47 (17)C1—S1—C7—N2178.58 (14)
C7—S1—C1—C60.79 (12)C7—N2—C8—C9173.15 (16)
C6—C1—C2—C31.2 (3)N3—N2—C8—C94.01 (18)
S1—C1—C2—C3179.59 (14)N2—C8—C9—C103.99 (16)
C1—C2—C3—C40.7 (3)N2—N3—C10—C11176.45 (14)
C2—C3—C4—C50.3 (3)N2—N3—C10—C90.87 (19)
C3—C4—C5—C60.7 (3)C8—C9—C10—N33.27 (19)
C7—N1—C6—C5179.52 (15)C8—C9—C10—C11173.97 (15)
C7—N1—C6—C10.2 (2)N3—C10—C11—C120.4 (3)
C4—C5—C6—N1179.49 (17)C9—C10—C11—C12176.66 (16)
C4—C5—C6—C10.2 (3)N3—C10—C11—C16178.12 (17)
C2—C1—C6—N1178.56 (15)C9—C10—C11—C161.1 (2)
S1—C1—C6—N10.76 (18)C16—C11—C12—C131.0 (3)
C2—C1—C6—C50.8 (3)C10—C11—C12—C13176.74 (18)
S1—C1—C6—C5179.88 (13)C11—C12—C13—C140.0 (3)
C6—N1—C7—N2178.85 (15)C12—C13—C14—C150.9 (4)
C6—N1—C7—S10.47 (18)C13—C14—C15—C160.6 (4)
N3—N2—C7—N1175.46 (14)C14—C15—C16—C110.4 (4)
C8—N2—C7—N17.0 (3)C12—C11—C16—C151.3 (3)
N3—N2—C7—S15.2 (2)C10—C11—C16—C15176.54 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3i0.932.613.340 (3)135
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13N3S
Mr279.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)288
a, b, c (Å)16.946 (8), 5.449 (3), 17.306 (11)
β (°) 119.96 (2)
V3)1384.4 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.54 × 0.30 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.887, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
11972, 3141, 2227
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.14
No. of reflections3141
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (MSC & Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3i0.932.613.340 (3)135
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of Jilin Province (grant No. 20101548).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMSC & Rigaku (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSano, T., Fuji, T., Nishio, Y., Hamada, Y., Shibata, K. & Kuroki, K. (1995). Jpn J. Appl. Phys. 34, 3124–3127.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXian, Y. F., Li, D. F. & Wang, Y. M. (2008). Spectrosc. Spect. Anal. 28, 1617–1620.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds