organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Sulfamoylphen­yl)hydrazin-1-ium chloride

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 March 2012; accepted 16 March 2012; online 21 March 2012)

The hydrazinium residue in the cation of the title salt, C6H10N3O2S+·Cl, is twisted out of the plane of the benzene ring to which it is attached [N—N—C—C torsion angle = 25.9 (2)°] and the amino group is almost perpendicular to the benzene ring [N—S—C—C torsion angle = 88.71 (16)°]. In the crystal, the cations are linked by N—H⋯O hydrogen bonds and ππ inter­actions [ring centroid distance = 3.7280 (11) Å], forming layers in the bc plane that are connected by N—H⋯Cl hydrogen bonds.

Related literature

For background to the biological applications of related sulfonamides, see: Croitoru et al. (2004[Croitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev. Chem. (Bucharest), 55, 993-997.]); Dogruer et al. (2010[Dogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J. Chem. 34, 57-65.]). For related structures, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.], 2012[Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762-o763.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N3O2S+·Cl

  • Mr = 223.68

  • Monoclinic, P 21 /c

  • a = 10.2203 (8) Å

  • b = 9.8883 (7) Å

  • c = 9.1948 (8) Å

  • β = 107.647 (9)°

  • V = 885.51 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.808, Tmax = 0.857

  • 3570 measured reflections

  • 2026 independent reflections

  • 1767 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.03

  • 2026 reflections

  • 142 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.89 (1) 2.28 (1) 3.1319 (17) 162 (2)
N1—H2⋯O2i 0.88 (2) 2.03 (2) 2.835 (2) 152 (2)
N1—H3⋯Cl1ii 0.88 (2) 2.46 (2) 3.2136 (18) 144 (2)
N1—H3⋯O1iii 0.88 (2) 2.46 (2) 3.083 (2) 129 (2)
N2—H4⋯Cl1iv 0.89 (2) 2.67 (2) 3.3647 (16) 137 (2)
N3—H5⋯Cl1v 0.88 (1) 2.42 (2) 3.2656 (17) 163 (2)
N3—H6⋯Cl1vi 0.87 (1) 2.48 (2) 3.2467 (17) 147 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulphonamides related to the title salt, 2-(4-sulfamoylphenyl)hydrazinium chloride (I), are known to possess pharmacological properties. For example, N-substituted pyrazolyl-benzensulfonamides are known to selectively inhibit COX–2 (Croitoru et al., 2004) and other derivatives were reported to exhibit anti-microbial and anti-fungal activities (Dogruer et al. 2010). The crystal and molecular structure of 2-(4-sulfamoylphenyl)hydrazinium chloride (I) is reported herein, as a continuation of structural studies of these systems (Asiri et al., 2011; Asiri et al., 2012).

The crystallographic asymmetric unit of (I) comprises a hydrazinium cation charge balanced by a chloride, Fig. 1. The hydrazinium residue is twisted out of the plane of the benzene ring to which it is attached as seen in the value of the N1—N2—C4—C3 torsion angle of 25.9 (2)°. The amino group occupies a position perpendicular to the benzene ring with the N3—S1—C1—C2 torsion angle being 88.71 (16)°; the ammonium and amino groups are orientated to opposite sides of the benzene ring.

The cations are linked by N—H···O hydrogen bonds, Table 1, and ππ interactions [ring centroid distance = 3.7280 (11) Å for symmetry operation: 1 - x, 1 - y, 1 - z] to form layers in the bc plane. The cations are connected to the chloride anions by N—H···Cl hydrogen bonds, Table 1, leading to a three-dimensional architecture.

Related literature top

For background to the biological applications of related sulfonamides, see: Croitoru et al. (2004); Dogruer et al. (2010). For related structures, see: Asiri et al. (2011, 2012).

Experimental top

Diazotization of sulfonamide with NaNO2/HCl followed by reduction with sodium sulfite afforded the title salt which was crystallized from ethanol as irregular light-brown chunks. Yield: 72%. M.pt. 488–490 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; their Uiso values were refined.

Structure description top

Sulphonamides related to the title salt, 2-(4-sulfamoylphenyl)hydrazinium chloride (I), are known to possess pharmacological properties. For example, N-substituted pyrazolyl-benzensulfonamides are known to selectively inhibit COX–2 (Croitoru et al., 2004) and other derivatives were reported to exhibit anti-microbial and anti-fungal activities (Dogruer et al. 2010). The crystal and molecular structure of 2-(4-sulfamoylphenyl)hydrazinium chloride (I) is reported herein, as a continuation of structural studies of these systems (Asiri et al., 2011; Asiri et al., 2012).

The crystallographic asymmetric unit of (I) comprises a hydrazinium cation charge balanced by a chloride, Fig. 1. The hydrazinium residue is twisted out of the plane of the benzene ring to which it is attached as seen in the value of the N1—N2—C4—C3 torsion angle of 25.9 (2)°. The amino group occupies a position perpendicular to the benzene ring with the N3—S1—C1—C2 torsion angle being 88.71 (16)°; the ammonium and amino groups are orientated to opposite sides of the benzene ring.

The cations are linked by N—H···O hydrogen bonds, Table 1, and ππ interactions [ring centroid distance = 3.7280 (11) Å for symmetry operation: 1 - x, 1 - y, 1 - z] to form layers in the bc plane. The cations are connected to the chloride anions by N—H···Cl hydrogen bonds, Table 1, leading to a three-dimensional architecture.

For background to the biological applications of related sulfonamides, see: Croitoru et al. (2004); Dogruer et al. (2010). For related structures, see: Asiri et al. (2011, 2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the c axis of the unit-cell contents of (I). The N—H···O, N—H···Cl and ππ interactions are shown as orange, blue and purple dashed lines, respectively.
2-(4-Sulfamoylphenyl)hydrazin-1-ium chloride top
Crystal data top
C6H10N3O2S+·ClF(000) = 464
Mr = 223.68Dx = 1.678 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2194 reflections
a = 10.2203 (8) Åθ = 2.3–27.5°
b = 9.8883 (7) ŵ = 0.64 mm1
c = 9.1948 (8) ÅT = 100 K
β = 107.647 (9)°Irregular, light-brown
V = 885.51 (12) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2026 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1767 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scanh = 137
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.808, Tmax = 0.857l = 911
3570 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.3504P]
where P = (Fo2 + 2Fc2)/3
2026 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.39 e Å3
6 restraintsΔρmin = 0.43 e Å3
Crystal data top
C6H10N3O2S+·ClV = 885.51 (12) Å3
Mr = 223.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2203 (8) ŵ = 0.64 mm1
b = 9.8883 (7) ÅT = 100 K
c = 9.1948 (8) Å0.35 × 0.30 × 0.25 mm
β = 107.647 (9)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2026 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1767 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.857Rint = 0.024
3570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
2026 reflectionsΔρmin = 0.43 e Å3
142 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86073 (5)0.03338 (4)0.61107 (5)0.01345 (14)
S10.21204 (4)0.40936 (4)0.48750 (5)0.00899 (13)
O10.17687 (13)0.36536 (13)0.33148 (14)0.0118 (3)
N30.13229 (16)0.31234 (16)0.57265 (18)0.0114 (3)
N10.89021 (16)0.26661 (17)0.72569 (19)0.0124 (3)
N20.80635 (16)0.32732 (16)0.80730 (17)0.0119 (3)
O20.18027 (13)0.54566 (12)0.51886 (15)0.0129 (3)
C10.38970 (18)0.38531 (18)0.5743 (2)0.0095 (4)
C20.46066 (19)0.28593 (18)0.5230 (2)0.0112 (4)
H2A0.41480.23180.43740.013*
C30.59980 (19)0.26604 (18)0.5979 (2)0.0108 (4)
H3A0.64890.19790.56350.013*
C40.66731 (18)0.34606 (18)0.7235 (2)0.0094 (4)
C50.59489 (19)0.44578 (18)0.7736 (2)0.0119 (4)
H5A0.64050.50050.85880.014*
C60.45657 (19)0.46530 (18)0.6994 (2)0.0118 (4)
H6A0.40730.53330.73380.014*
H10.874 (2)0.1789 (11)0.710 (3)0.021 (6)*
H20.879 (2)0.302 (2)0.6347 (16)0.027 (7)*
H30.9755 (12)0.284 (2)0.779 (2)0.030 (7)*
H40.842 (2)0.4043 (16)0.851 (3)0.032 (7)*
H50.145 (3)0.339 (2)0.6667 (14)0.029 (7)*
H60.148 (2)0.2263 (11)0.564 (3)0.024 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0161 (2)0.0110 (2)0.0118 (2)0.00202 (17)0.00197 (18)0.00096 (16)
S10.0077 (2)0.0090 (2)0.0098 (2)0.00040 (16)0.00203 (17)0.00041 (16)
O10.0122 (6)0.0137 (6)0.0087 (6)0.0005 (5)0.0018 (5)0.0004 (5)
N30.0117 (8)0.0114 (8)0.0114 (8)0.0016 (6)0.0041 (6)0.0003 (6)
N10.0074 (8)0.0142 (8)0.0154 (8)0.0007 (6)0.0030 (7)0.0008 (7)
N20.0094 (7)0.0115 (7)0.0133 (8)0.0004 (6)0.0014 (6)0.0020 (6)
O20.0119 (6)0.0097 (6)0.0163 (7)0.0020 (5)0.0029 (5)0.0001 (5)
C10.0077 (8)0.0104 (8)0.0105 (9)0.0006 (7)0.0028 (7)0.0019 (7)
C20.0110 (8)0.0108 (8)0.0112 (9)0.0022 (7)0.0025 (7)0.0017 (7)
C30.0105 (8)0.0094 (8)0.0135 (9)0.0011 (7)0.0052 (7)0.0002 (7)
C40.0077 (8)0.0096 (8)0.0104 (8)0.0002 (7)0.0020 (7)0.0043 (7)
C50.0136 (9)0.0104 (8)0.0106 (9)0.0011 (7)0.0020 (7)0.0020 (7)
C60.0122 (9)0.0111 (9)0.0125 (9)0.0009 (7)0.0044 (7)0.0008 (7)
Geometric parameters (Å, º) top
S1—O21.4358 (13)N2—H40.887 (10)
S1—O11.4366 (13)C1—C21.386 (3)
S1—N31.6076 (16)C1—C61.392 (3)
S1—C11.7640 (18)C2—C31.393 (3)
N3—H50.876 (10)C2—H2A0.9500
N3—H60.873 (10)C3—C41.397 (3)
N1—N21.431 (2)C3—H3A0.9500
N1—H10.886 (10)C4—C51.392 (3)
N1—H20.883 (10)C5—C61.384 (3)
N1—H30.877 (10)C5—H5A0.9500
N2—C41.408 (2)C6—H6A0.9500
O2—S1—O1118.78 (8)C2—C1—C6120.49 (16)
O2—S1—N3106.47 (8)C2—C1—S1120.96 (14)
O1—S1—N3107.17 (8)C6—C1—S1118.52 (14)
O2—S1—C1107.46 (8)C1—C2—C3119.51 (16)
O1—S1—C1108.83 (8)C1—C2—H2A120.2
N3—S1—C1107.66 (8)C3—C2—H2A120.2
S1—N3—H5110.8 (16)C2—C3—C4120.19 (17)
S1—N3—H6113.8 (16)C2—C3—H3A119.9
H5—N3—H6114 (2)C4—C3—H3A119.9
N2—N1—H1112.5 (15)C5—C4—C3119.70 (16)
N2—N1—H2113.9 (15)C5—C4—N2117.49 (16)
H1—N1—H2106 (2)C3—C4—N2122.76 (16)
N2—N1—H3106.2 (16)C6—C5—C4120.12 (17)
H1—N1—H3113 (2)C6—C5—H5A119.9
H2—N1—H3106 (2)C4—C5—H5A119.9
C4—N2—N1115.70 (14)C5—C6—C1120.00 (17)
C4—N2—H4110.0 (16)C5—C6—H6A120.0
N1—N2—H4111.8 (17)C1—C6—H6A120.0
O2—S1—C1—C2156.96 (14)C2—C3—C4—C50.0 (3)
O1—S1—C1—C227.13 (17)C2—C3—C4—N2177.52 (17)
N3—S1—C1—C288.71 (16)N1—N2—C4—C5156.52 (16)
O2—S1—C1—C625.25 (17)N1—N2—C4—C325.9 (2)
O1—S1—C1—C6155.08 (14)C3—C4—C5—C60.1 (3)
N3—S1—C1—C689.07 (16)N2—C4—C5—C6177.47 (17)
C6—C1—C2—C30.3 (3)C4—C5—C6—C10.1 (3)
S1—C1—C2—C3177.48 (14)C2—C1—C6—C50.1 (3)
C1—C2—C3—C40.2 (3)S1—C1—C6—C5177.71 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.89 (1)2.28 (1)3.1319 (17)162 (2)
N1—H2···O2i0.88 (2)2.03 (2)2.835 (2)152 (2)
N1—H3···Cl1ii0.88 (2)2.46 (2)3.2136 (18)144 (2)
N1—H3···O1iii0.88 (2)2.46 (2)3.083 (2)129 (2)
N2—H4···Cl1iv0.89 (2)2.67 (2)3.3647 (16)137 (2)
N3—H5···Cl1v0.88 (1)2.42 (2)3.2656 (17)163 (2)
N3—H6···Cl1vi0.87 (1)2.48 (2)3.2467 (17)147 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+3/2; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H10N3O2S+·Cl
Mr223.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.2203 (8), 9.8883 (7), 9.1948 (8)
β (°) 107.647 (9)
V3)885.51 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.808, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
3570, 2026, 1767
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.03
No. of reflections2026
No. of parameters142
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.43

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.887 (12)2.275 (14)3.1319 (17)162 (2)
N1—H2···O2i0.882 (15)2.028 (18)2.835 (2)151.8 (18)
N1—H3···Cl1ii0.878 (15)2.461 (18)3.2136 (18)144.1 (16)
N1—H3···O1iii0.878 (15)2.459 (16)3.083 (2)128.5 (16)
N2—H4···Cl1iv0.886 (19)2.67 (2)3.3647 (16)136.6 (19)
N3—H5···Cl1v0.875 (14)2.417 (17)3.2656 (17)163 (2)
N3—H6···Cl1vi0.874 (12)2.480 (19)3.2467 (17)147 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+3/2; (vi) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762–o763.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCroitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev. Chem. (Bucharest), 55, 993–997.  CAS Google Scholar
First citationDogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J. Chem. 34, 57–65.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds