metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(2-Amino­cyclo­hex­yl)imino­meth­yl]phenolato}dioxidovanadium(V)

aCollege of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
*Correspondence e-mail: xinzhi_sun@126.com

(Received 9 March 2012; accepted 17 March 2012; online 24 March 2012)

In the title dioxidovanadium complex, [V(C13H17N2O)O2], the VV atom is in a square-based pyramidal coordination: the basal plane is defined by the phenolate O, imine N and amine N atoms of the tridentate Schiff base ligand, and by one oxide O atom. The apical position is occupied by the other oxide O atom. In the crystal, mol­ecules are connected by N—H⋯O and N—H⋯(O,O) hydrogen bonds, forming a tetra­mer.

Related literature

For related structures and their proporties, see: Agarwal & Prasad (2006[Agarwal, R. K. & Prasad, S. (2006). Rev. Inorg. Chem. 26, 471-492.]); Chohan & Sumrra (2010[Chohan, Z. H. & Sumrra, S. H. (2010). J. Enzyme Inhib. Med. Chem. 25, 599-607.]); Huo et al. (2004[Huo, L.-H., Gao, S., Liu, J.-W., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m606-m608.]); Jing et al. (2005[Jing, B., Li, L., Wang, D., Xu, T. & Guo, X. (2005). Acta Cryst. E61, m2244-m2246.]); Lodyga-Chruscinska et al. (2008[Lodyga-Chruscinska, E., Sanna, D., Garribba, E. & Micera, G. (2008). Dalton Trans. pp. 4903-4916.]); Xie et al. (2004[Xie, M.-J., Ping, Y.-S., Zheng, L.-D., Hui, J.-Z. & Peng, C. (2004). Acta Cryst. E60, m1382-m1383.]); Yuan et al. (2009[Yuan, C. X., Lu, L. P., Gao, X. L., Wu, Y. B., Guo, M. L., Li, Y., Fu, X. Q. & Zhu, M. L. (2009). J. Biol. Inorg. Chem. 14, 841-851.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C13H17N2O)O2]

  • Mr = 300.23

  • Tetragonal, I 41 /a

  • a = 19.120 (9) Å

  • c = 15.421 (3) Å

  • V = 5638 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.854, Tmax = 0.871

  • 19404 measured reflections

  • 2537 independent reflections

  • 1487 reflections with I > 2σ(I)

  • Rint = 0.172

Refinement
  • R[F2 > 2σ(F2)] = 0.099

  • wR(F2) = 0.203

  • S = 1.08

  • 2537 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

V1—O2 1.607 (5)
V1—O3 1.621 (5)
V1—O1 1.900 (5)
V1—N2 2.095 (5)
V1—N1 2.137 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2i 0.90 2.26 3.099 (7) 155
N2—H2B⋯O3i 0.90 2.55 3.229 (7) 133
N2—H2A⋯O3ii 0.90 2.07 2.948 (7) 166
Symmetry codes: (i) [-y+{\script{1\over 4}}, x+{\script{1\over 4}}, -z+{\script{5\over 4}}]; (ii) [y-{\script{1\over 4}}, -x+{\script{1\over 4}}, -z+{\script{5\over 4}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Oxovanadium complexes with Schiff bases have been received much attention in bioinorganic chemistry (Chohan & Sumrra, 2010; Agarwal & Prasad, 2006; Lodyga-Chruscinska et al., 2008; Yuan et al., 2009). In this paper, the title new dioxovanadium(V) complex, (I), is reported.

In the title dioxovanadium complex, Fig. 1, the V atom is in a square pyramidal coordination. The basal plane of the square pyramid is defined by one phenolate O, one imine N, and one amine N atoms of a Schiff base ligand, and by one oxo O atom. The apical position of the square pyramid is occupied by the other oxo O atom. The bond lengths (Table 1) are comparable to those observed in similar oxovanadium complexes (Xie et al., 2004; Jing et al., 2005; Huo et al., 2004). In the crystal, adjacent molecules are linked through N–H···O and N—H···(O,O) hydrogen bonds (Table 2) to form a tetramer (Fig. 2).

Related literature top

For related structures and their proporties, see: Agarwal & Prasad (2006); Chohan & Sumrra (2010); Huo et al. (2004); Jing et al. (2005); Lodyga-Chruscinska et al. (2008); Xie et al. (2004); Yuan et al. (2009).

Experimental top

To a MeOH solution (30 ml) of salicylaldehyde (0.122 g, 1.0 mmol) was added a MeOH solution (20 ml) of cyclohexane-1,2-diamine (0.114 g, 1.0 mmol) with stirring. To the above mixture was added a MeOH solution (10 ml) of VO(acac)2 (0.265 g, 1.0 mmol) with stirring. The mixture was refluxed for 1 h, affording a clear yellow solution. This was allowed to stand at room temperature for a week and block-shaped single crystals were obtained by slow evaporation.

Refinement top

H atoms attached to C and N atoms were placed in geometrically idealized positions with Csp2—H = 0.93 Å, Csp3—H = 0.97–0.98 Å, N—H = 0.90 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C and N). Apparent disorder was evident in the cyclohexyl ring.

Structure description top

Oxovanadium complexes with Schiff bases have been received much attention in bioinorganic chemistry (Chohan & Sumrra, 2010; Agarwal & Prasad, 2006; Lodyga-Chruscinska et al., 2008; Yuan et al., 2009). In this paper, the title new dioxovanadium(V) complex, (I), is reported.

In the title dioxovanadium complex, Fig. 1, the V atom is in a square pyramidal coordination. The basal plane of the square pyramid is defined by one phenolate O, one imine N, and one amine N atoms of a Schiff base ligand, and by one oxo O atom. The apical position of the square pyramid is occupied by the other oxo O atom. The bond lengths (Table 1) are comparable to those observed in similar oxovanadium complexes (Xie et al., 2004; Jing et al., 2005; Huo et al., 2004). In the crystal, adjacent molecules are linked through N–H···O and N—H···(O,O) hydrogen bonds (Table 2) to form a tetramer (Fig. 2).

For related structures and their proporties, see: Agarwal & Prasad (2006); Chohan & Sumrra (2010); Huo et al. (2004); Jing et al. (2005); Lodyga-Chruscinska et al. (2008); Xie et al. (2004); Yuan et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for Non-H atoms.
[Figure 2] Fig. 2. The tetrameric unit in the crystal, with hydrogen bonds shown as double-dashed lines.
{2-[(2-Aminocyclohexyl)iminomethyl]phenolato}dioxidovanadium(V) top
Crystal data top
[V(C13H17N2O)O2]Dx = 1.415 Mg m3
Mr = 300.23Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 1125 reflections
a = 19.120 (9) Åθ = 2.7–24.5°
c = 15.421 (3) ŵ = 0.71 mm1
V = 5638 (4) Å3T = 298 K
Z = 16Block, yellow
F(000) = 24960.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2537 independent reflections
Radiation source: fine-focus sealed tube1487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.172
ω scanθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 2323
Tmin = 0.854, Tmax = 0.871k = 2323
19404 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.099Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0708P)2 + 16.0234P]
where P = (Fo2 + 2Fc2)/3
2537 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[V(C13H17N2O)O2]Z = 16
Mr = 300.23Mo Kα radiation
Tetragonal, I41/aµ = 0.71 mm1
a = 19.120 (9) ÅT = 298 K
c = 15.421 (3) Å0.23 × 0.20 × 0.20 mm
V = 5638 (4) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2537 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1487 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.871Rint = 0.172
19404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0990 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0708P)2 + 16.0234P]
where P = (Fo2 + 2Fc2)/3
2537 reflectionsΔρmax = 0.44 e Å3
172 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.04762 (6)0.08630 (6)0.66104 (7)0.0417 (4)
N10.1074 (3)0.0188 (3)0.5792 (4)0.0574 (17)
N20.0524 (3)0.1379 (3)0.5413 (3)0.0424 (14)
H2A0.01220.16160.53370.051*
H2B0.08720.16950.54360.051*
O10.0854 (3)0.0299 (3)0.7510 (3)0.0589 (14)
O20.0330 (2)0.0631 (2)0.6543 (3)0.0581 (14)
O30.0526 (3)0.1602 (2)0.7122 (3)0.0596 (14)
C10.1142 (4)0.0770 (4)0.6803 (5)0.062 (2)
C20.0962 (4)0.0379 (4)0.7536 (5)0.057 (2)
C30.0907 (5)0.0727 (5)0.8315 (6)0.078 (3)
H30.07880.04770.88110.093*
C40.1022 (6)0.1422 (6)0.8374 (7)0.109 (4)
H40.09840.16430.89090.130*
C50.1195 (6)0.1808 (5)0.7646 (8)0.111 (4)
H50.12710.22870.76920.133*
C60.1251 (5)0.1488 (5)0.6875 (7)0.094 (3)
H60.13650.17480.63840.112*
C70.1238 (4)0.0435 (5)0.5984 (5)0.073 (3)
H70.14410.07010.55460.087*
C80.1201 (5)0.0398 (6)0.4903 (6)0.094 (3)
H80.11070.00150.45460.112*
C90.0635 (4)0.0936 (4)0.4666 (5)0.063 (2)
H90.02020.06700.45860.075*
C100.0774 (7)0.1306 (6)0.3813 (6)0.110 (4)
H10A0.06300.09980.33460.132*
H10B0.04780.17170.37880.132*
C110.1431 (8)0.1505 (8)0.3664 (10)0.167 (7)
H11A0.15340.19030.40320.200*
H11B0.14650.16610.30670.200*
C120.1999 (6)0.0933 (7)0.3823 (7)0.115 (4)
H12A0.19720.05790.33730.137*
H12B0.24610.11410.38040.137*
C130.1873 (5)0.0597 (7)0.4717 (8)0.134 (5)
H13A0.21700.01870.47640.161*
H13B0.20230.09260.51580.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0364 (7)0.0422 (8)0.0467 (7)0.0001 (6)0.0060 (6)0.0070 (6)
N10.056 (4)0.066 (4)0.050 (4)0.032 (3)0.012 (3)0.003 (3)
N20.033 (3)0.039 (3)0.055 (4)0.001 (3)0.000 (3)0.006 (3)
O10.072 (4)0.055 (3)0.049 (3)0.009 (3)0.008 (3)0.004 (3)
O20.054 (3)0.049 (3)0.071 (4)0.002 (2)0.009 (3)0.005 (3)
O30.082 (4)0.047 (3)0.050 (3)0.010 (3)0.008 (3)0.007 (2)
C10.076 (6)0.061 (5)0.048 (5)0.010 (4)0.013 (4)0.001 (4)
C20.057 (5)0.064 (6)0.050 (5)0.002 (4)0.003 (4)0.005 (4)
C30.105 (7)0.073 (6)0.055 (6)0.018 (5)0.010 (5)0.002 (5)
C40.160 (11)0.085 (8)0.080 (7)0.024 (7)0.023 (7)0.025 (7)
C50.167 (11)0.051 (6)0.115 (10)0.037 (6)0.030 (8)0.003 (6)
C60.150 (10)0.055 (6)0.076 (7)0.040 (6)0.022 (6)0.015 (5)
C70.073 (6)0.097 (7)0.048 (5)0.044 (5)0.005 (4)0.012 (5)
C80.095 (8)0.124 (8)0.062 (6)0.045 (6)0.034 (5)0.014 (6)
C90.083 (6)0.063 (5)0.043 (4)0.028 (5)0.003 (4)0.002 (4)
C100.161 (12)0.115 (9)0.054 (6)0.037 (8)0.029 (7)0.036 (6)
C110.142 (13)0.200 (16)0.158 (13)0.015 (12)0.024 (10)0.123 (12)
C120.111 (9)0.135 (10)0.098 (8)0.012 (8)0.034 (7)0.026 (7)
C130.058 (7)0.215 (14)0.129 (10)0.002 (7)0.005 (7)0.079 (10)
Geometric parameters (Å, º) top
V1—O21.607 (5)C5—H50.9300
V1—O31.621 (5)C6—H60.9300
V1—O11.900 (5)C7—H70.9300
V1—N22.095 (5)C8—C131.370 (12)
V1—N12.137 (6)C8—C91.536 (11)
N1—C71.267 (9)C8—H80.9800
N1—C81.448 (10)C9—C101.517 (11)
N2—C91.447 (8)C9—H90.9800
N2—H2A0.9000C10—C111.332 (15)
N2—H2B0.9000C10—H10A0.9700
O1—C21.314 (8)C10—H10B0.9700
C1—C61.394 (11)C11—C121.561 (17)
C1—C21.398 (10)C11—H11A0.9700
C1—C71.428 (11)C11—H11B0.9700
C2—C31.377 (11)C12—C131.541 (13)
C3—C41.350 (12)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.383 (13)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.342 (13)
O2—V1—O3109.2 (3)N1—C7—H7116.7
O2—V1—O1104.8 (2)C1—C7—H7116.7
O3—V1—O196.7 (2)C13—C8—N1115.6 (9)
O2—V1—N296.6 (2)C13—C8—C9115.2 (9)
O3—V1—N290.9 (2)N1—C8—C9107.0 (6)
O1—V1—N2153.4 (2)C13—C8—H8106.1
O2—V1—N1108.0 (2)N1—C8—H8106.1
O3—V1—N1141.5 (3)C9—C8—H8106.1
O1—V1—N183.4 (2)N2—C9—C10116.3 (7)
N2—V1—N175.0 (2)N2—C9—C8107.8 (6)
C7—N1—C8116.1 (7)C10—C9—C8113.3 (7)
C7—N1—V1124.2 (5)N2—C9—H9106.2
C8—N1—V1118.8 (5)C10—C9—H9106.2
C9—N2—V1115.6 (4)C8—C9—H9106.2
C9—N2—H2A108.4C11—C10—C9116.6 (11)
V1—N2—H2A108.4C11—C10—H10A108.1
C9—N2—H2B108.4C9—C10—H10A108.1
V1—N2—H2B108.4C11—C10—H10B108.1
H2A—N2—H2B107.4C9—C10—H10B108.1
C2—O1—V1129.9 (5)H10A—C10—H10B107.3
C6—C1—C2119.9 (8)C10—C11—C12115.4 (11)
C6—C1—C7119.5 (8)C10—C11—H11A108.4
C2—C1—C7120.5 (7)C12—C11—H11A108.4
O1—C2—C3119.4 (7)C10—C11—H11B108.4
O1—C2—C1122.8 (7)C12—C11—H11B108.4
C3—C2—C1117.9 (8)H11A—C11—H11B107.5
C4—C3—C2121.4 (9)C13—C12—C11108.9 (10)
C4—C3—H3119.3C13—C12—H12A109.9
C2—C3—H3119.3C11—C12—H12A109.9
C3—C4—C5120.7 (10)C13—C12—H12B109.9
C3—C4—H4119.7C11—C12—H12B109.9
C5—C4—H4119.7H12A—C12—H12B108.3
C6—C5—C4119.7 (9)C8—C13—C12116.7 (9)
C6—C5—H5120.1C8—C13—H13A108.1
C4—C5—H5120.1C12—C13—H13A108.1
C5—C6—C1120.4 (9)C8—C13—H13B108.1
C5—C6—H6119.8C12—C13—H13B108.1
C1—C6—H6119.8H13A—C13—H13B107.3
N1—C7—C1126.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.902.263.099 (7)155
N2—H2B···O3i0.902.553.229 (7)133
N2—H2A···O3ii0.902.072.948 (7)166
Symmetry codes: (i) y+1/4, x+1/4, z+5/4; (ii) y1/4, x+1/4, z+5/4.

Experimental details

Crystal data
Chemical formula[V(C13H17N2O)O2]
Mr300.23
Crystal system, space groupTetragonal, I41/a
Temperature (K)298
a, c (Å)19.120 (9), 15.421 (3)
V3)5638 (4)
Z16
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.854, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
19404, 2537, 1487
Rint0.172
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.099, 0.203, 1.08
No. of reflections2537
No. of parameters172
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0708P)2 + 16.0234P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.44, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
V1—O21.607 (5)V1—N22.095 (5)
V1—O31.621 (5)V1—N12.137 (6)
V1—O11.900 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.902.263.099 (7)155
N2—H2B···O3i0.902.553.229 (7)133
N2—H2A···O3ii0.902.072.948 (7)166
Symmetry codes: (i) y+1/4, x+1/4, z+5/4; (ii) y1/4, x+1/4, z+5/4.
 

Acknowledgements

The author acknowledges the Qingdao Agricultural University for financial support.

References

First citationAgarwal, R. K. & Prasad, S. (2006). Rev. Inorg. Chem. 26, 471–492.  CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. & Sumrra, S. H. (2010). J. Enzyme Inhib. Med. Chem. 25, 599–607.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuo, L.-H., Gao, S., Liu, J.-W., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m606–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, B., Li, L., Wang, D., Xu, T. & Guo, X. (2005). Acta Cryst. E61, m2244–m2246.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLodyga-Chruscinska, E., Sanna, D., Garribba, E. & Micera, G. (2008). Dalton Trans. pp. 4903–4916.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, M.-J., Ping, Y.-S., Zheng, L.-D., Hui, J.-Z. & Peng, C. (2004). Acta Cryst. E60, m1382–m1383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuan, C. X., Lu, L. P., Gao, X. L., Wu, Y. B., Guo, M. L., Li, Y., Fu, X. Q. & Zhu, M. L. (2009). J. Biol. Inorg. Chem. 14, 841–851.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds