organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(1,3-Thia­zol-2-yl)sulfamo­yl]phenyl 2,2,2-tri­fluoro­acetate

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 March 2012; accepted 18 March 2012; online 24 March 2012)

In the title compound, C11H7F3N2O4S2, the 1,3-thia­zol-2-amine residue is almost perpendicular to the central benzene ring [dihedral angle = 84.3 (2)°]. There is a small twist between the benzene ring and the ester group [C—O—C—C torsion angle = 9.8 (6)°]. Thus, the mol­ecule has an L-shape. Inversion-related dimers are connected in the crystal packing by pairs of N—H⋯N hydrogen bonds formed between the amine H and thia­zole N atom via eight-membered {⋯HNCN}2 synthons.

Related literature

For the biological efficacy of F and CF3 in medicinal chemistry, see: Fokin & Kolomiyets (1988[Fokin, A. V. & Kolomiyets, A. F. (1988). J. Fluorine Chem. 40, 247-259.]); Bonacorso et al. (2006[Bonacorso, H. G., Wentz, A. P., Lourega, R. V., Cechinel, C. A., Moraes, T. S., Coelho, H. S., Zanatta, N., Martins, M. A. P., Hoerner, M. & Alves, S. H. (2006). J. Fluorine Chem. 127, 1066-1072.]). For background to the biological applications of sulfonamides, see: Croitoru et al. (2004[Croitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev. Chem. (Bucharest), 55, 993-997.]); Dogruer et al. (2010[Dogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J. Chem. 34, 57-65.]). For related structures, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.], 2012[Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762-o763.]).

[Scheme 1]

Experimental

Crystal data
  • C11H7F3N2O4S2

  • Mr = 352.31

  • Monoclinic, P 21 /n

  • a = 8.7498 (5) Å

  • b = 14.4343 (9) Å

  • c = 10.7225 (5) Å

  • β = 96.749 (5)°

  • V = 1344.84 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.876, Tmax = 0.956

  • 12068 measured reflections

  • 3105 independent reflections

  • 2252 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.215

  • S = 1.06

  • 3105 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.88 1.99 2.858 (5) 171
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The presence of fluoride and trifluoromethyl groups, in particular, has long been recognized in medicinal chemistry as a substituent of distinctive qualities (Fokin & Kolomiyets, 1988; Bonacorso et al., 2006) owing to their ability to alter the physico-chemical and biological characteristics of molecules. In connection with on-going studies of sulphonamides, biological (Croitoru et al., 2004; Dogruer et al., 2010) and crystallographic (Asiri et al., 2011; Asiri et al., 2012), the title CF3-derivatized sulphonamide (I), was investigated.

In (I), Fig. 1, with reference to the central benzene ring, the 1,3-thiazol-2-amine residue occupies an almost perpendicular position with the N2—S2—C4—C5 torsion angle being 122.7 (3)°. The dihedral angle between the benzene and thiazol rings [r.m.s. deviation = 0.011 Å] is 84.3 (2)°. There is a small twist between the benzene ring and the ester group with the C10—O3—C7—C6 torsion angle being 9.8 (6)°. To a first approximation, the molecule of (I) has the shape of the letter L.

In the crystal packing, N—H···N hydrogen bonds are formed between the amine-H and thiazol-N atoms of centrosymmetrically related molecules to form eight-membered {···HNCN}2 synthons, Fig. 2 and Table 1. Molecules pack with no specific intermolecular interactions between them.

Related literature top

For the biological efficacy of F and CF3 in medicinal chemistry, see: Fokin & Kolomiyets (1988); Bonacorso et al. (2006). For background to the biological applications of sulfonamides, see: Croitoru et al. (2004); Dogruer et al. (2010). For related structures, see: Asiri et al. (2011, 2012).

Experimental top

A mixture of sulfamerazine (2.6 g, 10 mmol) in THF (30 ml) and trifluroacetic anhydride (2.2 g, 11 mmol) was refluxed for 2 h. The solid which separated on cooling was recrystallized from ethanol. Yield: 68%. M.pt: 513–514 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [N—H = 0.88 Å and C—H = 0.95 Å; Uiso(H) = 1.2Ueq(N,C)] and were included in the refinement in the riding model approximation. Owing to poor agreement, the (0 2 1) reflection was omitted from the final cycles of refinement.

Structure description top

The presence of fluoride and trifluoromethyl groups, in particular, has long been recognized in medicinal chemistry as a substituent of distinctive qualities (Fokin & Kolomiyets, 1988; Bonacorso et al., 2006) owing to their ability to alter the physico-chemical and biological characteristics of molecules. In connection with on-going studies of sulphonamides, biological (Croitoru et al., 2004; Dogruer et al., 2010) and crystallographic (Asiri et al., 2011; Asiri et al., 2012), the title CF3-derivatized sulphonamide (I), was investigated.

In (I), Fig. 1, with reference to the central benzene ring, the 1,3-thiazol-2-amine residue occupies an almost perpendicular position with the N2—S2—C4—C5 torsion angle being 122.7 (3)°. The dihedral angle between the benzene and thiazol rings [r.m.s. deviation = 0.011 Å] is 84.3 (2)°. There is a small twist between the benzene ring and the ester group with the C10—O3—C7—C6 torsion angle being 9.8 (6)°. To a first approximation, the molecule of (I) has the shape of the letter L.

In the crystal packing, N—H···N hydrogen bonds are formed between the amine-H and thiazol-N atoms of centrosymmetrically related molecules to form eight-membered {···HNCN}2 synthons, Fig. 2 and Table 1. Molecules pack with no specific intermolecular interactions between them.

For the biological efficacy of F and CF3 in medicinal chemistry, see: Fokin & Kolomiyets (1988); Bonacorso et al. (2006). For background to the biological applications of sulfonamides, see: Croitoru et al. (2004); Dogruer et al. (2010). For related structures, see: Asiri et al. (2011, 2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Centrosymmetric dimers in (I) sustained by N—H···N hydrogen bonds shown as blue dashed lines leading to eight-membered {···HNCN}2 synthons.
4-[(1,3-Thiazol-2-yl)sulfamoyl]phenyl 2,2,2-trifluoroacetate top
Crystal data top
C11H7F3N2O4S2F(000) = 712
Mr = 352.31Dx = 1.740 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3265 reflections
a = 8.7498 (5) Åθ = 2.3–27.5°
b = 14.4343 (9) ŵ = 0.45 mm1
c = 10.7225 (5) ÅT = 100 K
β = 96.749 (5)°Irregular, light-yellow
V = 1344.84 (13) Å30.30 × 0.30 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3105 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2252 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1318
Tmin = 0.876, Tmax = 0.956l = 1313
12068 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1054P)2 + 2.1576P]
where P = (Fo2 + 2Fc2)/3
3105 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C11H7F3N2O4S2V = 1344.84 (13) Å3
Mr = 352.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7498 (5) ŵ = 0.45 mm1
b = 14.4343 (9) ÅT = 100 K
c = 10.7225 (5) Å0.30 × 0.30 × 0.10 mm
β = 96.749 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3105 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2252 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.956Rint = 0.036
12068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.215H-atom parameters constrained
S = 1.06Δρmax = 0.69 e Å3
3105 reflectionsΔρmin = 0.41 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.83675 (13)0.46698 (8)0.30886 (10)0.0500 (3)
S20.55748 (13)0.61673 (8)0.24923 (9)0.0454 (3)
F11.4449 (3)0.9101 (2)0.4037 (3)0.0707 (8)
F21.2781 (3)1.0011 (2)0.4699 (3)0.0679 (8)
F31.3609 (4)1.0282 (2)0.2933 (3)0.0684 (8)
O10.4182 (4)0.6682 (2)0.2516 (3)0.0549 (8)
O20.5788 (4)0.5696 (2)0.1331 (2)0.0547 (8)
O31.0875 (4)0.8720 (2)0.3708 (3)0.0540 (8)
O41.2090 (4)0.8779 (3)0.1895 (3)0.0621 (9)
N10.6932 (4)0.4364 (2)0.4965 (3)0.0429 (8)
N20.5655 (4)0.5461 (2)0.3653 (3)0.0407 (8)
H20.48990.54580.41270.049*
C10.9139 (5)0.3890 (3)0.4238 (4)0.0525 (11)
H11.00780.35630.42150.063*
C20.8241 (5)0.3813 (3)0.5146 (4)0.0487 (10)
H2A0.84710.34190.58530.058*
C30.6816 (5)0.4886 (3)0.3920 (3)0.0393 (9)
C40.7160 (5)0.6916 (3)0.2825 (3)0.0390 (9)
C50.8250 (5)0.7001 (3)0.1993 (3)0.0444 (10)
H50.81500.66450.12420.053*
C60.9482 (5)0.7601 (3)0.2248 (3)0.0422 (9)
H61.02220.76630.16720.051*
C70.9628 (4)0.8114 (3)0.3362 (3)0.0356 (8)
C80.8530 (5)0.8018 (3)0.4203 (3)0.0408 (9)
H80.86360.83620.49630.049*
C90.7304 (5)0.7431 (3)0.3940 (3)0.0414 (9)
H90.65560.73740.45100.050*
C101.1941 (5)0.8985 (3)0.2972 (4)0.0484 (10)
C111.3199 (6)0.9613 (4)0.3672 (5)0.0544 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0531 (7)0.0573 (7)0.0405 (6)0.0071 (5)0.0083 (5)0.0031 (5)
S20.0539 (6)0.0557 (6)0.0244 (5)0.0088 (5)0.0045 (4)0.0085 (4)
F10.0512 (16)0.0725 (19)0.086 (2)0.0087 (14)0.0015 (14)0.0160 (17)
F20.0624 (17)0.081 (2)0.0607 (17)0.0100 (15)0.0071 (13)0.0193 (15)
F30.0685 (19)0.0635 (18)0.0730 (19)0.0053 (14)0.0073 (15)0.0189 (15)
O10.0508 (17)0.073 (2)0.0385 (15)0.0029 (15)0.0064 (13)0.0167 (15)
O20.076 (2)0.0631 (19)0.0219 (13)0.0207 (17)0.0062 (13)0.0018 (13)
O30.062 (2)0.0564 (19)0.0436 (16)0.0032 (15)0.0051 (14)0.0015 (14)
O40.071 (2)0.073 (2)0.0442 (18)0.0039 (18)0.0159 (15)0.0029 (16)
N10.059 (2)0.0393 (18)0.0288 (15)0.0003 (16)0.0016 (14)0.0013 (13)
N20.0466 (18)0.051 (2)0.0247 (14)0.0051 (15)0.0032 (13)0.0077 (13)
C10.054 (3)0.049 (2)0.053 (3)0.003 (2)0.002 (2)0.013 (2)
C20.063 (3)0.042 (2)0.038 (2)0.003 (2)0.0043 (19)0.0034 (17)
C30.051 (2)0.041 (2)0.0248 (17)0.0051 (18)0.0011 (15)0.0027 (15)
C40.050 (2)0.042 (2)0.0229 (16)0.0013 (17)0.0038 (15)0.0024 (15)
C50.063 (3)0.048 (2)0.0211 (16)0.004 (2)0.0020 (16)0.0050 (15)
C60.054 (2)0.047 (2)0.0266 (17)0.0037 (19)0.0092 (16)0.0010 (16)
C70.046 (2)0.0314 (18)0.0282 (17)0.0078 (16)0.0004 (15)0.0033 (14)
C80.057 (2)0.041 (2)0.0239 (16)0.0028 (18)0.0035 (16)0.0042 (15)
C90.053 (2)0.049 (2)0.0231 (16)0.0024 (18)0.0067 (15)0.0023 (16)
C100.051 (2)0.050 (2)0.044 (2)0.0062 (19)0.0088 (19)0.0039 (19)
C110.050 (3)0.062 (3)0.051 (3)0.007 (2)0.006 (2)0.007 (2)
Geometric parameters (Å, º) top
S1—C31.738 (4)N2—H20.8800
S1—C11.745 (5)C1—C21.326 (6)
S2—O11.430 (4)C1—H10.9500
S2—O21.450 (3)C2—H2A0.9500
S2—N21.604 (3)C4—C51.386 (6)
S2—C41.762 (4)C4—C91.400 (5)
F1—C111.339 (5)C5—C61.385 (6)
F2—C111.331 (5)C5—H50.9500
F3—C111.325 (5)C6—C71.398 (5)
O3—C101.346 (5)C6—H60.9500
O3—C71.414 (5)C7—C81.399 (5)
O4—C101.214 (5)C8—C91.370 (6)
N1—C31.344 (5)C8—H80.9500
N1—C21.389 (6)C9—H90.9500
N2—C31.317 (5)C10—C111.550 (7)
C3—S1—C190.8 (2)C6—C5—C4120.4 (3)
O1—S2—O2117.08 (19)C6—C5—H5119.8
O1—S2—N2106.00 (19)C4—C5—H5119.8
O2—S2—N2111.73 (19)C5—C6—C7119.4 (4)
O1—S2—C4109.3 (2)C5—C6—H6120.3
O2—S2—C4106.50 (19)C7—C6—H6120.3
N2—S2—C4105.72 (17)C6—C7—C8119.8 (4)
C10—O3—C7126.0 (3)C6—C7—O3122.8 (3)
C3—N1—C2114.7 (4)C8—C7—O3117.3 (3)
C3—N2—S2122.1 (3)C9—C8—C7120.6 (3)
C3—N2—H2119.0C9—C8—H8119.7
S2—N2—H2119.0C7—C8—H8119.7
C2—C1—S1111.0 (4)C8—C9—C4119.5 (4)
C2—C1—H1124.5C8—C9—H9120.2
S1—C1—H1124.5C4—C9—H9120.2
C1—C2—N1113.6 (4)O4—C10—O3130.4 (5)
C1—C2—H2A123.2O4—C10—C11117.0 (4)
N1—C2—H2A123.2O3—C10—C11112.6 (4)
N2—C3—N1121.0 (4)F3—C11—F2107.4 (4)
N2—C3—S1129.1 (3)F3—C11—F1107.9 (4)
N1—C3—S1109.9 (3)F2—C11—F1106.9 (4)
C5—C4—C9120.2 (4)F3—C11—C10111.3 (4)
C5—C4—S2120.6 (3)F2—C11—C10113.9 (4)
C9—C4—S2119.2 (3)F1—C11—C10109.2 (4)
O1—S2—N2—C3178.9 (3)S2—C4—C5—C6179.0 (3)
O2—S2—N2—C352.5 (4)C4—C5—C6—C70.7 (6)
C4—S2—N2—C363.0 (4)C5—C6—C7—C80.1 (6)
C3—S1—C1—C20.9 (4)C5—C6—C7—O3178.1 (3)
S1—C1—C2—N10.1 (5)C10—O3—C7—C69.8 (6)
C3—N1—C2—C11.1 (5)C10—O3—C7—C8171.9 (4)
S2—N2—C3—N1173.6 (3)C6—C7—C8—C90.6 (6)
S2—N2—C3—S16.0 (5)O3—C7—C8—C9178.9 (3)
C2—N1—C3—N2178.0 (4)C7—C8—C9—C40.7 (6)
C2—N1—C3—S11.7 (4)C5—C4—C9—C80.1 (6)
C1—S1—C3—N2178.2 (4)S2—C4—C9—C8179.7 (3)
C1—S1—C3—N11.5 (3)C7—O3—C10—O40.2 (8)
O1—S2—C4—C5123.6 (3)C7—O3—C10—C11176.8 (3)
O2—S2—C4—C53.7 (4)O4—C10—C11—F341.5 (6)
N2—S2—C4—C5122.7 (3)O3—C10—C11—F3141.4 (4)
O1—S2—C4—C956.0 (4)O4—C10—C11—F2163.1 (4)
O2—S2—C4—C9176.7 (3)O3—C10—C11—F219.8 (5)
N2—S2—C4—C957.7 (4)O4—C10—C11—F177.6 (5)
C9—C4—C5—C60.6 (6)O3—C10—C11—F199.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.881.992.858 (5)171
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H7F3N2O4S2
Mr352.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.7498 (5), 14.4343 (9), 10.7225 (5)
β (°) 96.749 (5)
V3)1344.84 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.876, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
12068, 3105, 2252
Rint0.036
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.215, 1.06
No. of reflections3105
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.41

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.881.992.858 (5)171
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762–o763.  CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBonacorso, H. G., Wentz, A. P., Lourega, R. V., Cechinel, C. A., Moraes, T. S., Coelho, H. S., Zanatta, N., Martins, M. A. P., Hoerner, M. & Alves, S. H. (2006). J. Fluorine Chem. 127, 1066–1072.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCroitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev. Chem. (Bucharest), 55, 993–997.  CAS Google Scholar
First citationDogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J. Chem. 34, 57–65.  CAS Google Scholar
First citationFokin, A. V. & Kolomiyets, A. F. (1988). J. Fluorine Chem. 40, 247–259.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds