organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-[(2H-1,3-Benzodioxol-5-yl)methyl­­idene]-2,3-di­hydro-1H-inden-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 March 2012; accepted 4 March 2012; online 10 March 2012)

In the title compound, C17H12O3, each of the five-membered rings in the inden-1-one and 1,3-benzodioxole residues is almost planar (r.m.s. deviations = 0.041 and 0.033 Å, respectively). A small twist about the single bond linking the two residues is evident [the C—C—C—C torsion angle = 8.7 (4)°]. Supra­molecular zigzag layers propagating in the ac plane are formed in the crystal via C—H⋯O inter­actions. The layers are linked via ππ inter­actions between the five- and six-membered rings of 1,3-benzodioxole residues [centroid–centroid distance = 3.4977 (14) Å].

Related literature

For the biological activity of related species, see: Vera-DiVaio et al. (2009[Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295-302.]). For related structures, see: Asiri et al. (2012a[Asiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o755.],b[Asiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o814.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12O3

  • Mr = 264.27

  • Orthorhombic, P b c a

  • a = 12.6102 (12) Å

  • b = 7.3497 (10) Å

  • c = 26.569 (4) Å

  • V = 2462.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.967, Tmax = 0.995

  • 6424 measured reflections

  • 2820 independent reflections

  • 1697 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.136

  • S = 0.98

  • 2820 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.47 3.290 (3) 144
C17—H17A⋯O1ii 0.99 2.46 3.302 (3) 143
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal and molecular structure of the title compound, 2-benzo[1,3]dioxol-5-ylmethylene-indan-1-one (I), has been determined in connection with recent structural studies on related derivatives (Asiri et al., 2012a; Asiri et al., 2012b). The motivation for the original synthesis was its relationship to biologically active compounds (Vera-DiVaio et al., 2009).

In the molecule of (I), Fig. 1, both five-membered rings are essentially planar. In the inden-1-one residue the r.m.s. deviation for the five atoms = 0.041 Å [maximum deviations = 0.033 (2) for the C8 atom and -0.033 (2) for the C7 atom] and in the 1,3-benzodioxole residue, the r.m.s. deviation = 0.033 Å [maximum deviations = 0.028 (3) [C17] and -0.028 (1) [O3]]. A twist in the molecule about the C10—C11 bond is evident with the C9—C10—C11—C16 torsion angle being 8.7 (4)°. The configuration about the C9C10 bond [1.340 (3) Å] is E.

In the crystal packing, C—H···O interactions, Table 1, involving the bifurcated carbonyl-O atom link molecules into zigzag layers in the ac plane, Fig. 2. Layers are linked along the b axis via ππ interactions between the five- and six-membered rings of 1,3-benzodioxole residues [ring centroid···centroid distance = 3.4977 (14) Å, angle of inclination = 10.97 (12)° for symmetry operation 3/2 - x, -1/2 + y, z], Fig. 3.

Related literature top

For the biological activity of related species, see: Vera-DiVaio et al. (2009). For related structures, see: Asiri et al. (2012a,b).

Experimental top

A solution of the piperonaldehyde (1.5 g, 0.01 M) in ethanol (20 ml) was added to a stirred solution of 1-indanone (1.3 g, 0.01 M) in (20%) ethanolic KOH (20 ml), and stirring was maintained at room temperature for 6 h. The reaction mixture was then poured into water (200 ml) and set aside overnight. The precipitated solid product was collected by filtration, washed with water, dried and recrystallized from ethanol as light-yellow prisms. Yield: 93%; M. pt: 450–451 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

The crystal and molecular structure of the title compound, 2-benzo[1,3]dioxol-5-ylmethylene-indan-1-one (I), has been determined in connection with recent structural studies on related derivatives (Asiri et al., 2012a; Asiri et al., 2012b). The motivation for the original synthesis was its relationship to biologically active compounds (Vera-DiVaio et al., 2009).

In the molecule of (I), Fig. 1, both five-membered rings are essentially planar. In the inden-1-one residue the r.m.s. deviation for the five atoms = 0.041 Å [maximum deviations = 0.033 (2) for the C8 atom and -0.033 (2) for the C7 atom] and in the 1,3-benzodioxole residue, the r.m.s. deviation = 0.033 Å [maximum deviations = 0.028 (3) [C17] and -0.028 (1) [O3]]. A twist in the molecule about the C10—C11 bond is evident with the C9—C10—C11—C16 torsion angle being 8.7 (4)°. The configuration about the C9C10 bond [1.340 (3) Å] is E.

In the crystal packing, C—H···O interactions, Table 1, involving the bifurcated carbonyl-O atom link molecules into zigzag layers in the ac plane, Fig. 2. Layers are linked along the b axis via ππ interactions between the five- and six-membered rings of 1,3-benzodioxole residues [ring centroid···centroid distance = 3.4977 (14) Å, angle of inclination = 10.97 (12)° for symmetry operation 3/2 - x, -1/2 + y, z], Fig. 3.

For the biological activity of related species, see: Vera-DiVaio et al. (2009). For related structures, see: Asiri et al. (2012a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in (I) in the ac plane. The C—H···O interactions are shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I) showing the stacking of zigzag layers. The C—H···O and ππ interactions are shown as orange and purple dashed lines, respectively.
(2E)-2-[(2H-1,3-Benzodioxol-5-yl)methylidene]-2,3-dihydro- 1H-inden-1-one top
Crystal data top
C17H12O3F(000) = 1104
Mr = 264.27Dx = 1.426 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 930 reflections
a = 12.6102 (12) Åθ = 2.8–27.5°
b = 7.3497 (10) ŵ = 0.10 mm1
c = 26.569 (4) ÅT = 100 K
V = 2462.5 (5) Å3Prism, light-yellow
Z = 80.35 × 0.10 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2820 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1697 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.057
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.2°
ω scanh = 168
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 96
Tmin = 0.967, Tmax = 0.995l = 3422
6424 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
2820 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H12O3V = 2462.5 (5) Å3
Mr = 264.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.6102 (12) ŵ = 0.10 mm1
b = 7.3497 (10) ÅT = 100 K
c = 26.569 (4) Å0.35 × 0.10 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2820 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1697 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.995Rint = 0.057
6424 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.98Δρmax = 0.26 e Å3
2820 reflectionsΔρmin = 0.26 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92949 (12)0.5693 (2)0.65488 (6)0.0275 (4)
O20.61242 (12)0.2489 (2)0.41852 (5)0.0283 (4)
O30.75515 (12)0.1445 (2)0.37080 (6)0.0283 (4)
C10.83441 (19)0.5422 (3)0.64704 (8)0.0212 (5)
C20.74657 (18)0.5690 (3)0.68310 (8)0.0197 (5)
C30.75035 (19)0.6274 (3)0.73287 (8)0.0231 (5)
H30.81540.66470.74760.028*
C40.65715 (19)0.6298 (3)0.76036 (8)0.0267 (6)
H40.65780.67090.79430.032*
C50.5625 (2)0.5723 (3)0.73861 (9)0.0291 (6)
H50.49960.57110.75830.035*
C60.55825 (19)0.5165 (3)0.68870 (8)0.0263 (6)
H60.49310.47810.67420.032*
C70.65094 (18)0.5179 (3)0.66035 (8)0.0210 (5)
C80.66690 (17)0.4682 (3)0.60554 (8)0.0200 (5)
H8A0.63910.34490.59830.024*
H8B0.63140.55690.58310.024*
C90.78635 (18)0.4750 (3)0.59906 (8)0.0199 (5)
C100.84909 (18)0.4281 (3)0.56046 (8)0.0207 (5)
H100.92270.44450.56650.025*
C110.82372 (18)0.3562 (3)0.51066 (8)0.0194 (5)
C120.90839 (19)0.2975 (3)0.48054 (8)0.0254 (5)
H120.97850.30690.49340.030*
C130.89343 (19)0.2255 (3)0.43228 (8)0.0266 (5)
H130.95140.18700.41210.032*
C140.79071 (19)0.2135 (3)0.41575 (8)0.0221 (5)
C150.70630 (17)0.2729 (3)0.44464 (8)0.0197 (5)
C160.71892 (18)0.3447 (3)0.49167 (8)0.0210 (5)
H160.65990.38510.51090.025*
C170.64264 (19)0.1752 (4)0.37035 (8)0.0296 (6)
H17A0.60480.05930.36420.036*
H17B0.62390.26160.34320.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0173 (9)0.0395 (10)0.0256 (9)0.0010 (7)0.0025 (7)0.0025 (8)
O20.0210 (9)0.0432 (11)0.0206 (8)0.0023 (8)0.0017 (7)0.0073 (7)
O30.0210 (9)0.0422 (10)0.0217 (8)0.0029 (8)0.0018 (7)0.0092 (8)
C10.0204 (13)0.0226 (12)0.0206 (11)0.0005 (10)0.0012 (10)0.0010 (9)
C20.0202 (12)0.0193 (11)0.0196 (11)0.0004 (10)0.0017 (10)0.0007 (9)
C30.0221 (13)0.0265 (12)0.0207 (11)0.0010 (10)0.0025 (10)0.0012 (10)
C40.0299 (14)0.0312 (13)0.0189 (11)0.0050 (11)0.0016 (11)0.0016 (10)
C50.0233 (14)0.0379 (15)0.0261 (12)0.0057 (11)0.0056 (11)0.0000 (11)
C60.0205 (13)0.0352 (14)0.0231 (12)0.0021 (11)0.0006 (10)0.0018 (10)
C70.0195 (12)0.0203 (11)0.0230 (11)0.0021 (10)0.0002 (10)0.0009 (9)
C80.0183 (12)0.0218 (11)0.0200 (11)0.0009 (10)0.0008 (10)0.0004 (9)
C90.0186 (12)0.0214 (11)0.0199 (11)0.0002 (10)0.0001 (10)0.0015 (9)
C100.0156 (12)0.0231 (12)0.0234 (11)0.0021 (9)0.0010 (10)0.0030 (10)
C110.0195 (12)0.0195 (11)0.0191 (10)0.0012 (10)0.0013 (10)0.0026 (9)
C120.0177 (13)0.0333 (13)0.0251 (11)0.0028 (10)0.0009 (10)0.0006 (10)
C130.0183 (13)0.0353 (13)0.0260 (12)0.0006 (11)0.0052 (11)0.0019 (10)
C140.0231 (13)0.0257 (12)0.0175 (10)0.0013 (10)0.0038 (10)0.0005 (10)
C150.0169 (12)0.0209 (11)0.0213 (11)0.0027 (9)0.0028 (10)0.0026 (9)
C160.0183 (12)0.0252 (12)0.0196 (11)0.0017 (10)0.0029 (10)0.0024 (10)
C170.0248 (14)0.0421 (16)0.0218 (11)0.0053 (11)0.0002 (11)0.0046 (11)
Geometric parameters (Å, º) top
O1—C11.233 (3)C8—C91.517 (3)
O2—C151.384 (3)C8—H8A0.9900
O2—C171.441 (3)C8—H8B0.9900
O3—C141.373 (3)C9—C101.340 (3)
O3—C171.437 (3)C10—C111.460 (3)
C1—C21.478 (3)C10—H100.9500
C1—C91.496 (3)C11—C121.402 (3)
C2—C31.391 (3)C11—C161.417 (3)
C2—C71.400 (3)C12—C131.400 (3)
C3—C41.384 (3)C12—H120.9500
C3—H30.9500C13—C141.371 (3)
C4—C51.392 (3)C13—H130.9500
C4—H40.9500C14—C151.383 (3)
C5—C61.389 (3)C15—C161.366 (3)
C5—H50.9500C16—H160.9500
C6—C71.391 (3)C17—H17A0.9900
C6—H60.9500C17—H17B0.9900
C7—C81.515 (3)
C15—O2—C17105.49 (17)C10—C9—C8131.7 (2)
C14—O3—C17105.78 (16)C1—C9—C8108.44 (18)
O1—C1—C2126.7 (2)C9—C10—C11131.1 (2)
O1—C1—C9126.3 (2)C9—C10—H10114.5
C2—C1—C9107.04 (19)C11—C10—H10114.5
C3—C2—C7121.5 (2)C12—C11—C16119.2 (2)
C3—C2—C1129.2 (2)C12—C11—C10117.5 (2)
C7—C2—C1109.26 (19)C16—C11—C10123.3 (2)
C4—C3—C2118.5 (2)C13—C12—C11122.4 (2)
C4—C3—H3120.8C13—C12—H12118.8
C2—C3—H3120.8C11—C12—H12118.8
C3—C4—C5120.3 (2)C14—C13—C12116.4 (2)
C3—C4—H4119.8C14—C13—H13121.8
C5—C4—H4119.8C12—C13—H13121.8
C6—C5—C4121.3 (2)C13—C14—O3127.7 (2)
C6—C5—H5119.4C13—C14—C15121.9 (2)
C4—C5—H5119.4O3—C14—C15110.4 (2)
C7—C6—C5118.9 (2)C16—C15—C14122.7 (2)
C7—C6—H6120.6C16—C15—O2127.4 (2)
C5—C6—H6120.6C14—C15—O2109.86 (19)
C6—C7—C2119.5 (2)C15—C16—C11117.2 (2)
C6—C7—C8129.1 (2)C15—C16—H16121.4
C2—C7—C8111.42 (19)C11—C16—H16121.4
C9—C8—C7103.49 (17)O3—C17—O2108.22 (17)
C9—C8—H8A111.1O3—C17—H17A110.1
C7—C8—H8A111.1O2—C17—H17A110.1
C9—C8—H8B111.1O3—C17—H17B110.1
C7—C8—H8B111.1O2—C17—H17B110.1
H8A—C8—H8B109.0H17A—C17—H17B108.4
C10—C9—C1119.9 (2)
O1—C1—C2—C30.8 (4)C1—C9—C10—C11178.6 (2)
C9—C1—C2—C3179.0 (2)C8—C9—C10—C111.0 (4)
O1—C1—C2—C7178.2 (2)C9—C10—C11—C12171.8 (2)
C9—C1—C2—C71.6 (2)C9—C10—C11—C168.7 (4)
C7—C2—C3—C41.6 (3)C16—C11—C12—C130.7 (3)
C1—C2—C3—C4175.5 (2)C10—C11—C12—C13179.7 (2)
C2—C3—C4—C51.0 (3)C11—C12—C13—C140.5 (3)
C3—C4—C5—C62.0 (4)C12—C13—C14—O3178.3 (2)
C4—C5—C6—C70.3 (3)C12—C13—C14—C151.4 (3)
C5—C6—C7—C22.2 (3)C17—O3—C14—C13175.9 (2)
C5—C6—C7—C8178.5 (2)C17—O3—C14—C154.3 (2)
C3—C2—C7—C63.2 (3)C13—C14—C15—C161.1 (4)
C1—C2—C7—C6174.43 (19)O3—C14—C15—C16178.7 (2)
C3—C2—C7—C8177.4 (2)C13—C14—C15—O2178.5 (2)
C1—C2—C7—C85.0 (2)O3—C14—C15—O21.7 (3)
C6—C7—C8—C9173.2 (2)C17—O2—C15—C16177.9 (2)
C2—C7—C8—C96.1 (2)C17—O2—C15—C141.7 (2)
O1—C1—C9—C103.9 (3)C14—C15—C16—C110.2 (3)
C2—C1—C9—C10175.9 (2)O2—C15—C16—C11179.78 (19)
O1—C1—C9—C8177.9 (2)C12—C11—C16—C151.1 (3)
C2—C1—C9—C82.3 (2)C10—C11—C16—C15179.4 (2)
C7—C8—C9—C10172.9 (2)C14—O3—C17—O25.3 (2)
C7—C8—C9—C14.9 (2)C15—O2—C17—O34.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.473.290 (3)144
C17—H17A···O1ii0.992.463.302 (3)143
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H12O3
Mr264.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)12.6102 (12), 7.3497 (10), 26.569 (4)
V3)2462.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.967, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6424, 2820, 1697
Rint0.057
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.136, 0.98
No. of reflections2820
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.473.290 (3)144
C17—H17A···O1ii0.992.463.302 (3)143
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x1/2, y+1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o755.  CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o814.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295–302.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds