organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-3-chloro-5-nitro­benzamide

aCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 29 February 2012; accepted 29 February 2012; online 10 March 2012)

The amide group in the title compound, C7H6ClN3O3, is significantly twisted out of the plane of the benzene ring [C—C—C—O = 34.2 (5)°] whereas the nitro group is almost co-planar [O—N—C—C = 4.0 (5)°] with the ring. Intra­molecular N—H⋯O and N—H⋯Cl hydrogen bonds occur. In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonds, generating layers propagating in the ab plane.

Related literature

For crystal engineering studies on related mol­ecules, see: Wardell & Tiekink (2011[Wardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418-1424.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6ClN3O3

  • Mr = 215.60

  • Triclinic, [P \overline 1]

  • a = 4.891 (9) Å

  • b = 6.363 (13) Å

  • c = 14.61 (3) Å

  • α = 83.54 (11)°

  • β = 82.37 (11)°

  • γ = 73.64 (9)°

  • V = 431.1 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100 K

  • 0.18 × 0.08 × 0.01 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.826, Tmax = 1.000

  • 3828 measured reflections

  • 1936 independent reflections

  • 1104 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.180

  • S = 0.95

  • 1936 reflections

  • 139 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H3n⋯O1 0.88 (3) 2.07 (2) 2.755 (7) 134 (3)
N2—H4n⋯Cl1 0.88 (2) 2.51 (3) 2.970 (7) 113 (3)
N1—H1n⋯O1i 0.89 (3) 2.40 (4) 3.148 (8) 143 (3)
N1—H1n⋯O3ii 0.89 (3) 2.55 (3) 3.130 (8) 124 (3)
N1—H2n⋯O1iii 0.88 (2) 2.05 (3) 2.881 (7) 158 (4)
N2—H3n⋯O3iv 0.88 (3) 2.44 (4) 3.076 (8) 130 (3)
N2—H4n⋯O2iv 0.88 (2) 2.46 (4) 3.003 (8) 121 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+2, -z; (iii) x+1, y, z; (iv) x-1, y-1, z.

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure determination on the impurity found from the recrystallization of a commercially available title compound (I) was performed as a part of a programme of crystal engineering studies with small molecule acids with amine and nitro substituents (Wardell & Tiekink, 2011).

In (I), Fig. 1, the amide group is twisted out of the plane of the benzene ring to which it is connected as seen in the value of the C2—C1—C7—O1 torsion angle of 34.2 (5)°. By contrast, the nitro group is co-planar with the ring with the O3—N3—C5—C6 torsion angle being 4.0 (5)°. Both amine-H atoms form intramolecular hydrogen bonds, one to the carbonyl-O and the other the chloride substituent, Table 1. The amine-H atoms also form intermolecular interactions with each connected to a nitro-O of the same molecule for form a six-membered {···HNH···ONO}2 synthon. Pairs of amide groups self-associate via the familiar eight-membered centrosymmetric {···HNCO}2 synthon with this amide-H atom also connected to a translationally related amide-O atom. The second amide-H forms a hydrogen bond to a nitro-O3 atom. Thus, three of the N—H atoms form hydrogen bonds and two of the O donor atoms are bifurcated. This observation accounts for the deviations from linearity of the hydrogen bonds, Table 1. The hydrogen bonding scheme leads to the formation of layers in the ab plane. The layers stack along the c axis with no specific intermolecular interactions between them, Fig. 2.

Related literature top

For crystal engineering studies on related molecules, see: Wardell & Tiekink (2011).

Experimental top

The title compound was present as an impurity in a commercial batch of 2-amino-3-chloro-5-nitrobenzoic acid. It was isolated as extremely thin yellow plates from an ethanolic solution of the commercial 2-amino-3-chloro-5-nitrobenzoic acid and sodium hydroxide. IR: 3429 (s), 3325(s) and 3123(br) [NH], 1630–1586 (s, br, with maxima at 1629, 1607 and 1586) [CO], 1501(s) and 1317 (s) [NO2].

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H-atoms were located in a difference Fourier map and refined with an N—H restraint of 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Structure description top

The crystal structure determination on the impurity found from the recrystallization of a commercially available title compound (I) was performed as a part of a programme of crystal engineering studies with small molecule acids with amine and nitro substituents (Wardell & Tiekink, 2011).

In (I), Fig. 1, the amide group is twisted out of the plane of the benzene ring to which it is connected as seen in the value of the C2—C1—C7—O1 torsion angle of 34.2 (5)°. By contrast, the nitro group is co-planar with the ring with the O3—N3—C5—C6 torsion angle being 4.0 (5)°. Both amine-H atoms form intramolecular hydrogen bonds, one to the carbonyl-O and the other the chloride substituent, Table 1. The amine-H atoms also form intermolecular interactions with each connected to a nitro-O of the same molecule for form a six-membered {···HNH···ONO}2 synthon. Pairs of amide groups self-associate via the familiar eight-membered centrosymmetric {···HNCO}2 synthon with this amide-H atom also connected to a translationally related amide-O atom. The second amide-H forms a hydrogen bond to a nitro-O3 atom. Thus, three of the N—H atoms form hydrogen bonds and two of the O donor atoms are bifurcated. This observation accounts for the deviations from linearity of the hydrogen bonds, Table 1. The hydrogen bonding scheme leads to the formation of layers in the ab plane. The layers stack along the c axis with no specific intermolecular interactions between them, Fig. 2.

For crystal engineering studies on related molecules, see: Wardell & Tiekink (2011).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the packing of supramolecular layers in (I). The N—H···O hydrogen bonds are shown as orange dashed lines.
2-Amino-3-chloro-5-nitrobenzamide top
Crystal data top
C7H6ClN3O3Z = 2
Mr = 215.60F(000) = 220
Triclinic, P1Dx = 1.661 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.891 (9) ÅCell parameters from 1104 reflections
b = 6.363 (13) Åθ = 2.8–30.7°
c = 14.61 (3) ŵ = 0.43 mm1
α = 83.54 (11)°T = 100 K
β = 82.37 (11)°Plate, yellow
γ = 73.64 (9)°0.18 × 0.08 × 0.01 mm
V = 431.1 (15) Å3
Data collection top
Rigaku Saturn724+
diffractometer
1936 independent reflections
Radiation source: Rotating Anode1104 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.048
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.8°
profile data from ω–scansh = 46
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 78
Tmin = 0.826, Tmax = 1.000l = 1818
3828 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0912P)2]
where P = (Fo2 + 2Fc2)/3
1936 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.44 e Å3
4 restraintsΔρmin = 0.80 e Å3
Crystal data top
C7H6ClN3O3γ = 73.64 (9)°
Mr = 215.60V = 431.1 (15) Å3
Triclinic, P1Z = 2
a = 4.891 (9) ÅMo Kα radiation
b = 6.363 (13) ŵ = 0.43 mm1
c = 14.61 (3) ÅT = 100 K
α = 83.54 (11)°0.18 × 0.08 × 0.01 mm
β = 82.37 (11)°
Data collection top
Rigaku Saturn724+
diffractometer
1936 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
1104 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 1.000Rint = 0.048
3828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0634 restraints
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.44 e Å3
1936 reflectionsΔρmin = 0.80 e Å3
139 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2620 (2)0.75410 (16)0.44557 (7)0.0290 (3)
O10.2845 (5)0.6916 (4)0.07122 (19)0.0270 (7)
O20.8552 (6)1.3190 (4)0.32947 (19)0.0265 (7)
O30.9263 (5)1.3326 (4)0.17747 (18)0.0258 (7)
N10.7241 (7)0.7345 (5)0.0176 (2)0.0224 (7)
H1N0.731 (8)0.659 (6)0.0305 (18)0.027*
H2N0.892 (4)0.753 (6)0.024 (3)0.027*
N20.2414 (7)0.6089 (5)0.2610 (2)0.0230 (7)
H3N0.201 (8)0.579 (6)0.2079 (15)0.028*
H4N0.162 (8)0.570 (6)0.3155 (14)0.028*
N30.8307 (6)1.2566 (5)0.2533 (2)0.0203 (7)
C10.5172 (7)0.8433 (6)0.1718 (3)0.0198 (8)
C20.3850 (8)0.7644 (6)0.2572 (3)0.0218 (8)
C30.4161 (8)0.8510 (6)0.3398 (3)0.0230 (9)
C40.5587 (8)1.0104 (6)0.3399 (3)0.0224 (8)
H40.57441.06620.39610.027*
C50.6798 (7)1.0873 (6)0.2546 (3)0.0197 (8)
C60.6623 (8)1.0049 (6)0.1714 (3)0.0221 (8)
H60.74851.05810.11480.026*
C70.5010 (8)0.7488 (6)0.0829 (3)0.0219 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0357 (6)0.0244 (6)0.0280 (5)0.0122 (4)0.0008 (4)0.0015 (4)
O10.0219 (14)0.0255 (15)0.0363 (16)0.0106 (12)0.0018 (12)0.0093 (12)
O20.0323 (15)0.0245 (15)0.0253 (15)0.0098 (12)0.0041 (12)0.0064 (12)
O30.0286 (15)0.0220 (15)0.0270 (15)0.0104 (12)0.0033 (12)0.0004 (12)
N10.0213 (16)0.0209 (18)0.0262 (17)0.0059 (14)0.0019 (14)0.0071 (14)
N20.0253 (17)0.0171 (17)0.0272 (18)0.0077 (14)0.0025 (15)0.0006 (14)
N30.0173 (15)0.0145 (16)0.0282 (17)0.0025 (12)0.0022 (13)0.0027 (13)
C10.0157 (17)0.0131 (18)0.028 (2)0.0002 (14)0.0007 (15)0.0016 (15)
C20.0187 (18)0.0106 (18)0.032 (2)0.0006 (14)0.0001 (16)0.0020 (15)
C30.0200 (18)0.0158 (19)0.031 (2)0.0000 (15)0.0067 (16)0.0017 (16)
C40.0234 (19)0.0141 (18)0.028 (2)0.0018 (15)0.0011 (16)0.0040 (16)
C50.0162 (17)0.0134 (18)0.028 (2)0.0022 (14)0.0029 (15)0.0008 (15)
C60.0216 (18)0.0149 (19)0.026 (2)0.0007 (15)0.0015 (16)0.0003 (15)
C70.0241 (19)0.0147 (18)0.025 (2)0.0037 (15)0.0018 (16)0.0041 (15)
Geometric parameters (Å, º) top
Cl1—C31.753 (5)N3—C51.464 (5)
O1—C71.250 (5)C1—C61.403 (5)
O2—N31.254 (4)C1—C21.433 (5)
O3—N31.244 (4)C1—C71.511 (6)
N1—C71.340 (5)C2—C31.425 (6)
N1—H1N0.887 (10)C3—C41.383 (6)
N1—H2N0.881 (10)C4—C51.406 (6)
N2—C21.358 (5)C4—H40.9500
N2—H3N0.881 (10)C5—C61.398 (6)
N2—H4N0.881 (10)C6—H60.9500
C7—N1—H1N118 (3)C4—C3—C2122.8 (4)
C7—N1—H2N127 (3)C4—C3—Cl1118.7 (3)
H1N—N1—H2N112 (4)C2—C3—Cl1118.4 (3)
C2—N2—H3N117 (3)C3—C4—C5118.1 (4)
C2—N2—H4N118 (3)C3—C4—H4121.0
H3N—N2—H4N124 (4)C5—C4—H4121.0
O3—N3—O2123.2 (3)C6—C5—C4121.7 (4)
O3—N3—C5119.0 (3)C6—C5—N3119.4 (3)
O2—N3—C5117.8 (3)C4—C5—N3118.9 (3)
C6—C1—C2120.0 (4)C5—C6—C1119.9 (4)
C6—C1—C7120.7 (3)C5—C6—H6120.0
C2—C1—C7119.3 (3)C1—C6—H6120.0
N2—C2—C3120.4 (4)O1—C7—N1122.2 (4)
N2—C2—C1122.2 (4)O1—C7—C1120.6 (3)
C3—C2—C1117.4 (4)N1—C7—C1117.2 (3)
C6—C1—C2—N2179.8 (3)O3—N3—C5—C64.0 (5)
C7—C1—C2—N21.0 (5)O2—N3—C5—C6176.4 (3)
C6—C1—C2—C32.0 (5)O3—N3—C5—C4176.6 (3)
C7—C1—C2—C3177.3 (3)O2—N3—C5—C42.9 (5)
N2—C2—C3—C4179.6 (3)C4—C5—C6—C11.0 (5)
C1—C2—C3—C42.1 (5)N3—C5—C6—C1179.7 (3)
N2—C2—C3—Cl10.6 (5)C2—C1—C6—C50.5 (5)
C1—C2—C3—Cl1178.9 (3)C7—C1—C6—C5178.7 (3)
C2—C3—C4—C50.7 (6)C6—C1—C7—O1146.6 (4)
Cl1—C3—C4—C5179.7 (3)C2—C1—C7—O134.2 (5)
C3—C4—C5—C60.9 (5)C6—C1—C7—N131.9 (5)
C3—C4—C5—N3179.8 (3)C2—C1—C7—N1147.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3n···O10.88 (3)2.07 (2)2.755 (7)134 (3)
N2—H4n···Cl10.88 (2)2.51 (3)2.970 (7)113 (3)
N1—H1n···O1i0.89 (3)2.40 (4)3.148 (8)143 (3)
N1—H1n···O3ii0.89 (3)2.55 (3)3.130 (8)124 (3)
N1—H2n···O1iii0.88 (2)2.05 (3)2.881 (7)158 (4)
N2—H3n···O3iv0.88 (3)2.44 (4)3.076 (8)130 (3)
N2—H4n···O2iv0.88 (2)2.46 (4)3.003 (8)121 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z; (iii) x+1, y, z; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC7H6ClN3O3
Mr215.60
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.891 (9), 6.363 (13), 14.61 (3)
α, β, γ (°)83.54 (11), 82.37 (11), 73.64 (9)
V3)431.1 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.18 × 0.08 × 0.01
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Tmin, Tmax0.826, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3828, 1936, 1104
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.180, 0.95
No. of reflections1936
No. of parameters139
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.80

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3n···O10.88 (3)2.07 (2)2.755 (7)134 (3)
N2—H4n···Cl10.88 (2)2.51 (3)2.970 (7)113 (3)
N1—H1n···O1i0.89 (3)2.40 (4)3.148 (8)143 (3)
N1—H1n···O3ii0.89 (3)2.55 (3)3.130 (8)124 (3)
N1—H2n···O1iii0.88 (2)2.05 (3)2.881 (7)158 (4)
N2—H3n···O3iv0.88 (3)2.44 (4)3.076 (8)130 (3)
N2—H4n···O2iv0.88 (2)2.46 (4)3.003 (8)121 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z; (iii) x+1, y, z; (iv) x1, y1, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) and the University of Malaya (UMRG RG125) is gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418–1424.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds