organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1168-o1169

4-[5-(Furan-2-yl)-3-tri­fluoro­methyl-1H-pyrazol-1-yl]benzene­sulfonamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 March 2012; accepted 19 March 2012; online 24 March 2012)

In the title compound, C14H10F3N3O3S, there are significant twists in the mol­ecule, as seen in the values of the dihedral angles between the pyrazole ring and each of the furan [31.1 (2)°] and benzene rings [55.58 (10)°]. The amino N atom occupies a position almost normal to the benzene ring [N—S—Car—Car (ar = aromatic) torsion angle = 83.70 (19)°]. One amino H atom forms a hydrogen bond to the tricoordinate pyrazole N atom and the other inter­acts with a sulfonamide O atom, forming a supra­molecular chain along [010]. The chains are consolidated into a supra­molecular layers via C—H⋯O inter­actions involving the second sulfonamide O atom; layers stack along [10-1]. The furan ring was found to be disordered over two diagonally opposite orientations of equal occupancy.

Related literature

For background to the biological applications of sulfonamides, see: Croitoru et al. (2004[Croitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev. Chem. (Bucharest), 55, 993-997.]); Dogruer et al. (2010[Dogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J. Chem. 34, 57-65.]). For the biological efficacy of F and CF3 in medicinal chemistry, see: Fokin & Kolomiyets (1988[Fokin, A. V. & Kolomiyets, A. F. (1988). J. Fluorine Chem. 40, 247-259.]); Bonacorso et al. (2006[Bonacorso, H. G., Wentz, A. P., Lourega, R. V., Cechinel, C. A., Moraes, T. S., Coelho, H. S., Zanatta, N., Martins, M. A. P., Hoerner, M. & Alves, S. H. (2006). J. Fluorine Chem. 127, 1066-1072.]). For related structures, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.], 2012[Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762-o763.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10F3N3O3S

  • Mr = 357.31

  • Monoclinic, P 21 /n

  • a = 16.0536 (13) Å

  • b = 4.8173 (4) Å

  • c = 20.6202 (15) Å

  • β = 110.728 (8)°

  • V = 1491.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.25 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.935, Tmax = 0.987

  • 6503 measured reflections

  • 3431 independent reflections

  • 2400 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.189

  • S = 1.06

  • 3431 reflections

  • 210 parameters

  • 33 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O3i 0.88 (1) 2.00 (2) 2.830 (4) 158 (3)
N3—H2⋯N1ii 0.88 (1) 2.17 (1) 3.032 (4) 170 (4)
C8—H8⋯O2iii 0.95 2.36 3.185 (7) 145
C10—H10⋯O2iv 0.95 2.44 3.092 (4) 126
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title CF3-derivatized sulfonamide (I), was investigated. in connection with on-going studies of sulfonamides, both biological (Croitoru et al., 2004; Dogruer et al., 2010) and crystallographic (Asiri et al., 2011; Asiri et al., 2012). In particular, fluoride in the form of a trifluoromethyl group, which has long been recognized in medicinal chemistry for its ability to alter the physico-chemical and biological characteristics of molecules (Fokin & Kolomiyets, 1988; Bonacorso et al., 2006), is featured in the new molecule to promote enhanced biological properties.

In (I), Fig. 1, the dihedral angle of 31.1 (2)° between the furanyl and pyrazole rings indicates a significant twist between these rings. Similarly, the dihedral angle of 55.58 (10)° between the pyrazole ring and the benzene ring to which it is connected indicates a significant twist. The amino-N3 atom occupies a position almost normal to the benzene ring, forming a N3—S1—C12—C13 torsion angle of 83.70 (19)°. This allows the participation of both N—H atoms in hydrogen bonding interactions.

One amino-H atom forms a hydrogen bond to the pyrazole-N2 atom of a centrosymmetrically related molecule to form an 18-membered {···HNSC4NN}2 synthon, Table 1. These are connected into a supramolecular chain via a NH···O(sulfonamide) hydrogen bonding, Fig. 2 and Table 1. The second sulfonamide-O2 atom forms two C—H···O interactions, Table 1, to consolidate the chains into a supramolecular layers. No specific intermolecular interactions occur between the layers that stack along [1 0 1], Fig. 3.

Related literature top

For background to the biological applications of sulfonamides, see: Croitoru et al. (2004); Dogruer et al. (2010). For the biological efficacy of F and CF3 in medicinal chemistry, see: Fokin & Kolomiyets (1988); Bonacorso et al. (2006). For related structures, see: Asiri et al. (2011, 2012).

Experimental top

A solution of 4,4,4-trifluoro-1-phenyl-1,3-butanedione (2.16 g, 0.01 mmol) in ethanol (50 ml) was refluxed with 4-hydrazinobenzenesulfonamide hydrochloride (2.2 g, 0.01 mmol) for 4 h, concentrated and cooled. The precipitated crude product was filtered and recrystallized from ethanol as colourless prisms. Yield: 74%. M.pt: 467–468 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 Å; Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; their Uiso values were refined.

The furyl ring is disordered over two positions; the disorder could not be refined, and was assumed as a 1:1 type of disorder. The ring was refined as a rigid pentagon of 1.35 Å sides. The Uij values of C6' was equated to those of O6 (as well as the O1'/C6, C5'/C5, C6'/O1, C7'/C8 and C8'/C7 pairs). The benzene ring was refined as a rigid hexagon of 1.39 Å sides.

Owing to poor agreement, the (8 0 10) reflection was omitted from the final cycles of refinement.

Structure description top

The title CF3-derivatized sulfonamide (I), was investigated. in connection with on-going studies of sulfonamides, both biological (Croitoru et al., 2004; Dogruer et al., 2010) and crystallographic (Asiri et al., 2011; Asiri et al., 2012). In particular, fluoride in the form of a trifluoromethyl group, which has long been recognized in medicinal chemistry for its ability to alter the physico-chemical and biological characteristics of molecules (Fokin & Kolomiyets, 1988; Bonacorso et al., 2006), is featured in the new molecule to promote enhanced biological properties.

In (I), Fig. 1, the dihedral angle of 31.1 (2)° between the furanyl and pyrazole rings indicates a significant twist between these rings. Similarly, the dihedral angle of 55.58 (10)° between the pyrazole ring and the benzene ring to which it is connected indicates a significant twist. The amino-N3 atom occupies a position almost normal to the benzene ring, forming a N3—S1—C12—C13 torsion angle of 83.70 (19)°. This allows the participation of both N—H atoms in hydrogen bonding interactions.

One amino-H atom forms a hydrogen bond to the pyrazole-N2 atom of a centrosymmetrically related molecule to form an 18-membered {···HNSC4NN}2 synthon, Table 1. These are connected into a supramolecular chain via a NH···O(sulfonamide) hydrogen bonding, Fig. 2 and Table 1. The second sulfonamide-O2 atom forms two C—H···O interactions, Table 1, to consolidate the chains into a supramolecular layers. No specific intermolecular interactions occur between the layers that stack along [1 0 1], Fig. 3.

For background to the biological applications of sulfonamides, see: Croitoru et al. (2004); Dogruer et al. (2010). For the biological efficacy of F and CF3 in medicinal chemistry, see: Fokin & Kolomiyets (1988); Bonacorso et al. (2006). For related structures, see: Asiri et al. (2011, 2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 70% probability level. Only one orientation of the disordered furanyl ring is shown.
[Figure 2] Fig. 2. Supramolecular chain along [010] in (I) sustained by N—H···N and N—H···O hydrogen bonds shown as blue and orange dashed lines, respectively. Hydrogen atoms not participating in hydrogen-bonding interactions have been omitted for reasons of clarity.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents of (I). The N—H···N, N—H···O and C—H···O interactions are shown as orange, blue and brown dashed lines, respectively.
4-[5-(Furan-2-yl)-3-trifluoromethyl-1H-pyrazol-1-yl]benzenesulfonamide top
Crystal data top
C14H10F3N3O3SF(000) = 728
Mr = 357.31Dx = 1.591 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1899 reflections
a = 16.0536 (13) Åθ = 2.5–27.5°
b = 4.8173 (4) ŵ = 0.27 mm1
c = 20.6202 (15) ÅT = 100 K
β = 110.728 (8)°Prism, colourless
V = 1491.4 (2) Å30.25 × 0.10 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3431 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2400 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.7°
ω scanh = 2015
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 66
Tmin = 0.935, Tmax = 0.987l = 2625
6503 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0768P)2 + 1.5964P]
where P = (Fo2 + 2Fc2)/3
3431 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.57 e Å3
33 restraintsΔρmin = 0.63 e Å3
Crystal data top
C14H10F3N3O3SV = 1491.4 (2) Å3
Mr = 357.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.0536 (13) ŵ = 0.27 mm1
b = 4.8173 (4) ÅT = 100 K
c = 20.6202 (15) Å0.25 × 0.10 × 0.05 mm
β = 110.728 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3431 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2400 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.987Rint = 0.051
6503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06933 restraints
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.57 e Å3
3431 reflectionsΔρmin = 0.63 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.55947 (6)0.78623 (17)0.68278 (5)0.0271 (3)
F10.67465 (17)0.1684 (5)0.34173 (13)0.0506 (7)
F20.7248 (2)0.1593 (5)0.29748 (11)0.0559 (7)
F30.81166 (17)0.1668 (6)0.35146 (14)0.0605 (8)
O10.8796 (3)0.7601 (14)0.6001 (3)0.0229 (13)0.50
C50.9023 (5)0.5273 (19)0.5738 (4)0.0223 (8)0.50
C60.9876 (5)0.4658 (18)0.6122 (5)0.0330 (13)0.50
H61.02070.31240.60520.040*0.50
C71.0177 (3)0.6606 (15)0.6621 (3)0.0298 (17)0.50
H71.07570.66830.69650.036*0.50
C80.9510 (4)0.8425 (11)0.6547 (3)0.035 (2)0.50
H80.95371.00060.68290.042*0.50
O1'0.9946 (4)0.4216 (15)0.5961 (3)0.0330 (13)0.50
C5'0.9085 (4)0.501 (2)0.5745 (4)0.0223 (8)0.50
C6'0.9012 (4)0.7080 (18)0.6164 (4)0.0229 (13)0.50
H6'0.84800.80290.61300.028*0.50
C7'0.9829 (4)0.7561 (13)0.6638 (3)0.035 (2)0.50
H7'0.99720.89080.69980.042*0.50
C8'1.0406 (3)0.5791 (14)0.6513 (3)0.0298 (17)0.50
H8'1.10270.56750.67680.036*0.50
O20.61854 (18)0.7401 (7)0.75194 (14)0.0456 (8)
O30.5296 (2)1.0621 (5)0.65989 (17)0.0512 (9)
N10.70506 (19)0.2448 (6)0.44062 (14)0.0242 (6)
N20.75031 (18)0.3840 (6)0.50020 (14)0.0233 (6)
N30.4716 (2)0.6093 (6)0.67061 (15)0.0246 (6)
C10.7446 (2)0.0041 (8)0.35257 (17)0.0289 (8)
C20.7692 (2)0.1556 (7)0.41875 (17)0.0263 (7)
C30.8543 (2)0.2312 (7)0.46230 (17)0.0254 (7)
H30.90940.18940.45710.030*
C40.8404 (2)0.3810 (7)0.51480 (17)0.0240 (7)
C90.70348 (15)0.4776 (5)0.54273 (10)0.0215 (7)
C100.72944 (14)0.3863 (5)0.61097 (11)0.0441 (11)
H100.77780.26040.62850.053*
C110.68462 (16)0.4790 (6)0.65348 (8)0.0384 (10)
H110.70240.41650.70010.046*
C120.61384 (15)0.6630 (5)0.62776 (10)0.0238 (7)
C130.58788 (17)0.7544 (5)0.55953 (12)0.0555 (14)
H130.53950.88020.54190.067*
C140.63270 (18)0.6617 (5)0.51701 (9)0.0457 (11)
H140.61500.72420.47040.055*
H10.481 (2)0.430 (3)0.6746 (19)0.032 (10)*
H20.4245 (17)0.659 (8)0.6352 (14)0.041 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0345 (5)0.0213 (4)0.0295 (5)0.0030 (4)0.0161 (4)0.0064 (3)
F10.0543 (16)0.0558 (15)0.0475 (15)0.0290 (13)0.0251 (13)0.0239 (12)
F20.094 (2)0.0472 (14)0.0228 (12)0.0098 (14)0.0162 (13)0.0029 (11)
F30.0408 (15)0.0808 (19)0.0521 (16)0.0169 (13)0.0069 (12)0.0314 (14)
O10.012 (3)0.026 (3)0.025 (3)0.009 (2)0.001 (2)0.002 (3)
C50.0209 (18)0.024 (2)0.0233 (16)0.0009 (15)0.0097 (14)0.0001 (15)
C60.0217 (18)0.035 (3)0.042 (3)0.0019 (17)0.012 (2)0.011 (2)
C70.011 (3)0.042 (5)0.032 (3)0.003 (3)0.002 (2)0.001 (3)
C80.048 (5)0.032 (4)0.030 (3)0.008 (4)0.020 (3)0.008 (3)
O1'0.0217 (18)0.035 (3)0.042 (3)0.0019 (17)0.012 (2)0.011 (2)
C5'0.0209 (18)0.024 (2)0.0233 (16)0.0009 (15)0.0097 (14)0.0001 (15)
C6'0.012 (3)0.026 (3)0.025 (3)0.009 (2)0.001 (2)0.002 (3)
C7'0.048 (5)0.032 (4)0.030 (3)0.008 (4)0.020 (3)0.008 (3)
C8'0.011 (3)0.042 (5)0.032 (3)0.003 (3)0.002 (2)0.001 (3)
O20.0350 (15)0.077 (2)0.0248 (14)0.0097 (14)0.0100 (12)0.0201 (14)
O30.082 (2)0.0163 (13)0.079 (2)0.0030 (13)0.058 (2)0.0024 (13)
N10.0237 (14)0.0303 (15)0.0172 (14)0.0032 (12)0.0054 (11)0.0016 (11)
N20.0215 (14)0.0286 (14)0.0202 (14)0.0026 (12)0.0079 (12)0.0006 (11)
N30.0285 (16)0.0206 (14)0.0247 (16)0.0029 (12)0.0094 (13)0.0014 (12)
C10.0273 (18)0.0350 (19)0.0242 (17)0.0031 (15)0.0089 (15)0.0037 (15)
C20.0258 (18)0.0289 (17)0.0242 (18)0.0009 (14)0.0090 (15)0.0004 (14)
C30.0226 (17)0.0306 (18)0.0243 (17)0.0025 (14)0.0100 (14)0.0011 (14)
C40.0199 (17)0.0304 (17)0.0224 (17)0.0006 (13)0.0084 (14)0.0028 (14)
C90.0215 (16)0.0230 (16)0.0200 (16)0.0025 (13)0.0073 (13)0.0004 (13)
C100.033 (2)0.078 (3)0.0251 (19)0.031 (2)0.0155 (17)0.020 (2)
C110.027 (2)0.066 (3)0.0211 (18)0.0152 (19)0.0077 (15)0.0105 (18)
C120.0291 (18)0.0192 (15)0.0249 (18)0.0011 (13)0.0118 (15)0.0011 (13)
C130.082 (4)0.057 (3)0.036 (2)0.054 (3)0.032 (2)0.024 (2)
C140.071 (3)0.046 (2)0.028 (2)0.033 (2)0.026 (2)0.0176 (18)
Geometric parameters (Å, º) top
S1—O21.423 (3)C7'—H7'0.9500
S1—O31.435 (3)C8'—H8'0.9500
S1—N31.590 (3)N1—C21.334 (4)
S1—C121.7614 (17)N1—N21.362 (4)
F1—C11.327 (4)N2—C41.369 (4)
F2—C11.325 (4)N2—C91.416 (3)
F3—C11.338 (4)N3—H10.878 (10)
O1—C51.3500N3—H20.878 (10)
O1—C81.3500C1—C21.493 (5)
C5—C61.3500C2—C31.391 (5)
C5—C41.452 (5)C3—C41.383 (5)
C6—C71.3500C3—H30.9500
C6—H60.9500C9—C101.3900
C7—C81.3500C9—C141.3900
C7—H70.9500C10—C111.3900
C8—H80.9500C10—H100.9500
O1'—C5'1.3500C11—C121.3900
O1'—C8'1.3500C11—H110.9500
C5'—C6'1.3500C12—C131.3900
C5'—C41.446 (5)C13—C141.3900
C6'—C7'1.3500C13—H130.9500
C6'—H6'0.9500C14—H140.9500
C7'—C8'1.3500
O2—S1—O3120.06 (19)S1—N3—H2116 (3)
O2—S1—N3108.29 (17)H1—N3—H2115 (4)
O3—S1—N3105.67 (18)F2—C1—F1106.1 (3)
O2—S1—C12106.65 (14)F2—C1—F3106.5 (3)
O3—S1—C12106.52 (14)F1—C1—F3106.6 (3)
N3—S1—C12109.37 (14)F2—C1—C2112.5 (3)
C5—O1—C8108.0F1—C1—C2113.3 (3)
C6—C5—O1108.0F3—C1—C2111.3 (3)
C6—C5—C4129.5 (5)N1—C2—C3113.4 (3)
O1—C5—C4122.5 (5)N1—C2—C1119.3 (3)
C5—C6—C7108.0C3—C2—C1127.4 (3)
C5—C6—H6126.0C4—C3—C2104.4 (3)
C7—C6—H6126.0C4—C3—H3127.8
C8—C7—C6108.0C2—C3—H3127.8
C8—C7—H7126.0N2—C4—C3106.5 (3)
C6—C7—H7126.0N2—C4—C5'127.1 (4)
C7—C8—O1108.0C3—C4—C5'126.3 (4)
C7—C8—H8126.0N2—C4—C5122.4 (4)
O1—C8—H8126.0C3—C4—C5131.1 (5)
C5'—O1'—C8'108.0C10—C9—C14120.0
O1'—C5'—C6'108.0C10—C9—N2119.44 (17)
O1'—C5'—C4122.9 (5)C14—C9—N2120.56 (17)
C6'—C5'—C4129.0 (5)C9—C10—C11120.0
C7'—C6'—C5'108.0C9—C10—H10120.0
C7'—C6'—H6'126.0C11—C10—H10120.0
C5'—C6'—H6'126.0C12—C11—C10120.0
C8'—C7'—C6'108.0C12—C11—H11120.0
C8'—C7'—H7'126.0C10—C11—H11120.0
C6'—C7'—H7'126.0C13—C12—C11120.0
C7'—C8'—O1'108.0C13—C12—S1120.39 (12)
C7'—C8'—H8'126.0C11—C12—S1119.58 (12)
O1'—C8'—H8'126.0C12—C13—C14120.0
C2—N1—N2103.6 (3)C12—C13—H13120.0
N1—N2—C4112.2 (3)C14—C13—H13120.0
N1—N2—C9119.0 (3)C13—C14—C9120.0
C4—N2—C9128.2 (3)C13—C14—H14120.0
S1—N3—H1113 (3)C9—C14—H14120.0
C8—O1—C5—C60.0C2—C3—C4—C5176.4 (7)
C8—O1—C5—C4179.3 (12)O1'—C5'—C4—N2159.5 (5)
O1—C5—C6—C70.0C6'—C5'—C4—N222.8 (12)
C4—C5—C6—C7179.3 (13)O1'—C5'—C4—C318.1 (12)
C5—C6—C7—C80.0C6'—C5'—C4—C3159.7 (6)
C6—C7—C8—O10.0O1'—C5'—C4—C5159 (10)
C5—O1—C8—C70.0C6'—C5'—C4—C518 (9)
C8'—O1'—C5'—C6'0.0C6—C5—C4—N2150.0 (6)
C8'—O1'—C5'—C4178.2 (12)O1—C5—C4—N229.1 (12)
O1'—C5'—C6'—C7'0.0C6—C5—C4—C333.5 (12)
C4—C5'—C6'—C7'178.0 (13)O1—C5—C4—C3147.3 (6)
C5'—C6'—C7'—C8'0.0C6—C5—C4—C5'8 (9)
C6'—C7'—C8'—O1'0.0O1—C5—C4—C5'171 (10)
C5'—O1'—C8'—C7'0.0N1—N2—C9—C10121.0 (3)
C2—N1—N2—C40.0 (3)C4—N2—C9—C1049.5 (4)
C2—N1—N2—C9171.9 (3)N1—N2—C9—C1459.7 (3)
N2—N1—C2—C30.3 (4)C4—N2—C9—C14129.8 (3)
N2—N1—C2—C1178.7 (3)C14—C9—C10—C110.0
F2—C1—C2—N185.1 (4)N2—C9—C10—C11179.3 (2)
F1—C1—C2—N135.3 (5)C9—C10—C11—C120.0
F3—C1—C2—N1155.4 (3)C10—C11—C12—C130.0
F2—C1—C2—C393.8 (4)C10—C11—C12—S1178.32 (19)
F1—C1—C2—C3145.8 (4)O2—S1—C12—C13159.41 (19)
F3—C1—C2—C325.7 (5)O3—S1—C12—C1330.1 (2)
N1—C2—C3—C40.5 (4)N3—S1—C12—C1383.70 (19)
C1—C2—C3—C4178.4 (3)O2—S1—C12—C1118.9 (2)
N1—N2—C4—C30.3 (4)O3—S1—C12—C11148.3 (2)
C9—N2—C4—C3170.6 (3)N3—S1—C12—C1198.0 (2)
N1—N2—C4—C5'178.3 (7)C11—C12—C13—C140.0
C9—N2—C4—C5'7.3 (8)S1—C12—C13—C14178.31 (19)
N1—N2—C4—C5176.9 (6)C12—C13—C14—C90.0
C9—N2—C4—C512.1 (8)C10—C9—C14—C130.0
C2—C3—C4—N20.5 (4)N2—C9—C14—C13179.3 (2)
C2—C3—C4—C5'178.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O3i0.88 (1)2.00 (2)2.830 (4)158 (3)
N3—H2···N1ii0.88 (1)2.17 (1)3.032 (4)170 (4)
C8—H8···O2iii0.952.363.185 (7)145
C10—H10···O2iv0.952.443.092 (4)126
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H10F3N3O3S
Mr357.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)16.0536 (13), 4.8173 (4), 20.6202 (15)
β (°) 110.728 (8)
V3)1491.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.935, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
6503, 3431, 2400
Rint0.051
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.189, 1.06
No. of reflections3431
No. of parameters210
No. of restraints33
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.63

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O3i0.88 (1)2.00 (2)2.830 (4)158 (3)
N3—H2···N1ii0.88 (1)2.17 (1)3.032 (4)170 (4)
C8—H8···O2iii0.952.363.185 (7)145
C10—H10···O2iv0.952.443.092 (4)126
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x+3/2, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762–o763.  CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBonacorso, H. G., Wentz, A. P., Lourega, R. V., Cechinel, C. A., Moraes, T. S., Coelho, H. S., Zanatta, N., Martins, M. A. P., Hoerner, M. & Alves, S. H. (2006). J. Fluorine Chem. 127, 1066–1072.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCroitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev. Chem. (Bucharest), 55, 993–997.  CAS Google Scholar
First citationDogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J. Chem. 34, 57–65.  CAS Google Scholar
First citationFokin, A. V. & Kolomiyets, A. F. (1988). J. Fluorine Chem. 40, 247–259.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1168-o1169
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds