organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acetyl-1-(2-methylphenyl)thiourea

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cDepartment of Chemistry, University of Gujrat, Gujrat, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 March 2012; accepted 18 March 2012; online 24 March 2012)

In the title compound, C10H12N2OS, the toluene and the N-carbamothio­ylacetamide units are oriented at dihedral angle of 78.75 (5)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked into [101] chains by pairs of N—H⋯S hydrogen bonds [which generate R22(8) loops] and pairs of O—H⋯O hydrogen bonds [which generate R22(4) loops]. The two motifs alternate in the chain.

Related literature

For related structures, see: Shahwar et al. (2012[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Samiullah (2012). Acta Cryst. E68, o508.]). For graph–set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2OS

  • Mr = 208.28

  • Monoclinic, P 21 /c

  • a = 5.0444 (2) Å

  • b = 20.7019 (9) Å

  • c = 9.9464 (4) Å

  • β = 95.116 (2)°

  • V = 1034.55 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.35 × 0.15 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.938

  • 7696 measured reflections

  • 1812 independent reflections

  • 1512 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 1.17

  • 1812 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.99 2.664 (2) 135
N1—H1⋯O1i 0.86 2.50 3.172 (2) 135
N2—H2⋯S1ii 0.86 2.52 3.3747 (17) 171
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound I (Fig. 1) has been synthesized in continuation of our efforts to find new enzyme inhibitors.

The crystal structures of N-(phenylcarbamothioyl)acetamide (Shahwar et al., 2012) has been published which is related to the title compound (I).

In (I), the toluene group A (C1–C7) and the N-carbamothioylacetamide moiety B (N1/C8/S1/N2/C9/O1/C10) are planar with r. m. s. deviation of 0.0058 Å and 0.0278 Å, respectively. The dihedral angle between A/B is 78.75 (5)°. There exist classical intramolecular H–bonding of N—H···O type (Table 1, Fig. 1) with S(6) ring motif (Bernstein et al., 1995). The molecules are dimerized due to N—H···S type of hydrogen bonds with R22(8) ring motifs (Table 1, Fig. 2). The dimers are interlinked from S(6) ring motifs due to strong N—H···O H–bondings (Table 1, Fig. 2) with centrosymmetric four membered ring motif (—O···H···O···H···O—) (Table 1, Fig. 2). The polymeric chains extend along the base vector [101].

Related literature top

For related structures, see: Shahwar et al. (2012). For graph–set notation, see: Bernstein et al. (1995).

Experimental top

The title compound (I) was synthesized by adding (0.1 mol, 7.13 ml) of acetylchloride dropwise to a stirred solution of KSCN (0.11 mol) in dry acetone (50 ml), followed by slow addition of toluidine (0.1 mol) in dry acetone (25 ml). The mixture was refluxed for 5–10 min, then poured on ice cooled water, which resulted in crude precipitate. Recrystallization of the precipitate in ethylacetate yielded colourless needles.

Refinement top

The H-atoms were positioned geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl groups and x = 1.2 for other H atoms.

Structure description top

The title compound I (Fig. 1) has been synthesized in continuation of our efforts to find new enzyme inhibitors.

The crystal structures of N-(phenylcarbamothioyl)acetamide (Shahwar et al., 2012) has been published which is related to the title compound (I).

In (I), the toluene group A (C1–C7) and the N-carbamothioylacetamide moiety B (N1/C8/S1/N2/C9/O1/C10) are planar with r. m. s. deviation of 0.0058 Å and 0.0278 Å, respectively. The dihedral angle between A/B is 78.75 (5)°. There exist classical intramolecular H–bonding of N—H···O type (Table 1, Fig. 1) with S(6) ring motif (Bernstein et al., 1995). The molecules are dimerized due to N—H···S type of hydrogen bonds with R22(8) ring motifs (Table 1, Fig. 2). The dimers are interlinked from S(6) ring motifs due to strong N—H···O H–bondings (Table 1, Fig. 2) with centrosymmetric four membered ring motif (—O···H···O···H···O—) (Table 1, Fig. 2). The polymeric chains extend along the base vector [101].

For related structures, see: Shahwar et al. (2012). For graph–set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids are drawn at the 50% probability level. The dotted lines represent the intra-molecular H-bondings.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains extending along [1 0 1] direction.
3-Acetyl-1-(2-methylphenyl)thiourea top
Crystal data top
C10H12N2OSF(000) = 440
Mr = 208.28Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1513 reflections
a = 5.0444 (2) Åθ = 2.0–25.2°
b = 20.7019 (9) ŵ = 0.28 mm1
c = 9.9464 (4) ÅT = 296 K
β = 95.116 (2)°Needle, white
V = 1034.55 (7) Å30.35 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1812 independent reflections
Radiation source: fine-focus sealed tube1512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.00 pixels mm-1θmax = 25.2°, θmin = 2.0°
ω scansh = 56
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2422
Tmin = 0.915, Tmax = 0.938l = 1111
7696 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.355P]
where P = (Fo2 + 2Fc2)/3
1812 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H12N2OSV = 1034.55 (7) Å3
Mr = 208.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0444 (2) ŵ = 0.28 mm1
b = 20.7019 (9) ÅT = 296 K
c = 9.9464 (4) Å0.35 × 0.15 × 0.13 mm
β = 95.116 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1812 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1512 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.938Rint = 0.028
7696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.17Δρmax = 0.18 e Å3
1812 reflectionsΔρmin = 0.20 e Å3
129 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39407 (11)0.07983 (3)0.11730 (5)0.0401 (2)
O11.0674 (3)0.02473 (7)0.36353 (14)0.0456 (5)
N10.7141 (3)0.07120 (8)0.34350 (16)0.0337 (5)
N20.7701 (3)0.00655 (8)0.18163 (16)0.0326 (5)
C10.5997 (4)0.12750 (10)0.40024 (19)0.0312 (6)
C20.6773 (4)0.18879 (10)0.3631 (2)0.0348 (7)
C30.5651 (4)0.24080 (11)0.4260 (2)0.0440 (8)
C40.3876 (4)0.23224 (12)0.5219 (2)0.0493 (8)
C50.3150 (5)0.17099 (12)0.5564 (2)0.0491 (8)
C60.4207 (4)0.11826 (11)0.4958 (2)0.0399 (7)
C70.8746 (4)0.19878 (12)0.2608 (2)0.0462 (8)
C80.6379 (4)0.04791 (9)0.22219 (19)0.0294 (6)
C90.9799 (4)0.03869 (10)0.2492 (2)0.0334 (7)
C101.0907 (4)0.09266 (11)0.1711 (2)0.0456 (8)
H10.839560.051460.391240.0404*
H20.713440.022180.104250.0391*
H30.611340.282550.402620.0528*
H40.317100.267870.563140.0591*
H50.194280.165080.620760.0589*
H60.372000.076690.519110.0478*
H7A0.796400.186000.173310.0692*
H7B1.030290.173170.284740.0692*
H7C0.923260.243580.258860.0692*
H10A1.216500.116800.229280.0684*
H10B1.177940.075170.097320.0684*
H10C0.948610.120600.136740.0684*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0437 (3)0.0418 (3)0.0328 (3)0.0132 (3)0.0077 (2)0.0084 (3)
O10.0543 (9)0.0469 (10)0.0337 (9)0.0164 (7)0.0069 (7)0.0033 (7)
N10.0381 (9)0.0333 (10)0.0284 (9)0.0089 (7)0.0038 (7)0.0049 (7)
N20.0363 (9)0.0318 (10)0.0289 (9)0.0056 (7)0.0007 (7)0.0084 (7)
C10.0328 (10)0.0321 (11)0.0272 (10)0.0042 (9)0.0048 (8)0.0054 (9)
C20.0321 (11)0.0369 (12)0.0346 (11)0.0007 (9)0.0013 (9)0.0017 (10)
C30.0483 (13)0.0303 (12)0.0527 (14)0.0017 (10)0.0010 (11)0.0058 (11)
C40.0546 (14)0.0419 (14)0.0519 (15)0.0060 (11)0.0082 (12)0.0167 (12)
C50.0532 (14)0.0556 (16)0.0409 (13)0.0045 (12)0.0173 (11)0.0064 (12)
C60.0462 (12)0.0376 (13)0.0361 (12)0.0007 (10)0.0057 (10)0.0002 (10)
C70.0451 (13)0.0466 (14)0.0474 (14)0.0053 (11)0.0077 (10)0.0029 (11)
C80.0316 (10)0.0289 (11)0.0278 (10)0.0013 (9)0.0041 (8)0.0022 (8)
C90.0357 (11)0.0322 (11)0.0326 (12)0.0035 (9)0.0043 (9)0.0022 (9)
C100.0503 (13)0.0436 (14)0.0429 (13)0.0158 (11)0.0041 (10)0.0044 (11)
Geometric parameters (Å, º) top
S1—C81.676 (2)C4—C51.372 (3)
O1—C91.217 (2)C5—C61.377 (3)
N1—C11.438 (3)C9—C101.497 (3)
N1—C81.324 (2)C3—H30.9300
N2—C81.388 (3)C4—H40.9300
N2—C91.374 (3)C5—H50.9300
N1—H10.8600C6—H60.9300
N2—H20.8600C7—H7A0.9600
C1—C21.388 (3)C7—H7B0.9600
C1—C61.381 (3)C7—H7C0.9600
C2—C71.500 (3)C10—H10A0.9600
C2—C31.391 (3)C10—H10B0.9600
C3—C41.377 (3)C10—H10C0.9600
C1—N1—C8123.96 (16)O1—C9—N2122.77 (19)
C8—N2—C9128.34 (17)C2—C3—H3119.00
C1—N1—H1118.00C4—C3—H3119.00
C8—N1—H1118.00C3—C4—H4120.00
C8—N2—H2116.00C5—C4—H4120.00
C9—N2—H2116.00C4—C5—H5120.00
N1—C1—C2120.27 (17)C6—C5—H5120.00
N1—C1—C6117.88 (18)C1—C6—H6120.00
C2—C1—C6121.80 (19)C5—C6—H6120.00
C3—C2—C7121.32 (19)C2—C7—H7A109.00
C1—C2—C3116.90 (18)C2—C7—H7B109.00
C1—C2—C7121.79 (19)C2—C7—H7C109.00
C2—C3—C4121.9 (2)H7A—C7—H7B109.00
C3—C4—C5119.8 (2)H7A—C7—H7C109.00
C4—C5—C6120.1 (2)H7B—C7—H7C109.00
C1—C6—C5119.6 (2)C9—C10—H10A109.00
S1—C8—N1124.12 (15)C9—C10—H10B109.00
S1—C8—N2118.97 (14)C9—C10—H10C109.00
N1—C8—N2116.91 (17)H10A—C10—H10B109.00
O1—C9—C10122.74 (18)H10A—C10—H10C109.00
N2—C9—C10114.49 (17)H10B—C10—H10C110.00
C8—N1—C1—C279.9 (3)C6—C1—C2—C30.4 (3)
C8—N1—C1—C6102.7 (2)C6—C1—C2—C7179.11 (19)
C1—N1—C8—S10.9 (3)N1—C1—C6—C5177.42 (18)
C1—N1—C8—N2179.42 (17)C2—C1—C6—C50.1 (3)
C9—N2—C8—S1177.45 (16)C1—C2—C3—C40.8 (3)
C9—N2—C8—N12.8 (3)C7—C2—C3—C4178.76 (19)
C8—N2—C9—O15.5 (3)C2—C3—C4—C50.8 (3)
C8—N2—C9—C10175.01 (18)C3—C4—C5—C60.4 (3)
N1—C1—C2—C3177.70 (17)C4—C5—C6—C10.1 (3)
N1—C1—C2—C71.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.992.664 (2)135
N1—H1···O1i0.862.503.172 (2)135
N2—H2···S1ii0.862.523.3747 (17)171
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H12N2OS
Mr208.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.0444 (2), 20.7019 (9), 9.9464 (4)
β (°) 95.116 (2)
V3)1034.55 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.35 × 0.15 × 0.13
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.915, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
7696, 1812, 1512
Rint0.028
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.17
No. of reflections1812
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.992.664 (2)135
N1—H1···O1i0.862.503.172 (2)135
N2—H2···S1ii0.862.523.3747 (17)171
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Samiullah (2012). Acta Cryst. E68, o508.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds