organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Amino-2-fluoro­phen­­oxy)-7-meth­­oxy­quinazolin-6-ol methanol monosolvate

aJiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, Jiangsu Simcere Pharmaceutical R&D Co. Ltd, Nanjing 210042, People's Republic of China, and bInstitute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: tanaimin@yahoo.cn

(Received 12 March 2012; accepted 18 March 2012; online 24 March 2012)

In the title compound, C15H12FN3O3·CH3OH, the dihedral angle between the quinazoline ring system and the benzene ring is 81.18 (9)°. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯N hydrogen bonds, generating [10-1] chains of alternating main mol­ecules and solvent mol­ecules. Weak C—H⋯O inter­actions are also observed.

Related literature

For background to quinazolinones, see: Priya et al. (2011[Priya, M. G. R., Zulykama, Y., Girija, K., Murugesh, S. & Perumal, P. T. (2011). Indian J. Chem. Sect. B, 50, 98-102.]). For further synthetic details, see: Furuta et al. (2006[Furuta, T., Sakai, T., Senga, T., Osawa, T., Kubo, K., Shimizu, T., Suzuki, R., Yoshino, T., Endo, M. & Miwa, A. (2006). J. Med. Chem. 49, 2186-2192.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12FN3O3·CH4O

  • Mr = 333.32

  • Triclinic, [P \overline 1]

  • a = 8.723 (2) Å

  • b = 8.921 (2) Å

  • c = 11.500 (3) Å

  • α = 70.925 (4)°

  • β = 69.940 (4)°

  • γ = 77.273 (4)°

  • V = 788.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.989

  • 4819 measured reflections

  • 2747 independent reflections

  • 2010 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.193

  • S = 1.17

  • 2747 reflections

  • 227 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N3i 0.82 1.98 2.799 (4) 172
N3—H3A⋯O1ii 0.85 (2) 2.60 (4) 3.192 (4) 128 (4)
N3—H3B⋯O5iii 0.88 (2) 2.08 (2) 2.953 (6) 173 (4)
O5—H5⋯N1 0.82 1.95 2.765 (4) 177
C15—H15⋯O5iv 0.93 2.57 3.453 (5) 159
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y+1, z-1; (iii) x+1, y, z-1; (iv) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

4(3H)-Quinazolinones are an important class of fused heterocycles with different biological properties such as anti-fungal activities (Priya et al., 2011).

The title compound, (I), is a 4(3H)-Quinazolinones intermediate for the synthesis of kinase inhibitor. We present here the structure of the title compound (I), C15H12FN3O3.CH3OH, crystallized as a methanol solvate (Figure 1).

The bicyclic quinazoline system is effectively planar, with a mean deviation from planarity of 0.0190 (3)°.The quinazoline heterocyclic system and the adjacent benzene ring make a dihedral angle of 81.18 (9)°. In the crystal, the molecules are linked via the methanol solvent molecule through O—H_ _ _N,N—H_ _ _O and C—H_ _ _O hydrogen bonds(Table 1), so forming chains propagating along the b axis direction as shown in Fig. 2.

Related literature top

For background to quinazolinones, see: Priya et al. (2011). For further synthetic details, see: Furuta et al. (2006).

Experimental top

The title compound was synthesized according to the literature method (Furuta et al., 2006). Colourless blocks were grown from dichloromethane at 277 K.

Refinement top

The H2 atom on O2 and H5 on O5 were located in a difference Fourier map and refined freely with an isotropic temperature factors. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Structure description top

4(3H)-Quinazolinones are an important class of fused heterocycles with different biological properties such as anti-fungal activities (Priya et al., 2011).

The title compound, (I), is a 4(3H)-Quinazolinones intermediate for the synthesis of kinase inhibitor. We present here the structure of the title compound (I), C15H12FN3O3.CH3OH, crystallized as a methanol solvate (Figure 1).

The bicyclic quinazoline system is effectively planar, with a mean deviation from planarity of 0.0190 (3)°.The quinazoline heterocyclic system and the adjacent benzene ring make a dihedral angle of 81.18 (9)°. In the crystal, the molecules are linked via the methanol solvent molecule through O—H_ _ _N,N—H_ _ _O and C—H_ _ _O hydrogen bonds(Table 1), so forming chains propagating along the b axis direction as shown in Fig. 2.

For background to quinazolinones, see: Priya et al. (2011). For further synthetic details, see: Furuta et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of (I) with hydrogen bonds drawn as dashed lines.
4-(4-Amino-2-fluorophenoxy)-7-methoxyquinazolin-6-ol methanol monosolvate top
Crystal data top
C15H12FN3O3·CH4OZ = 2
Mr = 333.32F(000) = 348
Triclinic, P1Dx = 1.404 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.723 (2) ÅCell parameters from 2516 reflections
b = 8.921 (2) Åθ = 2.6–25.3°
c = 11.500 (3) ŵ = 0.11 mm1
α = 70.925 (4)°T = 298 K
β = 69.940 (4)°Block, colorless
γ = 77.273 (4)°0.15 × 0.12 × 0.10 mm
V = 788.6 (3) Å3
Data collection top
Bruker SMART 4K CCD
diffractometer
2747 independent reflections
Radiation source: fine-focus sealed tube2010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 107
Tmin = 0.974, Tmax = 0.989k = 1010
4819 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.067P)2 + 0.5658P]
where P = (Fo2 + 2Fc2)/3
2747 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
C15H12FN3O3·CH4Oγ = 77.273 (4)°
Mr = 333.32V = 788.6 (3) Å3
Triclinic, P1Z = 2
a = 8.723 (2) ÅMo Kα radiation
b = 8.921 (2) ŵ = 0.11 mm1
c = 11.500 (3) ÅT = 298 K
α = 70.925 (4)°0.15 × 0.12 × 0.10 mm
β = 69.940 (4)°
Data collection top
Bruker SMART 4K CCD
diffractometer
2747 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2010 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.989Rint = 0.030
4819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0852 restraints
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.22 e Å3
2747 reflectionsΔρmin = 0.31 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0141 (7)0.2778 (6)0.8438 (4)0.0716 (14)
H1A0.12240.27900.84800.107*
H1B0.03650.36540.91050.107*
H1C0.05100.17900.85540.107*
C20.1142 (4)0.1900 (4)0.6163 (3)0.0403 (9)
C30.1429 (4)0.2237 (4)0.4980 (3)0.0388 (9)
C40.2366 (4)0.1341 (4)0.3861 (3)0.0394 (9)
H40.25690.15820.30890.047*
C50.3027 (4)0.0040 (4)0.3884 (3)0.0365 (8)
C60.2702 (4)0.0325 (4)0.5041 (3)0.0378 (8)
C70.1759 (5)0.0628 (4)0.6196 (4)0.0438 (9)
H70.15560.04000.69730.053*
C80.4216 (5)0.2396 (4)0.4001 (4)0.0524 (11)
H80.46210.32590.40300.063*
C90.4066 (5)0.0943 (4)0.2791 (3)0.0401 (9)
C100.5608 (5)0.1413 (4)0.0612 (3)0.0424 (9)
C110.5111 (5)0.2878 (5)0.0120 (4)0.0482 (10)
C120.6172 (6)0.3746 (4)0.1182 (4)0.0497 (10)
H120.57980.47400.16520.060*
C130.7798 (5)0.3131 (4)0.1545 (3)0.0424 (9)
C140.8321 (5)0.1640 (4)0.0821 (4)0.0485 (10)
H140.94180.12110.10570.058*
C150.7208 (5)0.0794 (4)0.0251 (4)0.0498 (10)
H150.75630.02050.07250.060*
C160.3354 (6)0.3722 (7)0.7115 (6)0.0910 (18)
H16A0.30200.41170.78590.136*
H16B0.32740.45940.63730.136*
H16C0.44710.32230.69830.136*
O10.0249 (3)0.2927 (3)0.7224 (2)0.0518 (7)
O20.0736 (4)0.3501 (3)0.5054 (2)0.0569 (8)
H20.08880.35640.43260.085*
O30.4459 (3)0.0561 (3)0.1677 (2)0.0536 (8)
N10.3312 (4)0.1598 (3)0.5098 (3)0.0499 (9)
N20.4647 (4)0.2147 (3)0.2832 (3)0.0479 (8)
F10.3505 (3)0.3488 (3)0.0233 (3)0.0773 (8)
N30.8919 (5)0.3961 (4)0.2678 (3)0.0548 (10)
H3A0.864 (6)0.496 (3)0.282 (5)0.082*
H3B0.991 (3)0.355 (5)0.261 (4)0.066*
O50.2333 (4)0.2605 (4)0.7305 (3)0.0699 (9)
H50.25820.23090.66530.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.101 (4)0.068 (3)0.035 (2)0.042 (3)0.003 (2)0.002 (2)
C20.043 (2)0.0290 (18)0.041 (2)0.0122 (16)0.0065 (17)0.0001 (16)
C30.046 (2)0.0293 (17)0.042 (2)0.0159 (16)0.0149 (17)0.0015 (15)
C40.047 (2)0.0310 (18)0.041 (2)0.0167 (16)0.0129 (17)0.0031 (16)
C50.039 (2)0.0284 (17)0.040 (2)0.0107 (15)0.0104 (16)0.0033 (15)
C60.044 (2)0.0274 (17)0.043 (2)0.0109 (15)0.0117 (17)0.0071 (16)
C70.050 (2)0.038 (2)0.040 (2)0.0116 (17)0.0039 (18)0.0127 (17)
C80.074 (3)0.039 (2)0.052 (3)0.030 (2)0.017 (2)0.0094 (19)
C90.049 (2)0.0317 (18)0.039 (2)0.0157 (16)0.0127 (17)0.0012 (15)
C100.057 (3)0.038 (2)0.033 (2)0.0257 (19)0.0084 (18)0.0030 (16)
C110.050 (3)0.049 (2)0.046 (2)0.014 (2)0.0107 (19)0.0125 (19)
C120.071 (3)0.0332 (19)0.045 (2)0.021 (2)0.019 (2)0.0018 (17)
C130.063 (3)0.0354 (19)0.034 (2)0.0293 (19)0.0111 (19)0.0042 (16)
C140.057 (3)0.044 (2)0.044 (2)0.0181 (19)0.0113 (19)0.0076 (18)
C150.063 (3)0.036 (2)0.043 (2)0.0171 (19)0.014 (2)0.0046 (17)
C160.074 (4)0.095 (4)0.140 (5)0.002 (3)0.049 (4)0.065 (4)
O10.0629 (18)0.0458 (15)0.0390 (15)0.0292 (13)0.0019 (13)0.0005 (12)
O20.086 (2)0.0451 (15)0.0448 (16)0.0451 (15)0.0136 (16)0.0002 (13)
O30.075 (2)0.0495 (15)0.0355 (14)0.0423 (14)0.0008 (13)0.0039 (12)
N10.064 (2)0.0368 (17)0.051 (2)0.0236 (16)0.0090 (17)0.0105 (15)
N20.064 (2)0.0373 (17)0.0438 (19)0.0303 (16)0.0088 (16)0.0040 (14)
F10.0647 (18)0.0707 (17)0.0825 (19)0.0111 (13)0.0131 (15)0.0101 (14)
N30.075 (3)0.048 (2)0.0408 (19)0.037 (2)0.0098 (19)0.0006 (17)
O50.096 (2)0.0598 (18)0.0517 (18)0.0249 (18)0.0110 (17)0.0134 (15)
Geometric parameters (Å, º) top
C1—O11.416 (5)C10—C151.356 (5)
C1—H1A0.9600C10—C111.373 (5)
C1—H1B0.9600C10—O31.403 (4)
C1—H1C0.9600C11—F11.357 (5)
C2—O11.366 (4)C11—C121.368 (5)
C2—C71.375 (5)C12—C131.374 (6)
C2—C31.415 (5)C12—H120.9300
C3—O21.360 (4)C13—C141.393 (5)
C3—C41.363 (5)C13—N31.420 (5)
C4—C51.416 (4)C14—C151.388 (5)
C4—H40.9300C14—H140.9300
C5—C61.393 (5)C15—H150.9300
C5—C91.421 (5)C16—O51.396 (5)
C6—N11.385 (4)C16—H16A0.9600
C6—C71.409 (5)C16—H16B0.9600
C7—H70.9300C16—H16C0.9600
C8—N11.303 (5)O2—H20.8200
C8—N21.346 (5)N3—H3A0.848 (19)
C8—H80.9300N3—H3B0.879 (19)
C9—N21.304 (4)O5—H50.8200
C9—O31.344 (4)
O1—C1—H1A109.5C11—C10—O3120.1 (4)
O1—C1—H1B109.5F1—C11—C12118.9 (4)
H1A—C1—H1B109.5F1—C11—C10118.6 (3)
O1—C1—H1C109.5C12—C11—C10122.5 (4)
H1A—C1—H1C109.5C11—C12—C13119.1 (4)
H1B—C1—H1C109.5C11—C12—H12120.4
O1—C2—C7124.3 (3)C13—C12—H12120.4
O1—C2—C3115.2 (3)C12—C13—C14119.1 (3)
C7—C2—C3120.5 (3)C12—C13—N3120.7 (4)
O2—C3—C4123.6 (3)C14—C13—N3120.1 (4)
O2—C3—C2115.6 (3)C15—C14—C13120.1 (4)
C4—C3—C2120.7 (3)C15—C14—H14119.9
C3—C4—C5119.4 (3)C13—C14—H14119.9
C3—C4—H4120.3C10—C15—C14120.5 (4)
C5—C4—H4120.3C10—C15—H15119.7
C6—C5—C4120.0 (3)C14—C15—H15119.7
C6—C5—C9115.4 (3)O5—C16—H16A109.5
C4—C5—C9124.6 (3)O5—C16—H16B109.5
N1—C6—C5121.7 (3)H16A—C16—H16B109.5
N1—C6—C7118.2 (3)O5—C16—H16C109.5
C5—C6—C7120.1 (3)H16A—C16—H16C109.5
C2—C7—C6119.2 (3)H16B—C16—H16C109.5
C2—C7—H7120.4C2—O1—C1116.9 (3)
C6—C7—H7120.4C3—O2—H2109.5
N1—C8—N2129.2 (3)C9—O3—C10117.4 (3)
N1—C8—H8115.4C8—N1—C6114.9 (3)
N2—C8—H8115.4C9—N2—C8115.3 (3)
N2—C9—O3120.2 (3)C13—N3—H3A111 (3)
N2—C9—C5123.5 (3)C13—N3—H3B106 (3)
O3—C9—C5116.3 (3)H3A—N3—H3B119 (5)
C15—C10—C11118.6 (3)C16—O5—H5109.5
C15—C10—O3121.3 (3)
O1—C2—C3—O22.0 (5)O3—C10—C11—C12178.7 (3)
C7—C2—C3—O2178.7 (3)F1—C11—C12—C13179.8 (3)
O1—C2—C3—C4177.1 (3)C10—C11—C12—C130.6 (6)
C7—C2—C3—C42.2 (5)C11—C12—C13—C140.0 (5)
O2—C3—C4—C5179.7 (3)C11—C12—C13—N3176.8 (3)
C2—C3—C4—C51.3 (5)C12—C13—C14—C150.0 (5)
C3—C4—C5—C60.8 (5)N3—C13—C14—C15176.9 (3)
C3—C4—C5—C9177.7 (4)C11—C10—C15—C141.2 (6)
C4—C5—C6—N1179.3 (3)O3—C10—C15—C14178.6 (3)
C9—C5—C6—N12.1 (5)C13—C14—C15—C100.6 (6)
C4—C5—C6—C72.0 (5)C7—C2—O1—C18.3 (6)
C9—C5—C6—C7176.5 (3)C3—C2—O1—C1170.9 (4)
O1—C2—C7—C6178.3 (3)N2—C9—O3—C105.3 (5)
C3—C2—C7—C60.9 (5)C5—C9—O3—C10174.0 (3)
N1—C6—C7—C2179.9 (3)C15—C10—O3—C999.6 (4)
C5—C6—C7—C21.2 (5)C11—C10—O3—C983.0 (4)
C6—C5—C9—N22.3 (5)N2—C8—N1—C60.7 (7)
C4—C5—C9—N2179.2 (4)C5—C6—N1—C80.8 (5)
C6—C5—C9—O3176.9 (3)C7—C6—N1—C8177.9 (4)
C4—C5—C9—O31.6 (5)O3—C9—N2—C8178.1 (4)
C15—C10—C11—F1179.2 (3)C5—C9—N2—C81.0 (6)
O3—C10—C11—F11.7 (5)N1—C8—N2—C90.5 (7)
C15—C10—C11—C121.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N3i0.821.982.799 (4)172
N3—H3A···O1ii0.85 (2)2.60 (4)3.192 (4)128 (4)
N3—H3B···O5iii0.88 (2)2.08 (2)2.953 (6)173 (4)
O5—H5···N10.821.952.765 (4)177
C15—H15···O5iv0.932.573.453 (5)159
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z1; (iii) x+1, y, z1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H12FN3O3·CH4O
Mr333.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.723 (2), 8.921 (2), 11.500 (3)
α, β, γ (°)70.925 (4), 69.940 (4), 77.273 (4)
V3)788.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.974, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4819, 2747, 2010
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.193, 1.17
No. of reflections2747
No. of parameters227
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N3i0.821.982.799 (4)172
N3—H3A···O1ii0.848 (19)2.60 (4)3.192 (4)128 (4)
N3—H3B···O5iii0.879 (19)2.08 (2)2.953 (6)173 (4)
O5—H5···N10.821.952.765 (4)177
C15—H15···O5iv0.932.573.453 (5)159
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z1; (iii) x+1, y, z1; (iv) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the Natural Science Foundation of Jiangsu Province of China (project No. BK2011086) and Jiangsu Planned Projects for Postdoctoral Research Funds (project No. 0902041 C).

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFuruta, T., Sakai, T., Senga, T., Osawa, T., Kubo, K., Shimizu, T., Suzuki, R., Yoshino, T., Endo, M. & Miwa, A. (2006). J. Med. Chem. 49, 2186–2192.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPriya, M. G. R., Zulykama, Y., Girija, K., Murugesh, S. & Perumal, P. T. (2011). Indian J. Chem. Sect. B, 50, 98–102.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds