metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m471-m472

[meso-5,10,15,20-Tetra­kis(5-bromo­thio­phen-2-yl)porphyrinato-κ4N,N′,N′′,N′′′]nickel(II)

aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 March 2012; accepted 18 March 2012; online 24 March 2012)

The NiII atom in the title porphyrin complex, [Ni(C36H16Br4N4S4)], is in a square-planar geometry defined by four pyrrole N atoms. There is considerable buckling in the porphyrin ring with the dihedral angles between the N4 donor set and the pyrrole rings being in the range 17.0 (3)–18.8 (3)°. Each of the six-membered chelate rings is twisted about an Ni—N bond and the dihedral angles between diagonally opposite chelate rings are 13.08 (15) and 13.45 (11)°; each pair of rings is orientated in opposite directions. The bromo­thienyl rings are twisted out of the plane of the central N4 core with dihedral angles in the range 51.7 (2)–74.65 (19)°. Supra­molecular chains along [001] are formed through C—H⋯Br inter­actions in the crystal packing. Three of the four bromo­thienyl units are disordered over two coplanar positions of opposite orientation with the major components being in 0.691 (3), 0.738 (3) and 0.929 (9) fractions.

Related literature

For general background and potential applications of thienyl porphyrins, see: Boyle et al. (2010[Boyle, N. M., Rochford, J. & Pryce, M. T. (2010). Coord. Chem. Rev. 254, 77-102.]); Chen et al. (2010[Chen, W., Akhigbe, J., Brückner, C., Li, C. M. & Lei, Y. (2010). J. Phys. Chem. C, 114, 8633-8638.]); Paul-Roth et al. (2008[Paul-Roth, C. O., Letessier, J., Juillard, S., Simonneaux, G., Roisnel, T. & Rault-Berthelot, J. (2008). J. Mol. Struct. 872, 105-112.]); Rochford et al. (2008[Rochford, J., Botchway, S., McGarvey, J. J., Rooney, A. D. & Pryce, M. T. (2008). J. Phys. Chem. A, 112, 11611-11618.]); Wallin et al. (2006[Wallin, S., Hammarström, L., Blart, E. & Odobel, F. (2006). Photochem. Photobiol. Sci. 5, 828-834.]); Friedlein et al. (2005[Friedlein, R., von Kieseritzky, F., Braun, S., Linde, C., Osikowicz, W., Hellberg, J. & Salaneck, W. R. (2005). Chem. Commun. pp. 1974-1976.]); Bhyrappa & Bhavana (2001[Bhyrappa, P. & Bhavana, P. (2001). Chem. Phys. Lett. 349, 399-404.]). For related structures, see: Ghazzali et al. (2008[Ghazzali, M., Abu-Youssef, M. A. M., Larsson, K., Hansson, Ö., Amer, A., Tamm, T. & Öhrström, L. (2008). Inorg. Chem. Commun. 11, 1019-1022.]); Bhyrappa et al. (2006[Bhyrappa, P., Sankar, M., Varghese, B. & Bhavana, P. (2006). J. Chem. Sci. 118, 393-397.]); Purushothaman et al. (2001[Purushothaman, B., Varghese, B. & Bhyrappa, P. (2001). Acta Cryst. C57, 252-253.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C36H16Br4N4S4)]

  • Mr = 1011.12

  • Orthorhombic, A b a 2

  • a = 21.9367 (9) Å

  • b = 19.0090 (9) Å

  • c = 16.1742 (6) Å

  • V = 6744.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.60 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.284, Tmax = 0.401

  • 11875 measured reflections

  • 5921 independent reflections

  • 4597 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.140

  • S = 1.03

  • 5921 reflections

  • 535 parameters

  • 214 restraints

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.77 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1898 Friedel pairs

  • Flack parameter: −0.026 (13)

Table 1
Selected bond lengths (Å)

Ni—N1 1.930 (7)
Ni—N2 1.939 (7)
Ni—N3 1.929 (7)
Ni—N4 1.929 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯Br4i 0.95 2.89 3.728 (8) 148
Symmetry code: (i) x, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Porphyrins with five-membered thienyl rings at the meso positions can extend the π-conjugation of the porphyrin core owing to its smaller size and this has led to many investigations on their physiochemical properties (Boyle et al., 2010). They are of interest for their electron and energy transfer properties (Wallin et al., 2006) and because they are capable of growing ultra-thin films (Friedlein et al., 2005). Meso tetrathienylporphyrins show interesting electrochemical (Chen et al., 2010), structural (Bhyrappa & Bhavana, 2001; Bhyrappa et al., 2006; Paul-Roth et al., 2008) and photophysical (Rochford et al., 2008) properties. Herein, the synthesis and crystal structure of 5,10,15,20-tetrakis(5-bromothien-2-yl)porphyrinato nickel(II), (I), is reported in continuation of earlier structural studies (Purushothaman et al., 2001).

The NiII atom in (I), Fig. 1, is in a square-planar geometry defined by four pyrrole-N atoms, Table 1. The coordination geometry resembles that observed in the analogous ZnII complex (Ghazzali et al., 2008). However, in contrast to the literature structure in which the porphyrin molecule (excluding the bromothienyl residues) is essentially planar, there is considerable buckling in (I). This is quantified by the dihedral angles between the N4 donor set and the N1–N4-pyrrole rings of 18.8 (3), 18.0 (3), 17.0 (3) and 17.8 (2)°, respectively. This is further quantified in the parameters associated with the six-membered chelate rings. There is a measure of buckling in each of these about an Ni—N bond: NiN1N2 ring [r.m.s. deviation for the six atoms = 0.134 Å with maximum deviations from the least-squares plane = 0.145 (7) Å for the N1 atom and -0.121 (1) Å for the Ni atom], NiN1N4 ring [r.m.s. = 0.124 Å; 0.131 (7) Å (N4) and -0.114 (1) Å (Ni)], NiN2N3 ring [r.m.s. = 0.141 Å; -0.146 (7) Å (N2) and 0.130 (1) Å (Ni)] and NiN3N4 ring [r.m.s. = 0.127 Å; 0.131 (7) Å (N3) and -0.120 (1) Å (Ni)]. The dihedral angles between diagonally opposite six-membered rings are 13.08 (15)° (NiN1N2/NiN3N4) and 13.45 (11)° (NiN2N2/NiN1N4) but each pair is orientated in opposite directions. Each of the bromothienyl rings is twisted out of the plane of the central N4 core with the dihedral angles between this and the S1–S4 thienyl rings (major components of the disorder only) being 59.2 (3), 51.7 (2), 71.5 (2) and 74.65 (19)°, respectively.

In the crystal packing, supramolecular chains along [001] are formed through C—H···Br interactions involving the bromide atom of the only non-disordered bromothienyl ring, Fig. 2 and Table 1.

Related literature top

For general background and potential applications of thienyl porphyrins, see: Boyle et al. (2010); Chen et al. (2010); Paul-Roth et al. (2008); Rochford et al. (2008); Wallin et al. (2006); Friedlein et al. (2005); Bhyrappa & Bhavana (2001). For related structures, see: Ghazzali et al. (2008); Bhyrappa et al. (2006); Purushothaman et al. (2001).

Experimental top

5,10,15,20-Tetrakis[(5-bromo-2-thiophenyl)porphyrin was synthesized as reported in the literature (Friedlein et al., 2005). To 5,10,15,20-Tetrakis[(5-bromo-2-thiophenyl)porphyrin (95 mg, 0.1 mmol) dissolved in dimethylformamide (20 ml), a solution of nickel(II) acetate tetrahydrate (124 mg, 0.5 mmol) in dimethylformamide (5 ml) was added and the resulting solution refluxed for 4 h. After cooling, the solution was diluted with chloroform (100 ml) and washed with water (3×100 ml). The organic layer was dried over anhydrous Na2SO4. The solvent was removed by distillation and the product was purified by column chromatography using 3:2 chloroform and hexanes as the eluent. Recrystallization was by slow evaporation of a chloroform solution of (I) which yielded purple crystals. Yield: 90%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Three of the four bromothienyl units are disordered over two positions, the major components being in 0.691 (3), 0.738 (3) and 0.929 (9) fractions. Pairs of 1,2-related distances were restrained to within 0.01 Å and pairs of the1,3-related ones to within 0.02 Å of each other. The Uij parameters of the primed carbon atoms were set to those of the unprimed ones; the Uij parameters of the bromine and sulfur atoms were not tied but the Uij parameters were restrained to be nearly isotropic. For the major components, the atoms were restrained to lie on a plane. Pairs of Cporphyrin–Cthiophene distances were also restrained to within 0.01 Å of each other.

Structure description top

Porphyrins with five-membered thienyl rings at the meso positions can extend the π-conjugation of the porphyrin core owing to its smaller size and this has led to many investigations on their physiochemical properties (Boyle et al., 2010). They are of interest for their electron and energy transfer properties (Wallin et al., 2006) and because they are capable of growing ultra-thin films (Friedlein et al., 2005). Meso tetrathienylporphyrins show interesting electrochemical (Chen et al., 2010), structural (Bhyrappa & Bhavana, 2001; Bhyrappa et al., 2006; Paul-Roth et al., 2008) and photophysical (Rochford et al., 2008) properties. Herein, the synthesis and crystal structure of 5,10,15,20-tetrakis(5-bromothien-2-yl)porphyrinato nickel(II), (I), is reported in continuation of earlier structural studies (Purushothaman et al., 2001).

The NiII atom in (I), Fig. 1, is in a square-planar geometry defined by four pyrrole-N atoms, Table 1. The coordination geometry resembles that observed in the analogous ZnII complex (Ghazzali et al., 2008). However, in contrast to the literature structure in which the porphyrin molecule (excluding the bromothienyl residues) is essentially planar, there is considerable buckling in (I). This is quantified by the dihedral angles between the N4 donor set and the N1–N4-pyrrole rings of 18.8 (3), 18.0 (3), 17.0 (3) and 17.8 (2)°, respectively. This is further quantified in the parameters associated with the six-membered chelate rings. There is a measure of buckling in each of these about an Ni—N bond: NiN1N2 ring [r.m.s. deviation for the six atoms = 0.134 Å with maximum deviations from the least-squares plane = 0.145 (7) Å for the N1 atom and -0.121 (1) Å for the Ni atom], NiN1N4 ring [r.m.s. = 0.124 Å; 0.131 (7) Å (N4) and -0.114 (1) Å (Ni)], NiN2N3 ring [r.m.s. = 0.141 Å; -0.146 (7) Å (N2) and 0.130 (1) Å (Ni)] and NiN3N4 ring [r.m.s. = 0.127 Å; 0.131 (7) Å (N3) and -0.120 (1) Å (Ni)]. The dihedral angles between diagonally opposite six-membered rings are 13.08 (15)° (NiN1N2/NiN3N4) and 13.45 (11)° (NiN2N2/NiN1N4) but each pair is orientated in opposite directions. Each of the bromothienyl rings is twisted out of the plane of the central N4 core with the dihedral angles between this and the S1–S4 thienyl rings (major components of the disorder only) being 59.2 (3), 51.7 (2), 71.5 (2) and 74.65 (19)°, respectively.

In the crystal packing, supramolecular chains along [001] are formed through C—H···Br interactions involving the bromide atom of the only non-disordered bromothienyl ring, Fig. 2 and Table 1.

For general background and potential applications of thienyl porphyrins, see: Boyle et al. (2010); Chen et al. (2010); Paul-Roth et al. (2008); Rochford et al. (2008); Wallin et al. (2006); Friedlein et al. (2005); Bhyrappa & Bhavana (2001). For related structures, see: Ghazzali et al. (2008); Bhyrappa et al. (2006); Purushothaman et al. (2001).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. Only the major components of the disorder are shown.
[Figure 2] Fig. 2. A view of the supramolecular chain along [001] in (I). The C—H···Br interactions are shown as orange dashed lines.
[meso-5,10,15,20-Tetrakis(5-bromothiophen-2-yl)porphyrinato- κ4N,N',N'',N''']nickel(II) top
Crystal data top
[Ni(C36H16Br4N4S4)]F(000) = 3936
Mr = 1011.12Dx = 1.992 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 3139 reflections
a = 21.9367 (9) Åθ = 2.3–27.5°
b = 19.0090 (9) ŵ = 5.60 mm1
c = 16.1742 (6) ÅT = 100 K
V = 6744.6 (5) Å3Prism, purple
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5921 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4597 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.3°
ω scanh = 2820
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2419
Tmin = 0.284, Tmax = 0.401l = 1520
11875 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0739P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5921 reflectionsΔρmax = 0.89 e Å3
535 parametersΔρmin = 0.77 e Å3
214 restraintsAbsolute structure: Flack (1983), 1898 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.026 (13)
Crystal data top
[Ni(C36H16Br4N4S4)]V = 6744.6 (5) Å3
Mr = 1011.12Z = 8
Orthorhombic, Aba2Mo Kα radiation
a = 21.9367 (9) ŵ = 5.60 mm1
b = 19.0090 (9) ÅT = 100 K
c = 16.1742 (6) Å0.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5921 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4597 reflections with I > 2σ(I)
Tmin = 0.284, Tmax = 0.401Rint = 0.056
11875 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.140Δρmax = 0.89 e Å3
S = 1.03Δρmin = 0.77 e Å3
5921 reflectionsAbsolute structure: Flack (1983), 1898 Friedel pairs
535 parametersAbsolute structure parameter: 0.026 (13)
214 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.93376 (5)0.79186 (5)0.49494 (13)0.0265 (2)
Br40.98930 (5)0.89722 (6)0.04302 (12)0.0462 (3)
Br11.22918 (9)1.10301 (11)0.62570 (19)0.0835 (8)0.691 (3)
Br20.76615 (7)0.75530 (8)1.00080 (15)0.0555 (5)0.738 (3)
Br30.69378 (6)0.41916 (10)0.36601 (18)0.0477 (7)0.929 (9)
S11.11481 (18)1.0234 (2)0.5607 (3)0.0418 (10)0.691 (3)
S20.80473 (15)0.76565 (19)0.8152 (2)0.0337 (8)0.738 (3)
S30.75144 (18)0.56085 (19)0.4230 (3)0.0451 (10)0.929 (9)
C11.1833 (6)1.0204 (12)0.6128 (7)0.039 (2)0.691 (3)
C21.1970 (7)0.9570 (8)0.6395 (7)0.049 (3)0.691 (3)
H21.23320.94660.66950.059*0.691 (3)
C31.1542 (8)0.9075 (10)0.6201 (9)0.044 (5)0.691 (3)
H31.15750.85930.63490.053*0.691 (3)
C41.1060 (4)0.9349 (6)0.5769 (5)0.028 (3)0.691 (3)
C50.8274 (9)0.7573 (2)0.9198 (8)0.038 (2)0.738 (3)
C60.8860 (6)0.7533 (4)0.9284 (7)0.037 (3)0.738 (3)
H60.90540.74860.98070.044*0.738 (3)
C70.9190 (7)0.7566 (5)0.8522 (10)0.033 (4)0.738 (3)
H70.96210.75440.84810.040*0.738 (3)
C80.8812 (4)0.7633 (3)0.7866 (6)0.023 (2)0.738 (3)
C90.7624 (4)0.4779 (5)0.3806 (3)0.037 (2)0.929 (9)
C100.8204 (4)0.4649 (5)0.3627 (5)0.042 (3)0.929 (9)
H100.83440.42210.33920.050*0.929 (9)
C110.8583 (4)0.5212 (5)0.3821 (5)0.042 (3)0.929 (9)
H110.90100.52010.37280.050*0.929 (9)
C120.8295 (4)0.5778 (5)0.4154 (4)0.034 (3)0.929 (9)
Br1'1.26243 (13)1.04721 (18)0.6642 (2)0.0448 (11)0.309 (3)
Br2'0.8321 (2)0.7373 (3)1.0322 (3)0.0637 (16)0.262 (3)
Br3'0.6913 (13)0.4343 (17)0.329 (3)0.082 (10)0.071 (9)
S1'1.1596 (4)0.9388 (5)0.6245 (6)0.034 (2)0.309 (3)
S2'0.8946 (5)0.7495 (7)0.8595 (7)0.038 (3)0.262 (3)
S3'0.746 (2)0.5740 (17)0.395 (3)0.034 (13)0.071 (9)
C1'1.1861 (11)1.0237 (15)0.618 (2)0.039 (2)0.309
C2'1.1515 (11)1.0620 (12)0.5691 (18)0.049 (3)0.309
H2'1.16061.10950.55560.059*0.309 (3)
C3'1.1012 (15)1.0277 (15)0.539 (3)0.044 (5)0.309
H3'1.07191.04960.50470.053*0.309 (3)
C4'1.0968 (9)0.9583 (9)0.5643 (18)0.028 (3)0.309
C5'0.8271 (14)0.7572 (19)0.9185 (10)0.038 (2)0.262
C6'0.7797 (8)0.7699 (18)0.8732 (11)0.037 (3)0.262
H6'0.73960.77350.89510.044*0.262 (3)
C7'0.7930 (11)0.778 (2)0.7870 (13)0.033 (4)0.262
H7'0.76320.78720.74580.040*0.262 (3)
C8'0.8534 (7)0.7712 (17)0.7713 (8)0.023 (2)0.262
C9'0.756 (2)0.484 (2)0.380 (6)0.037 (2)0.071
C10'0.813 (3)0.463 (3)0.392 (9)0.042 (3)0.071
H10B0.82550.41540.38910.050*0.071 (9)
C11'0.851 (2)0.519 (4)0.409 (9)0.042 (3)0.071
H11B0.89460.51520.40840.050*0.071 (9)
C12'0.822 (3)0.5800 (19)0.428 (8)0.034 (3)0.071
S40.97840 (12)0.83684 (15)0.13430 (18)0.0472 (6)
N10.9641 (3)0.8293 (4)0.5979 (4)0.0302 (16)
N20.8858 (3)0.7234 (4)0.5555 (4)0.0321 (17)
N30.9020 (3)0.7566 (4)0.3917 (4)0.0285 (16)
N40.9833 (3)0.8581 (4)0.4344 (4)0.0281 (15)
C130.9590 (4)0.8994 (6)0.0664 (5)0.037 (2)
C140.9252 (5)0.9510 (7)0.0986 (6)0.057 (3)
H140.91190.99140.06910.068*
C150.9120 (5)0.9373 (6)0.1823 (6)0.047 (3)
H150.88770.96770.21530.056*
C160.9369 (4)0.8766 (5)0.2120 (5)0.033 (2)
C171.0119 (4)0.8756 (5)0.6093 (5)0.031 (2)
C181.0132 (4)0.8999 (5)0.6927 (5)0.038 (2)
H181.04160.93180.71630.045*
C190.9660 (4)0.8683 (5)0.7312 (5)0.036 (2)
H190.95380.87560.78690.043*
C200.9382 (4)0.8227 (5)0.6744 (5)0.034 (2)
C210.8944 (4)0.7714 (5)0.6948 (6)0.040 (2)
C220.8749 (4)0.7213 (5)0.6384 (5)0.037 (2)
C230.8442 (5)0.6573 (5)0.6606 (6)0.046 (2)
H230.83060.64390.71420.055*
C240.8385 (5)0.6202 (5)0.5907 (6)0.046 (3)
H240.82180.57420.58590.055*
C250.8622 (4)0.6618 (4)0.5242 (5)0.0327 (19)
C260.8555 (4)0.6462 (5)0.4399 (6)0.034 (2)
C270.8693 (4)0.6955 (5)0.3789 (6)0.034 (2)
C280.8496 (4)0.6909 (5)0.2965 (5)0.036 (2)
H280.82750.65310.27220.043*
C290.8681 (4)0.7508 (5)0.2581 (6)0.037 (2)
H290.85940.76410.20270.045*
C300.9027 (3)0.7897 (4)0.3163 (5)0.0237 (17)
C310.9381 (4)0.8475 (5)0.2967 (5)0.0278 (18)
C320.9796 (4)0.8749 (4)0.3524 (5)0.0318 (19)
C331.0303 (4)0.9195 (5)0.3295 (5)0.033 (2)
H331.03770.93900.27630.040*
C341.0651 (4)0.9283 (5)0.3968 (6)0.036 (2)
H341.10300.95220.39970.044*
C351.0337 (3)0.8946 (4)0.4634 (5)0.0285 (18)
C361.0484 (4)0.9021 (5)0.5462 (5)0.035 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0393 (5)0.0181 (5)0.0220 (4)0.0025 (4)0.0002 (5)0.0026 (5)
Br40.0635 (6)0.0480 (7)0.0269 (4)0.0073 (5)0.0044 (5)0.0000 (5)
Br10.0654 (12)0.0559 (13)0.1291 (19)0.0263 (9)0.0319 (12)0.0049 (13)
Br20.0674 (10)0.0571 (10)0.0418 (8)0.0203 (7)0.0249 (8)0.0030 (7)
Br30.0402 (6)0.0393 (8)0.0637 (14)0.0117 (5)0.0056 (7)0.0212 (8)
S10.044 (2)0.0252 (19)0.057 (3)0.0061 (15)0.0136 (17)0.0011 (17)
S20.0391 (16)0.033 (2)0.0289 (16)0.0082 (14)0.0072 (14)0.0059 (15)
S30.0436 (16)0.0361 (17)0.056 (2)0.0079 (14)0.0078 (18)0.0208 (17)
C10.043 (4)0.034 (5)0.040 (5)0.011 (4)0.009 (4)0.003 (4)
C20.042 (6)0.054 (8)0.050 (7)0.008 (6)0.001 (6)0.008 (6)
C30.051 (7)0.040 (8)0.042 (7)0.002 (7)0.008 (6)0.005 (7)
C40.038 (5)0.030 (7)0.017 (5)0.002 (5)0.006 (4)0.000 (5)
C50.050 (5)0.023 (5)0.041 (5)0.009 (4)0.018 (4)0.006 (4)
C60.055 (6)0.026 (6)0.029 (5)0.003 (5)0.004 (5)0.006 (4)
C70.040 (7)0.028 (6)0.032 (7)0.001 (6)0.005 (6)0.007 (5)
C80.035 (6)0.010 (4)0.025 (5)0.001 (5)0.004 (5)0.000 (4)
C90.037 (4)0.031 (5)0.043 (5)0.007 (4)0.004 (4)0.012 (4)
C100.042 (5)0.029 (5)0.055 (7)0.000 (4)0.001 (5)0.013 (5)
C110.041 (5)0.034 (5)0.050 (7)0.008 (4)0.002 (4)0.008 (5)
C120.047 (5)0.028 (5)0.025 (5)0.005 (4)0.006 (4)0.009 (4)
Br1'0.0336 (16)0.045 (2)0.056 (2)0.0027 (13)0.0114 (13)0.0138 (16)
Br2'0.098 (4)0.062 (3)0.031 (2)0.010 (3)0.006 (2)0.0104 (19)
Br3'0.087 (12)0.078 (12)0.081 (13)0.008 (8)0.010 (9)0.002 (9)
S1'0.040 (4)0.023 (4)0.038 (4)0.004 (4)0.009 (3)0.013 (4)
S2'0.040 (6)0.046 (6)0.028 (5)0.009 (4)0.010 (5)0.005 (4)
S3'0.039 (15)0.036 (15)0.027 (15)0.000 (9)0.006 (9)0.003 (9)
C1'0.043 (4)0.034 (5)0.040 (5)0.011 (4)0.009 (4)0.003 (4)
C2'0.042 (6)0.054 (8)0.050 (7)0.008 (6)0.001 (6)0.008 (6)
C3'0.051 (7)0.040 (8)0.042 (7)0.002 (7)0.008 (6)0.005 (7)
C4'0.038 (5)0.030 (7)0.017 (5)0.002 (5)0.006 (4)0.000 (5)
C5'0.050 (5)0.023 (5)0.041 (5)0.009 (4)0.018 (4)0.006 (4)
C6'0.055 (6)0.026 (6)0.029 (5)0.003 (5)0.004 (5)0.006 (4)
C7'0.040 (7)0.028 (6)0.032 (7)0.001 (6)0.005 (6)0.007 (5)
C8'0.035 (6)0.010 (4)0.025 (5)0.001 (5)0.004 (5)0.000 (4)
C9'0.037 (4)0.031 (5)0.043 (5)0.007 (4)0.004 (4)0.012 (4)
C10'0.042 (5)0.029 (5)0.055 (7)0.000 (4)0.001 (5)0.013 (5)
C11'0.041 (5)0.034 (5)0.050 (7)0.008 (4)0.002 (4)0.008 (5)
C12'0.047 (5)0.028 (5)0.025 (5)0.005 (4)0.006 (4)0.009 (4)
S40.0735 (16)0.0387 (15)0.0293 (12)0.0169 (13)0.0105 (12)0.0026 (11)
N10.049 (4)0.022 (4)0.020 (3)0.003 (3)0.003 (3)0.002 (3)
N20.045 (4)0.019 (4)0.032 (4)0.005 (3)0.005 (3)0.008 (3)
N30.036 (4)0.023 (4)0.027 (4)0.003 (3)0.003 (3)0.007 (3)
N40.032 (3)0.022 (4)0.030 (4)0.000 (3)0.005 (3)0.002 (3)
C130.045 (5)0.054 (7)0.012 (4)0.008 (5)0.001 (4)0.003 (4)
C140.067 (7)0.064 (8)0.040 (6)0.026 (6)0.007 (5)0.011 (5)
C150.064 (6)0.045 (6)0.030 (5)0.030 (5)0.019 (5)0.008 (5)
C160.040 (4)0.029 (5)0.029 (4)0.000 (4)0.009 (4)0.006 (4)
C170.034 (4)0.025 (5)0.035 (5)0.005 (4)0.011 (4)0.002 (4)
C180.050 (5)0.042 (6)0.021 (4)0.002 (4)0.013 (4)0.010 (4)
C190.063 (6)0.024 (5)0.021 (4)0.004 (4)0.010 (4)0.009 (4)
C200.050 (5)0.023 (5)0.029 (4)0.006 (4)0.002 (4)0.007 (4)
C210.056 (6)0.031 (6)0.032 (5)0.007 (5)0.010 (5)0.003 (4)
C220.055 (5)0.022 (5)0.033 (5)0.003 (4)0.016 (4)0.002 (4)
C230.077 (7)0.027 (5)0.033 (5)0.013 (5)0.008 (5)0.001 (4)
C240.074 (7)0.021 (5)0.042 (5)0.020 (5)0.008 (5)0.000 (4)
C250.044 (4)0.017 (4)0.037 (5)0.001 (4)0.008 (4)0.004 (4)
C260.038 (4)0.023 (5)0.041 (5)0.004 (4)0.008 (4)0.006 (4)
C270.041 (4)0.021 (5)0.038 (5)0.002 (4)0.007 (4)0.006 (4)
C280.049 (5)0.028 (5)0.030 (5)0.008 (4)0.001 (4)0.004 (4)
C290.044 (5)0.037 (6)0.031 (4)0.001 (4)0.004 (4)0.002 (4)
C300.027 (4)0.023 (5)0.022 (4)0.008 (3)0.002 (3)0.004 (3)
C310.038 (4)0.025 (5)0.020 (4)0.004 (4)0.003 (4)0.004 (3)
C320.045 (5)0.019 (5)0.032 (5)0.000 (4)0.004 (4)0.001 (4)
C330.043 (5)0.033 (5)0.024 (4)0.003 (4)0.002 (4)0.002 (4)
C340.041 (5)0.028 (5)0.040 (5)0.005 (4)0.005 (4)0.002 (4)
C350.032 (4)0.027 (5)0.026 (4)0.001 (3)0.009 (4)0.001 (4)
C360.040 (5)0.038 (6)0.028 (4)0.003 (4)0.005 (4)0.002 (4)
Geometric parameters (Å, º) top
Ni—N11.930 (7)C8'—C211.530 (15)
Ni—N21.939 (7)C9'—C10'1.331 (15)
Ni—N31.929 (7)C10'—C11'1.392 (16)
Ni—N41.929 (7)C10'—H10B0.9500
Br4—C131.891 (8)C11'—C12'1.360 (16)
Br1—C11.877 (14)C11'—H11B0.9500
Br2—C51.878 (12)C12'—C261.472 (15)
Br3—C91.889 (8)S4—C131.674 (10)
S1—C41.712 (12)S4—C161.726 (9)
S1—C11.724 (18)N1—C201.368 (11)
S2—C81.741 (10)N1—C171.379 (11)
S2—C51.770 (16)N2—C221.363 (11)
S3—C91.736 (10)N2—C251.376 (10)
S3—C121.746 (10)N3—C301.372 (10)
C1—C21.32 (3)N3—C271.380 (11)
C2—C31.37 (2)N4—C321.367 (11)
C2—H20.9500N4—C351.386 (10)
C3—C41.37 (2)C13—C141.334 (14)
C3—H30.9500C14—C151.409 (13)
C4—C361.493 (13)C14—H140.9500
C5—C61.30 (2)C15—C161.364 (13)
C6—C71.43 (2)C15—H150.9500
C6—H60.9500C16—C311.477 (12)
C7—C81.35 (2)C17—C361.394 (12)
C7—H70.9500C17—C181.425 (12)
C8—C211.521 (13)C18—C191.350 (13)
C9—C101.328 (12)C18—H180.9500
C10—C111.390 (13)C19—C201.402 (12)
C10—H100.9500C19—H190.9500
C11—C121.359 (13)C20—C211.408 (13)
C11—H110.9500C21—C221.386 (13)
C12—C261.476 (12)C22—C231.438 (13)
Br1'—C1'1.890 (16)C23—C241.339 (13)
Br2'—C5'1.879 (14)C23—H230.9500
Br3'—C9'1.888 (13)C24—C251.432 (12)
S1'—C1'1.72 (2)C24—H240.9500
S1'—C4'1.727 (14)C25—C261.404 (12)
S2'—C8'1.738 (13)C26—C271.393 (13)
S2'—C5'1.769 (19)C27—C281.405 (12)
S3'—C9'1.738 (14)C28—C291.358 (12)
S3'—C12'1.747 (14)C28—H280.9500
C1'—C2'1.31 (3)C29—C301.419 (11)
C2'—C3'1.37 (2)C29—H290.9500
C2'—H2'0.9500C30—C311.382 (12)
C3'—C4'1.38 (2)C31—C321.383 (12)
C3'—H3'0.9500C32—C331.448 (12)
C4'—C361.532 (14)C33—C341.339 (12)
C5'—C6'1.29 (3)C33—H330.9500
C6'—C7'1.43 (2)C34—C351.430 (12)
C6'—H6'0.9500C34—H340.9500
C7'—C8'1.36 (2)C35—C361.386 (12)
C7'—H7'0.9500
N3—Ni—N489.5 (3)C22—N2—C25105.8 (7)
N3—Ni—N1178.4 (3)C22—N2—Ni127.6 (6)
N4—Ni—N190.1 (3)C25—N2—Ni126.1 (5)
N3—Ni—N290.4 (3)C30—N3—C27104.9 (7)
N4—Ni—N2178.4 (3)C30—N3—Ni127.3 (5)
N1—Ni—N290.0 (3)C27—N3—Ni127.6 (6)
C4—S1—C189.5 (8)C32—N4—C35104.9 (7)
C8—S2—C588.9 (7)C32—N4—Ni127.7 (6)
C9—S3—C1290.2 (4)C35—N4—Ni127.2 (5)
C2—C1—S1113.0 (11)C14—C13—S4114.0 (7)
C2—C1—Br1127.4 (13)C14—C13—Br4125.2 (8)
S1—C1—Br1119.6 (15)S4—C13—Br4120.6 (6)
C1—C2—C3113.4 (15)C13—C14—C15110.7 (9)
C1—C2—H2123.3C13—C14—H14124.6
C3—C2—H2123.3C15—C14—H14124.6
C2—C3—C4112.7 (15)C16—C15—C14114.4 (9)
C2—C3—H3123.6C16—C15—H15122.8
C4—C3—H3123.6C14—C15—H15122.8
C3—C4—C36131.6 (12)C15—C16—C31130.6 (8)
C3—C4—S1111.3 (10)C15—C16—S4108.9 (7)
C36—C4—S1117.0 (8)C31—C16—S4120.1 (7)
C6—C5—S2112.8 (9)N1—C17—C36124.7 (8)
C6—C5—Br2129.3 (12)N1—C17—C18110.4 (7)
S2—C5—Br2117.9 (12)C36—C17—C18124.3 (8)
C5—C6—C7113.9 (12)C19—C18—C17106.1 (8)
C5—C6—H6123.0C19—C18—H18127.0
C7—C6—H6123.0C17—C18—H18127.0
C8—C7—C6111.8 (13)C18—C19—C20107.8 (7)
C8—C7—H7124.1C18—C19—H19126.1
C6—C7—H7124.1C20—C19—H19126.1
C7—C8—C21131.3 (10)N1—C20—C19110.8 (8)
C7—C8—S2112.6 (9)N1—C20—C21124.0 (8)
C21—C8—S2116.2 (7)C19—C20—C21124.9 (8)
C10—C9—S3112.8 (7)C22—C21—C20122.2 (8)
C10—C9—Br3128.8 (8)C22—C21—C8120.9 (8)
S3—C9—Br3118.4 (5)C20—C21—C8115.4 (8)
C9—C10—C11112.4 (9)C22—C21—C8'110.4 (14)
C9—C10—H10123.8C20—C21—C8'126.3 (15)
C11—C10—H10123.8N2—C22—C21125.0 (8)
C12—C11—C10114.9 (9)N2—C22—C23110.6 (8)
C12—C11—H11122.6C21—C22—C23124.2 (8)
C10—C11—H11122.6C24—C23—C22106.2 (8)
C11—C12—C26128.7 (9)C24—C23—H23126.9
C11—C12—S3109.7 (7)C22—C23—H23126.9
C26—C12—S3121.6 (7)C23—C24—C25108.0 (8)
C1'—S1'—C4'91.9 (10)C23—C24—H24126.0
C8'—S2'—C5'89.3 (9)C25—C24—H24126.0
C9'—S3'—C12'89.7 (8)N2—C25—C26125.1 (8)
C2'—C1'—S1'111.3 (12)N2—C25—C24109.3 (7)
C2'—C1'—Br1'128.2 (17)C26—C25—C24125.1 (8)
S1'—C1'—Br1'119.8 (19)C27—C26—C25121.6 (8)
C1'—C2'—C3'114.3 (17)C27—C26—C12'126 (5)
C1'—C2'—H2'122.9C25—C26—C12'111 (5)
C3'—C2'—H2'122.9C27—C26—C12119.1 (8)
C2'—C3'—C4'114.2 (18)C25—C26—C12119.2 (8)
C2'—C3'—H3'122.9N3—C27—C26124.9 (8)
C4'—C3'—H3'122.9N3—C27—C28110.8 (8)
C3'—C4'—C36131.1 (15)C26—C27—C28124.2 (8)
C3'—C4'—S1'108.2 (12)C29—C28—C27106.8 (8)
C36—C4'—S1'120.7 (11)C29—C28—H28126.6
C6'—C5'—S2'112.5 (11)C27—C28—H28126.6
C6'—C5'—Br2'129.7 (16)C28—C29—C30107.1 (8)
S2'—C5'—Br2'117.5 (16)C28—C29—H29126.5
C5'—C6'—C7'114.0 (15)C30—C29—H29126.5
C5'—C6'—H6'123.0N3—C30—C31125.1 (7)
C7'—C6'—H6'123.0N3—C30—C29110.2 (7)
C8'—C7'—C6'111.8 (16)C31—C30—C29124.3 (7)
C8'—C7'—H7'124.1C30—C31—C32121.3 (7)
C6'—C7'—H7'124.1C30—C31—C16120.1 (8)
C7'—C8'—C21136.5 (14)C32—C31—C16118.4 (7)
C7'—C8'—S2'112.2 (12)N4—C32—C31125.7 (7)
C21—C8'—S2'111.1 (9)N4—C32—C33109.9 (7)
C10'—C9'—S3'112.8 (11)C31—C32—C33124.0 (8)
C10'—C9'—Br3'128.0 (19)C34—C33—C32107.6 (8)
S3'—C9'—Br3'117.8 (15)C34—C33—H33126.2
C9'—C10'—C11'111.9 (15)C32—C33—H33126.2
C9'—C10'—H10B124.0C33—C34—C35106.4 (8)
C11'—C10'—H10B124.0C33—C34—H34126.8
C12'—C11'—C10'113.9 (18)C35—C34—H34126.8
C12'—C11'—H11B123.0C36—C35—N4124.4 (8)
C10'—C11'—H11B123.0C36—C35—C34124.7 (8)
C11'—C12'—C26121 (6)N4—C35—C34110.8 (7)
C11'—C12'—S3'109.3 (15)C35—C36—C17122.4 (8)
C26—C12'—S3'125 (3)C35—C36—C4124.3 (8)
C13—S4—C1691.9 (5)C17—C36—C4113.2 (7)
C20—N1—C17104.6 (7)C35—C36—C4'114.8 (13)
C20—N1—Ni127.1 (6)C17—C36—C4'120.7 (14)
C17—N1—Ni127.8 (6)
C4—S1—C1—C20.1 (2)C7'—C8'—C21—C8175 (7)
C4—S1—C1—Br1179.96 (12)S2'—C8'—C21—C81.4 (14)
S1—C1—C2—C30.2 (3)C25—N2—C22—C21176.0 (9)
Br1—C1—C2—C3179.9 (2)Ni—N2—C22—C213.6 (14)
C1—C2—C3—C40.2 (5)C25—N2—C22—C230.2 (11)
C2—C3—C4—C36177.2 (7)Ni—N2—C22—C23172.2 (7)
C2—C3—C4—S10.1 (4)C20—C21—C22—N213.2 (16)
C1—S1—C4—C30.0 (3)C8—C21—C22—N2178.5 (9)
C1—S1—C4—C36177.7 (6)C8'—C21—C22—N2155.6 (11)
C8—S2—C5—C60.1 (2)C20—C21—C22—C23162.0 (10)
C8—S2—C5—Br2179.95 (11)C8—C21—C22—C233.2 (15)
S2—C5—C6—C70.1 (3)C8'—C21—C22—C2329.2 (15)
Br2—C5—C6—C7179.99 (18)N2—C22—C23—C241.9 (12)
C5—C6—C7—C80.0 (4)C21—C22—C23—C24173.9 (10)
C6—C7—C8—C21177.5 (7)C22—C23—C24—C253.2 (12)
C6—C7—C8—S20.1 (4)C22—N2—C25—C26170.4 (9)
C5—S2—C8—C70.1 (3)Ni—N2—C25—C2617.0 (13)
C5—S2—C8—C21177.9 (5)C22—N2—C25—C242.2 (10)
C12—S3—C9—C100.1 (2)Ni—N2—C25—C24170.4 (7)
C12—S3—C9—Br3180.00 (12)C23—C24—C25—N23.5 (12)
S3—C9—C10—C110.2 (3)C23—C24—C25—C26169.1 (10)
Br3—C9—C10—C11179.91 (18)N2—C25—C26—C274.2 (14)
C9—C10—C11—C120.2 (4)C24—C25—C26—C27167.4 (9)
C10—C11—C12—C26177.6 (6)N2—C25—C26—C12'173 (3)
C10—C11—C12—S30.2 (4)C24—C25—C26—C12'1 (3)
C9—S3—C12—C110.1 (3)N2—C25—C26—C12180.0 (8)
C9—S3—C12—C26177.7 (6)C24—C25—C26—C128.5 (14)
C4'—S1'—C1'—C2'4 (3)C11'—C12'—C26—C2791 (8)
C4'—S1'—C1'—Br1'175.1 (19)S3'—C12'—C26—C2763 (11)
S1'—C1'—C2'—C3'4 (4)C11'—C12'—C26—C25101 (9)
Br1'—C1'—C2'—C3'174 (3)S3'—C12'—C26—C25105 (8)
C1'—C2'—C3'—C4'2 (6)C11'—C12'—C26—C1241 (14)
C2'—C3'—C4'—C36179 (3)S3'—C12'—C26—C12113 (22)
C2'—C3'—C4'—S1'1 (5)C11—C12—C26—C2777.1 (10)
C1'—S1'—C4'—C3'3 (3)S3—C12—C26—C27100.1 (8)
C1'—S1'—C4'—C36178 (2)C11—C12—C26—C25107.0 (8)
C8'—S2'—C5'—C6'4 (3)S3—C12—C26—C2575.8 (9)
C8'—S2'—C5'—Br2'178 (2)C11—C12—C26—C12'148 (16)
S2'—C5'—C6'—C7'3 (5)S3—C12—C26—C12'35 (16)
Br2'—C5'—C6'—C7'176 (3)C30—N3—C27—C26178.1 (8)
C5'—C6'—C7'—C8'1 (5)Ni—N3—C27—C262.8 (12)
C6'—C7'—C8'—C21177 (3)C30—N3—C27—C280.4 (9)
C6'—C7'—C8'—S2'4 (4)Ni—N3—C27—C28174.9 (6)
C5'—S2'—C8'—C7'4 (3)C25—C26—C27—N314.4 (13)
C5'—S2'—C8'—C21179 (2)C12'—C26—C27—N3179 (4)
C12'—S3'—C9'—C10'5 (9)C12—C26—C27—N3169.7 (8)
C12'—S3'—C9'—Br3'173 (7)C25—C26—C27—C28163.0 (9)
S3'—C9'—C10'—C11'4 (12)C12'—C26—C27—C284 (4)
Br3'—C9'—C10'—C11'163 (10)C12—C26—C27—C2812.9 (13)
C9'—C10'—C11'—C12'13 (13)N3—C27—C28—C292.2 (10)
C10'—C11'—C12'—C26174 (12)C26—C27—C28—C29175.5 (8)
C10'—C11'—C12'—S3'17 (10)C27—C28—C29—C303.8 (10)
C9'—S3'—C12'—C11'12 (8)C27—N3—C30—C31169.6 (8)
C9'—S3'—C12'—C26168 (10)Ni—N3—C30—C3115.1 (11)
N4—Ni—N1—C20160.5 (8)C27—N3—C30—C292.8 (9)
N2—Ni—N1—C2021.1 (8)Ni—N3—C30—C29172.5 (6)
N4—Ni—N1—C1710.7 (7)C28—C29—C30—N34.3 (10)
N2—Ni—N1—C17167.7 (8)C28—C29—C30—C31168.2 (8)
N3—Ni—N2—C22167.9 (8)N3—C30—C31—C323.8 (13)
N1—Ni—N2—C2210.6 (8)C29—C30—C31—C32167.6 (8)
N3—Ni—N2—C2521.1 (8)N3—C30—C31—C16177.3 (7)
N1—Ni—N2—C25160.4 (8)C29—C30—C31—C166.0 (12)
N4—Ni—N3—C3019.3 (7)C15—C16—C31—C30107.8 (12)
N2—Ni—N3—C30162.3 (7)S4—C16—C31—C3079.6 (10)
N4—Ni—N3—C27166.5 (7)C15—C16—C31—C3278.4 (13)
N2—Ni—N3—C2712.0 (7)S4—C16—C31—C3294.2 (9)
N3—Ni—N4—C3211.8 (7)C35—N4—C32—C31176.1 (8)
N1—Ni—N4—C32166.7 (7)Ni—N4—C32—C310.9 (12)
N3—Ni—N4—C35162.4 (7)C35—N4—C32—C333.1 (9)
N1—Ni—N4—C3519.2 (7)Ni—N4—C32—C33172.1 (6)
C16—S4—C13—C142.9 (9)C30—C31—C32—N412.0 (13)
C16—S4—C13—Br4178.3 (6)C16—C31—C32—N4174.3 (8)
S4—C13—C14—C152.8 (13)C30—C31—C32—C33160.1 (8)
Br4—C13—C14—C15178.1 (8)C16—C31—C32—C3313.6 (13)
C13—C14—C15—C161.2 (15)N4—C32—C33—C341.2 (10)
C14—C15—C16—C31174.1 (10)C31—C32—C33—C34171.9 (8)
C14—C15—C16—S40.8 (13)C32—C33—C34—C354.9 (10)
C13—S4—C16—C152.0 (8)C32—N4—C35—C36168.8 (9)
C13—S4—C16—C31176.1 (7)Ni—N4—C35—C3616.0 (12)
C20—N1—C17—C36174.7 (9)C32—N4—C35—C346.2 (9)
Ni—N1—C17—C362.0 (13)Ni—N4—C35—C34169.0 (6)
C20—N1—C17—C182.8 (10)C33—C34—C35—C36167.9 (9)
Ni—N1—C17—C18169.9 (6)C33—C34—C35—N47.1 (10)
N1—C17—C18—C190.2 (11)N4—C35—C36—C172.7 (15)
C36—C17—C18—C19171.8 (9)C34—C35—C36—C17171.6 (9)
C17—C18—C19—C203.0 (11)N4—C35—C36—C4173.3 (8)
C17—N1—C20—C194.8 (10)C34—C35—C36—C412.3 (15)
Ni—N1—C20—C19168.0 (6)N4—C35—C36—C4'166.3 (12)
C17—N1—C20—C21168.6 (9)C34—C35—C36—C4'8.0 (16)
Ni—N1—C20—C2118.6 (13)N1—C17—C36—C3511.9 (15)
C18—C19—C20—N15.1 (11)C18—C17—C36—C35158.9 (9)
C18—C19—C20—C21168.3 (9)N1—C17—C36—C4164.5 (9)
N1—C20—C21—C221.9 (15)C18—C17—C36—C424.7 (13)
C19—C20—C21—C22170.6 (9)N1—C17—C36—C4'174.5 (11)
N1—C20—C21—C8167.9 (8)C18—C17—C36—C4'3.7 (16)
C19—C20—C21—C84.6 (14)C3—C4—C36—C35114.9 (10)
N1—C20—C21—C8'165.1 (11)S1—C4—C36—C3568.0 (11)
C19—C20—C21—C8'22.4 (17)C3—C4—C36—C1761.5 (10)
C7—C8—C21—C22117.9 (9)S1—C4—C36—C17115.6 (8)
S2—C8—C21—C2264.5 (10)C3—C4—C36—C4'178 (4)
C7—C8—C21—C2048.3 (11)S1—C4—C36—C4'1 (4)
S2—C8—C21—C20129.3 (7)C3'—C4'—C36—C3550 (4)
C7—C8—C21—C8'170 (3)S1'—C4'—C36—C35129.4 (18)
S2—C8—C21—C8'7 (3)C3'—C4'—C36—C17114 (4)
C7'—C8'—C21—C2256 (5)S1'—C4'—C36—C1767 (2)
S2'—C8'—C21—C22118.1 (17)C3'—C4'—C36—C4173 (7)
C7'—C8'—C21—C20113 (4)S1'—C4'—C36—C46 (2)
S2'—C8'—C21—C2074 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Br4i0.952.893.728 (8)148
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C36H16Br4N4S4)]
Mr1011.12
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)100
a, b, c (Å)21.9367 (9), 19.0090 (9), 16.1742 (6)
V3)6744.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)5.60
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.284, 0.401
No. of measured, independent and
observed [I > 2σ(I)] reflections
11875, 5921, 4597
Rint0.056
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.140, 1.03
No. of reflections5921
No. of parameters535
No. of restraints214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.77
Absolute structureFlack (1983), 1898 Friedel pairs
Absolute structure parameter0.026 (13)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni—N11.930 (7)Ni—N31.929 (7)
Ni—N21.939 (7)Ni—N41.929 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Br4i0.952.893.728 (8)148
Symmetry code: (i) x, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: juliebhavana@gmail.com.

Acknowledgements

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBhyrappa, P. & Bhavana, P. (2001). Chem. Phys. Lett. 349, 399–404.  Web of Science CrossRef CAS Google Scholar
First citationBhyrappa, P., Sankar, M., Varghese, B. & Bhavana, P. (2006). J. Chem. Sci. 118, 393–397.  Web of Science CrossRef CAS Google Scholar
First citationBoyle, N. M., Rochford, J. & Pryce, M. T. (2010). Coord. Chem. Rev. 254, 77–102.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, W., Akhigbe, J., Brückner, C., Li, C. M. & Lei, Y. (2010). J. Phys. Chem. C, 114, 8633–8638.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedlein, R., von Kieseritzky, F., Braun, S., Linde, C., Osikowicz, W., Hellberg, J. & Salaneck, W. R. (2005). Chem. Commun. pp. 1974–1976.  Web of Science CrossRef Google Scholar
First citationGhazzali, M., Abu-Youssef, M. A. M., Larsson, K., Hansson, Ö., Amer, A., Tamm, T. & Öhrström, L. (2008). Inorg. Chem. Commun. 11, 1019–1022.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaul-Roth, C. O., Letessier, J., Juillard, S., Simonneaux, G., Roisnel, T. & Rault-Berthelot, J. (2008). J. Mol. Struct. 872, 105–112.  CAS Google Scholar
First citationPurushothaman, B., Varghese, B. & Bhyrappa, P. (2001). Acta Cryst. C57, 252–253.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRochford, J., Botchway, S., McGarvey, J. J., Rooney, A. D. & Pryce, M. T. (2008). J. Phys. Chem. A, 112, 11611–11618.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWallin, S., Hammarström, L., Blart, E. & Odobel, F. (2006). Photochem. Photobiol. Sci. 5, 828–834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m471-m472
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds